Week 2 Worksheet for Math 61

- 1. Define the sequence a by $a_0 = 3$ and $a_n = 2 + a_{n-1}$.
 - (a) Write out 5 terms of a starting with a_0 .

(b) Calculate
$$\sum_{i=0}^{4} a_i$$
.

- (c) Find a formula for a_i .
- (d) Find a formula for $s_n = \sum_{i=0}^n a_i$ in terms of n.
- (e) Is a non-decreasing? Is a increasing?
- (f) Is s non-decreasing? Is s increasing?
- 2. For the following relations R, determine if R is reflexive, symmetric, antisymmetric, transitive, a partial order, and/or an equivalence relation.
 - (a) $x, y \in \mathbb{R}, xRy \Leftrightarrow xy = 1.$
 - (b) $x, y \in \{\text{Rock, Paper, Scissors}\}, xRy \Leftrightarrow x \text{ beats } y.$
 - (c) $x, y \in \{\text{Rock, Paper, Scissors}\}, xRy \Leftrightarrow x \text{ beats or ties } y.$
 - (d) $x, y \in \mathbb{Z}, xRy \Leftrightarrow x y$ is even.
 - (e) $x, y \in \mathbb{Z}, xRy \Leftrightarrow x \mid y$. (Recall that $x \mid y$ iff $\exists z \in Z$ such that y = xz)

(f)
$$x, y \in \mathbb{N}, xRy \Leftrightarrow x \mid y$$
.

- 3. For each of the following relations. verify that it is an equivalence relation and give one member from each of its equivalence classes. (There many be infinitely many equivalence classes.)
 - (a) $x, y \in \mathbb{Z}, xRy \Leftrightarrow 3|x-y.$ (Recall that 3|x-y means "3 divides x-y". That is, $\exists z \in \mathbb{Z}$ such that x-y=3z).

(b)
$$x, y \in \mathbb{R}, xRy \Leftrightarrow \cos(x) = \cos(y).$$

(c)
$$x, y \in \mathbb{R}, xRy \Leftrightarrow x - y \in \mathbb{Z}.$$

(d)
$$(a,b), (x,y) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\}), (a,b)R(x,y) \Leftrightarrow ay = bx.$$

- 4. Describe the following sets geometrically (or draw a picture)
 - (a) $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$

(b) $S^1 \times (0,1)$ where $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ i.e. a circle.

(c) $([0,1] \times \{0\}) \cup (\{0\} \times [0,1]) \cup ([0,1] \times \{1\}) \cup (\{1\} \times [0,1])$