MANIPULATING FAST SOLVERS - CHANGING THEIR BOUNDARY
CONDITIONS AND PUTTING THEM ON MULTIPLE PROCESSOR
COMPUTERS

CHRISTOPHER R. ANDERSON*

Abstract. In this paper we discuss some issues related to the use of fast solvers for Laplace’s equation
on rectangular domains. We present methods to solve Laplace’s equation with non-standard boundary
conditions which are built from Laplace solvers with standard boundary conditions. We also present a direct
method by which solutions to Laplace’s equation on a rectangular domain can be constructed from solutions
of Laplace’s equation on rectangular subdomains. The majority of the steps in this latter method can be
carried out simultaneously and hence the method is suitable for multiple processor machines.

1. Introduction. One often used numerical tool is the subroutine for computing so-
lutions of Laplace’s equation on rectangular domains. In this paper we will address two
problems related to the use of these fast solvers. The first problem has to do with solving
Laplace’s equation when the boundary conditions do not correspond to a Dirichlet or Neu-
mann problem. For such problems, standard fast solvers are not directly applicable, but
fast solvers can still be used to advantage to solve them. One of the purposes of this paper
1s to show precisely how, by incorporating existing fast solvers, efficient methods can be
created to solve Laplace’s equation when the boundary conditions are not the usual type.
The second problem has to do with implementing a fast Laplace solver on multiple processor
machines. Specifically, if we have a rectangular region which is broken up into rectangular
subregions, we consider the problem “Given that a single processor (using an existing fast
Laplace solver) can generate a solution of Laplace’s equation on a subregion, how do we go
about joining solutions on these subregions to form a solution on the whole region?”. This
problem is one focus of the work in the area of domain decomposition. The design of iter-
ative methods for solving Laplace’s equation using multiple processors has been discussed
by many researchers. (See the proceedings [6] and [7] for references.) Direct methods -
those which require no iteration to join the subdomain solutions together - have not been
discussed as much. To our knowledge Chan and Resasco [2], [3] are the first to describe
a direct method. The problem which they consider is that of a rectangular domain which
has been divided into strips (just vertical or horizontal dividing lines). We will present
a similar, but slightly different, method for a rectangular domain decomposed into strips.
We will also give a direct method for a rectangular domain which has been decomposed
into boxes. One may wonder why apparently different problems are discussed in the same
paper. The reason for this is that the two problems can be solved using similar techniques.
In particular, the procedures for both problems are based on the use of the same special set
of solutions to the discrete Laplace equation.

Our interest in solving Laplace’s equation with non-standard boundary conditions
comes from the problem of determining the pressure of an incompressible fluid when a
non-staggered grid is used [1]. In this problem it is necessary to solve four distinct sets of
equations. These equations are described by the five point discrete Laplace operator for
interior points with differing equations along the boundaries. Unfortunately, the types of
equations which occur at the boundaries cannot be seen as the discretization of any usual
boundary conditions, and one is confronted with the problem of having to design solutions
procedures for each system. The equations are such that one could design effective multigrid
techniques for each system, or go about designing a direct method based on block cyclic
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reduction, however, these methods require quite a bit of time to implement if one is not
familiar with the techniques. In an effort to obtain a reasonably efficient procedure which
utilizes existing codes as much as possible, we derived a method which is implemented using
sine transforms and a routine for computing the solution to a standard Dirichlet problem
in the domain.

Similarly, the two essential ingredients of our approach in implementing a fast Laplace
solver on a multiple processor computer is a routine for solving Laplace’s equation and a
routine for computing discrete sine transforms. Thus, the implementation can be carried
out using standard routines which are usually available. The particular variety of multiple
processor machine we have in mind is one with a moderate number of processors — from
two or three to a few hundred processors — not a “massively parallel” machine. While we
have not undertaken a detailed analysis of the performance of the method, it is clear that
it is best used when there are significant numbers points associated with each processor.

In the first section we discuss a result concerning some special solutions of the dis-
crete Laplace equation which will be used to derive our methods. In the second section we
discuss direct and iterative methods which can be used to solve Laplaces equation when
non-standard boundary conditions are present. In the third section we discuss the imple-
mentation of a fast Laplace solver on a multiple processor machine. Listings of the codes
which implement the methods described in this paper are available from the author upon
request.

2. Preliminaries. In this section we derive a result about an explicit solution of the
discrete Laplace equation which will be needed to solve our problems. Consider a rectangular
region 2 described by 0 < z < a and 0 < y < b. We assume that the domain is covered by
a uniform rectangular grid with m panels in the x-direction and n panels in the y-direction.

b
Let 6z = %, by = =~ and denote by A" the discrete five point Laplacian.

ProprosITION 2.1. The function

2.1) S(i, j) = z4(i) sin(kwiay )

where zk(i) is given by

(i) = M. + (A = A7) ((1—_-1-;% - 1)

and

24 4()sin(AY)? — /(2 + 4(52) sin(*R)?)? — 4

(2.2) Ak 7

satisfies the equation
APYS=0 i=1,..m-1 j=1,.n-1

with the boundary conditions

sin(AffL) i=0 j=1,..n

0 L =m J=17 y
S= . .

0 j=n i=1,...,m

0 j=0 i=1,....m



Proof. We first assume that the width of the rectangle is infinite and seek a solution of
(2.3) AUP=0 i=1,..,00 j=1,..,n—1

with boundary conditions

sin( ) i=0 j=1,..,n—-1

)0 1= 00
U=3o j=n i=1,..,00
0 i=0 i=1,...,00

The method of separation of variables suggests we consider a solution of the form

. 5
(2.4) U(i,5) = AL sin(’“’z 4.
We substitute this solution into (2.3) to determine Ax. At the point iéz and jéy we find

i cos(ﬁrbﬂ'-) - 24 cos(’f%‘iy-) k7r_76x i A — 24 X
)% ( )X (<&
5y2 S 2

If we cancel the sine term and /\};c and simplify using the identity 2 cos(ﬁé’i)—-Q =4 sin(k—gg&)z,
we arrive at a quadratic equation for Ag,

kmwjdy

sin(

) + sin(

) =0

k7r6y

,\i-(2+4(‘;—;)2si (=) +1=0

We use the root of this equation which is less than one in magnitude to get a bounded
solution at infinity. Thus,

_ ZHA(F) it - ¢(2+4(%£>2 sin(%55%)?)? -

The solution we seek for the finite rectangle is now an infinite sum of solutions of the form
(2.4) with A defined above,

S(¢,4)

() 1+ 3 Ot - ap)
b p=2,3,6,...
krjoy

Z )[ ;;:+(’\;;:_)‘;i) ((1 1)‘2m) 1)]

This last expression is derived using the method of images. The simplification is obtained
by using the summation formula for a geometric series. 0O

sin(

ProPoOSITION 2.2. Constder the domain Q decomposed tnto two rectangular preces with
a vertical boundary which corresponds to one of the vertical grid lines. We assume that the
region on the left of the dividing line has width my grid panels and the region on the right
has width my grid panels. The function defined by

j&
(2.5) S(4,3) = zx(i — my) sin( kmj y)
where zg(i) is given by
PR O = — 1 i <0
(26) ay=] F T .)(“ ) -
0L (T -1) P20
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and

. 2+ 4(§5)? sin(45f4)? — | /(2 + 4(52)? sin(55§4)2)? — 9)
k =
2

satisfies the equation

0 i=1..,m-1 ji=1,.,n-1
kmé .
AhS — [zk(l)-szz‘*;zk(—l) + 2COS((;/§1)_2] sin(k"gsy) i=my j=1,..,n-1
0 i=m+1,....,m j=1.,n-1
(2.7)
with the boundary conditions
0 1=20 j=1..,n
g — 0 =m j=1..,n
10 j=n i=1..,m
0 j=0 i=1,...m

Proof. This function is obtained by piecing together two solutions of the form (2.1) -
one for the left rectangle and one for the right rectangle. The satisfaction of (2.7) follows
from the properties of the solutions of the form (2.1). O

3. Changing Boundary Conditions. In this section we consider the problem of
solving a set of finite difference equations associated with a rectangular domain Q.  is
described by 0 < £ < a and 0 < y < b. We assume that it is covered by a uniform
rectangular grid with m panels in the x-direction and n panels in the y-direction. Let

a . . . . . .
6x = —, 6y = —. At interior points, the equations are those corresponding to a five point

Laplace operat(ﬁ'. Along the boundaries and in the corners the equations are described by a

three point stencil with constant coefficients. We will consider constructing a fast solver for

a specific set of equations of this type, and we indicate where the method should be changed

to accommodate other sets of equations (ones with different coefficients at the boundary).
The equations which will serve as our model problem consist of

Pit1,j = 2Pij +Pi-1j | Pij+1 — 2Pij + Pij-1 _
(31) 62?2 + 6y2 - f’v]
at interior points - i.e. fori =1,...,m—1and j =1,...,n—1. For the sides the equations
are determined by a three point stencil and have the form,
Ditin — 2pi,n + pi—1,n —Pin + Pin-1 —r
Pi+1,0 — 2pio + pi-10 , —Pi0 + Pi1
3.3 kl k) b ) 3 — .
( ) 61‘2 + 6y2 f’t,o
fori=1,...,m—1, and
Po,j+1 — 2po,; + Poj-1 , —Poj + P _ .
(34) 6y2 + 5172 - fO'J
Pm,j+1 — 2Pm,j + Pm,j-1 =Pm,j + Pm-1,j _ .
(3.5) 557 + 522 = fm,j
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for j =1,...,n—1. In the corners we have another three point stencil giving the equations

Po,1 — Po,0

P1,0 — Po,o _

(36) 61!2 + 6y2 nyO
Pin — POo,n Pbojn—-1—Pon

(37) 52:2 + 5y2 - fO,n
Pm-10—Pm,o0 , Pm,1—DPm0 _

(38) (51:2 + (Sy2 fm,o

(3.9) Pm—l,;x; Prm + Pm,n—;y‘; Pmpn fmm

These equations are those corresponding to a discrete Neumann problem in the domain.
However, the equations are slightly different than the standard discrete Neumann problem
because the boundary equations are obtained by using a first order approximation to the
normal derivative at the boundary rather than the usual second order approximation. There
is a non-trivial null space corresponding to these equations corresponding to the constant
vector - the vector of which each entry is identical and non-zero. We will assume that the
right hand side of equations (3.1)-(3.9), fi,;, is orthogonal to this vector.

There are numerous fast solvers available for solving the standard Dirichlet problem in
a rectangular region, and it is desirable to have a method which takes advantage of these
solvers. For this reason, a natural candidate for a solution procedure is the method of matrix
partitioning [5], or as it is more recently called, the method of domain decomposition. To
apply the method to this problem, the unknowns are split into two groups. The first group,
denoted by Uj;, is the set of unknowns corresponding to the interior points, and the second
group, denoted by Uy, is the unknowns corresponding to the boundary points. With this
grouping, the equations (3.1)-(3.9) have the block structure

A A" U; F;
(3.10) =

\%& B U Fp

The reason for this decomposition is that the matrix A corresponds to that of a Dirichlet
problem on the interior points and its inverse is easily computed with a fast Dirichlet solver.

When the system is written in this form, the solution procedure is carried out in two steps.
One first solves

(3.11) (B—V!A~V) Uy = F, — VIATIF;
to obtain the values of the solution on the boundary, Uy, and then solves the equations
(3.12) AU; =F; - VU,

to obtain the values of the solution at interior points. The equation (3.11) is the Schur
compliment of B, and is often called the capacitance matrix. Since the solution of (3.12)
can be carried out using a fast solver, the primary difficulty in the implementation of this
approach is that of solving (3.11). We shall concentrate on both direct and iterative methods
for the solution of (3.11).

However, before we discuss the solution procedures for (3.11) we must first address the
problems which are introduced by the fact that the equations we are solving are singular.
To cope with this difficulty we rely on the following propositions,
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ProrosiTION 3.1. If

(5)

is a null vector for the system (3.10) then cy is a null vector of (3.11), i.e. if the complete
system is singular then the Schur compliment equations are also singular.

Proof. If
Ci
ch

is a null vector of (3.10) then this implies Ac; = —V ¢ or ¢; = —A~1V¢,. We also have
Vte; + Bey = 0 so by using the previous expression for ¢; we have (—=V!A~!V + B)c; = 0,
l.e. ¢ is a null vector for (3.11). O

PROPOSITION 3.2. If ¢ is a null vector for (3.11) then the vector

(3.13) ( —A7 Ve, )

Cb

is a null vector for the complete system (3.10).
Proof. This result follows immediately upon substitution of (3.13) into the system of

equations (3.10). O
Ci
ch

be a null vector of (3.10). If the right hand side of (3.10) is orthogonal to this vector then
the right hand side of (3.11) is orthogonal to the vector cp.

Proof. We are given
F.
(i, )t ( F; ) =0

as well as the fact Ac¢; + Ve = 0. If we use the transpose of this relation, ¢Vt = —ctA,
then

ProprosiTION 3.3. Let

ch(Fp — VIATIF;) = cFy+ cfAATTF;
CzFb + ch,'
0

PROPOSITION 3.4. Let D be a symmetric negative semi-definite matriz with a one
dimenstonal null space spanned by the vector @i of unit length. Assume that the vector f is

orthogonal to ii. The system of equations D — 7init is negative definite, and the solution of

has the property that



Proof. We first show that the system D — fi7i? is negative definite. Consider any vector

¥, we have § = (§ — (¢, 7)) + (¥, )7 = W + 7, i.e. so §J is expressed as a component in the
null space as well as a component orthogonal to the null space. Now,

(DF,§) = (DF+Zd+2)

(D@, @) + (D, 7) + (DZ, &) + (DZ, 7)
(D, %) + (D, )

— (D@, d),

so that

(D-#i")g,§) = (D79 - ((A7")7,9)
= (D@, ) — (7,7) < 0

This last inequality follows from the fact that if @ # 0 then the right hand side is strictly
less than zero. If W = 0 then we must have z # 0 and hence (Z,2) < 0 so the right hand
side is again strictly less than zero.

If 7 is a solution of (D — 7fA*)Z = f then by taking the inner product of this equation
with 7 and using the fact (f, i) = 0 implies 1'% = 0. Hence D& = f and (£,n) =0.

0

These propositions guarantee that the dimension of the null space of (3.11) is less than
that of the complete system. Moreover, if the complete system of equation is singular then
the system (3.11) will be singular as well. Equations (3.1)-(3.9) have a one dimensional null
space and so the null space of (3.11) is also one dimensional. In light of Proposition 3.1 the
null vector for (3.11) is a constant vector (of size the number of boundary points). We are
assuming the the right hand side of the complete system is orthogonal to the constant vector
and so by Proposition 3.3 we have that the right hand side of (3.11) is also orthogonal to the
constant vector. By Fredholms theorem the system of equations (3.11) therefore possesses
a unique solution.

With the question of the solvability of (3.11) settled we focus on methods to construct
the solution. We first consider direct methods for obtaining a solution of the equations.
There are two aspects of this approach, the formation of the equations and their solution.
The biggest difficulty confronting us is the first aspect, that of forming the equations. Once
the equations have been formed, their solution can be obtained using Gaussian elimination
(i.e. constructing and using the LU decomposition of the matrix). Of course, one must
be careful because the system is singular, but the problems which occur because of the
singularity can be avoided by using the result of Proposition 3.4. One works with the
matrix corresponding to (3.11) with the term 7in’ subtracted from it. (Here 7 is the null
vector of (3.11) which we know a priori.)

The matrix corresponding to the left hand side of equations (3.11), (B— V!A~1V), is a
linear operator from the boundary points to the boundary points. To construct this matrix
it i1s sufficient to consider the action of this operator on a set of basis vectors for the set of
boundary points. Our technique will be to use a special set of basis vectors for the boundary
points so that the action of the operator in (3.11) can be computed easily (in particular
without having to compute A'l). Qur choice of basis vectors is motivated by a particular
interpretation of the action of this operator, namely, the forward action of the equations
represented by (B — VIA~1V) is the evaluation of the boundary equations on a solution of
an interior Dirichlet problem. If we are given some vector Uy of dimension the size of the
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boundary points, then the vector (B — V!A~1V) U, is that obtained by solving the discrete
Dirichlet problem

AU = 0 in Q

(3.1) U =T, on o0

to obtain U and then applying the operator defined by equations (3.2)-(3.9) to this solution.
Our basis vectors for the boundary points will therefore be sets of boundary values for which
the solution of the discrete Dirichlet problem (3.14) can be computed analytically.

Let us group the boundary points into five sets of unknowns, the first four sets are those
points associated with one of the sides of the rectangular region (excluding the corners) and
the fifth set corresponds to the corner points. A basis for the complete set of unknowns
consists of the union of basis vectors for each subset, when these subset vectors have been
extended to be zero at the other boundary points. For the first four subsets we use as our
basis the set of vectors consisting of the functions sin(k—z-z-') fork=1,...,m—1(or sin(%rl)
for k =1,...,n—1) evaluated at the grid points along the boundary. For the corner points
we use the standard basis. For example, the kth basis vector associated with top side is of
size 2m + 2n and of the form

(3.15)

coocol

where the vector 5} are the kth sine function evaluated at the appropriate data points - i.e.
for the top basis vector this has the form

sin(A22)

-

Sk = sin(k’;i)
. kr(m—1)h
sin(Ar(m=1)h)

The basis vectors associated with the corner points are the same size as (3.15), but have a
one as one of the last four elements. We shall refer to this basis for the boundary values as
a sine basis. The representation of a vector of boundary values in the standard basis can be
expressed in the sine basis by performing four discrete sine transforms - one corresponding
to each side.

In Proposition 2.1 we gave an explicit solution to a Dirichlet problem with sine data
along an edge. These solutions are precisely the solution of a Dirichlet problem with bound-
ary data given by one of the sine basis vectors we have described above. We therefore com-
pute the action of the operator (B — V!A~1V) on the basis vectors associated with the sides
by applying the difference equations (3.2)-(3.9) to these particular solutions. The vector
which results is expressed in the standard basis and must be followed by a transformation
to express it in the sine basis we are using. The action of the operator on the corner points
is easily computed since the corner points are only coupled to other boundary points and
no interior points. (The evaluation of (B — V!A~'V) on the corner points does not involve
computing A~1.) We now go into more detail about the explicit form of (B — ViA~1V) in
the sine basis we have chosen.



Let U; to Uy represent vectors associated with the top, bottom, left and right sides
respectively, and U, the vector associated with the corner values, then (3.11) has the form

D11 Ei2 Ei3 Eiq O Uy
E2q1 D22 Ez3 Ez4 Og5 Ug
Es1 Es2 D33z Ezq Osps Us
Esn Es2 Es43 Das Ogps Uy
Os1 Os2 Os3 Os4 Dsgs U,

I
=

Fp — VIA-IF;

(3.16)

Here the matrix Tr is the matrix corresponding to a discrete sine transform of the boundary
points, i.e.

(3.17) Tr = T3

where each of the diagonal blocks T;; is a discrete sine transform matrix of m —1or n—1
points.

The diagonal blocks of the system D;;,# = 1,...,4 are diagonal matrices. For the
blocks corresponding to the top and bottom sides, D11 and Dg 2, they are identical and the
kth element of their diagonal is given by

dp =

X+ (A = A7) (ﬁgn—)—l)'l 2 cos(kzfzy _ 9

5y? * [ Sz ]
where A is that given by (2.2). The diagonal elements of D33 and D44 are similar. The
block Ds 5 is also diagonal with each entry being (—éy - ég- .

The other blocks in the system are not diagonal. The reason for this is that when
equations (3.2)-(3.9) are applied to a solution of the form (2.1) associated with a given side,
the result on an adjacent side is no longer a described by a single sine function. As an
example of these blocks, consider the block E3z;. Each column of this matrix is the vector

which results from the application of (3.2)-(3.9) along the right side to a special solution of
the form (2.1) associated with the top side. In the standard basis this matrix is given by

sin(w)zl(n -1) sin(z—"(ma—_lm)zz(n -1) ... sin(L’l——l-Ea(E:lm)zm_l(n -1)
sin(w)zl(n -2) sin(w)zg(n -2) ... sin(gm—_lmam—_lm)zm_l(n - 2)

sin(m=URy 2 (1) sin(2EEEUAY (1) L sin(imstineslhy, (1)

and when multiplied by T3 3, the matrix corresponding to a discrete sine transform of the
right side values, gives the entries in E31. The other off diagonal blocks are obtained in an
analogous manner.

The blocks denoted by O; ; represent the coupling of the points on the sides with the
corner values and vice-versa. The blocks O; j withi=1,...,4and j =5are4x(m—1)or
4 x (n — 1) blocks and represent the side equations (3.2)-(3.5) applied to the corner basis
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vectors. If the corner points are ordered so that the elements of U, correspond to the top
left, bottom right, bottom left, and top right, then for O; 5 we get the block

0 001

1 0
527 (1) -
1 000

where Ty is the discrete sin transform matrix for the top side values. The other blocks
have the same structure. The blocks along the bottom are of size (m —1) x4 or (n—1) x 4
and represent the equations of the corners when applied to a side basis vector. These blocks
are the transpose of the side blocks just described.

If one changes the equations at the boundaries then the entries in the matrix (3.16)
will change. However, it is important to realize that whatever the boundary equations
are, the entries in the matrix can be computed analytically with the use of the special
solutions given by Proposition 2.1. It may be that the diagonal blocks are no longer diagonal
matricies, which would be the case if the coefficients in the boundary stencil are not constant
coefficients, but the entries are still computable.

This completes our discussion of the construction of the matrix corresponding to (B —
VtA~1V) in the sine basis. As we know from Propositions 3.1 to 3.3 this matrix will be
singular with a null vector given by @ = Tr 7 where Tr is given by (3.17) and 7 is the null
vector of the matrix (B — V!A~!V) in the standard basis. (7 is the constant vector with
length the number of boundary points.) With the results of Proposition 3.4 in mind, before
we compute the LU factorization of this matrix (which we shall use to solve the resulting
system of linear equations) we subtract off the term wi.

There is one last item to be discussed, and that is the construction of the right hand
side of (3.11). This is accomplished by noting that in the standard basis VEA~'F; is the
vector obtained by solving the Poisson problem

AU = F;, in Q
U =20 on 80

and then applying the operator defined by (3.2)-(3.9) to the resulting solution U. The vector
that results from this process is subtracted from Fy and then transformed into a sine basis
to yield the right hand side for (3.11).

In summary the direct solution procedure for equations (3.1)-(3.9) consists of the fol-
lowing steps.

(i) Construct right hand side of (3.11). This involves solving a discrete Laplace equation
in the domain Q with homogeneous boundary data.

(ii) Form the matrix (B—V!A~1V) in the discrete sine basis and then subtract off the term
@ w¢, where @ = Tr# and 7 the null vector for the system in the standard basis.

(iii) Solve for the transform of the boundary values U, using the LU decomposition of the
matrix in (ii). Obtain the actual values by multiplying the resulting vector by the
matrix Tr - i.e. perform an inverse sine transform on each of the sides.

(iv) Solve (3.12) to obtain the values of the solution at the interior points.

In two dimensions the operation cost of the method is O(N%), where N is the total
number of points (N = nm) in the domain. However, if one wishes to solve the equations
repeatedly, then the LU decomposition of (B — V!A~1V) can be saved and the work in
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computing this decomposition can be avoided. The cost of obtaining a solution then becomes
O(NlogN) or O(N), depending on the efficiency of the interior Dirichlet solver used. In three
dimensions an analogous direct procedure also has an operation count of O(N%), but if one
requires repeated solutions, the cost per solve becomes only O(Né). (The LU backsolve
is the dominant cost). This operation count is not so favorable, and iterative methods in
which a small number of Dirichlet solves of order O(NlogN) or O(N) are needed may be
more efficient. We therefore discuss an iterative method for the solution of the equations
(3.11).

The iterative method of choice here is preconditioned conjugate-gradients [4]. As our
preconditioner we will use the inverse of the of the matrix obtained from (3.16) with the
off diagonal blocks E;; deleted. We review briefly the steps of preconditioned conjugate
gradients. If a real symmetric definite system to be solved is of the form

Cz=1b

and M is a symmetric definite approximation to C whose inverse is readily computed, then
preconditioned conjugate gradients is derived by applying the standard conjugate gradient
method to the prepared system

M~ 1Cz =M1

while using the inner product defined by < -, - >= (-, M-). Here (:,-) is the standard
inner product. The system we are solving is real symmetric but only semi-definite, and
this can lead to difficulties. However, if the preconditioner is definite (which it is in our
problem) and the initial starting vector is chosen to be orthogonal to the null space, then
no problems arise. The iterates converge to a solution of the system which is orthogonal to
the null space. The steps of the iteration, written using the standard inner product (-, -)
are then as follows -

P = b-Cz° z0 initial guess

Fork = 1,2,3,...

Zk - M_lrk
k Lk
ko (z5,r%) _
o= oy k21 p =
pk — zk +ﬁkpk—1
ak — (zk’zk)
(p, CpF)
L = gk g ok
ptl = ok akApk.

In order to implement this iteration scheme for (3.11) we need to be able to evaluate
C = (B = V!A~1V) applied to a vector as well as the preconditioner to this system of
equations. If one forms the matrix corresponding to (B — V!A~1V) and then directly
evaluates the action of this matrix on a vector, the resulting operation count will be O(N%).
However, an alternative procedure is to evaluate the action of (B — V!A~1V) upon a vector
by solving a Dirichlet problem in the domain Q - the problem described above by (3.14).
Thus, the action of the matrix on a vector can be computed in O(NlogN) or O(N) operations.
With this observation, we find that it is more natural to carry out the iteration of (3.11)
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in the standard basis. This makes the evaluation of the preconditioner (which is defined by
a matrix in the sine basis) slightly more complicated. In order to apply the preconditioner
we take the current iterate (a collection of boundary values) and express them in the sine
basis. (This is the same as multiplying the current vector by the matrix Tr describe above.)
We then multiply the transformed vector by the inverse of (3.16) with the the blocks E; ;
removed and then transform back to get the resultant vector in the standard basis. The
inverse of the preconditioner is computed using the method of matrix partitioning once
again. Here we group the unknowns into two sets, corner points and edge points. With this
partitioning, the inverse can readily be computed at a cost of inverting a diagonal matrix
and solving a dense four by four system of equations. (The formulas used are identical to
those in (3.10) - (3.12).) If we ignore the cost of inner products, the cost of each iterate
is eight discrete sine transforms (two for each side) and the cost of computing a Dirichlet
solution in the interior of the domain.
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To create a test problem we applied the equations (3.1)-(3.9) to the function f(z,y) =
exp(z)sin(2y) in a unit square and used the result as the right hand side. We then solved
the equations using the iterative procedure described. To measure the error we computed
an approximate solution to (3.1)-(3.9) in the whole domain by solving (3.12) with boundary
values given by the current iterate of the above described procedure. In Figure 1 we plot
the relative L2 norm of the error of this solution verses the number of iterations. The four
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different curves represent the results for different mesh sizes - from a 9 x 9 grid to a 65 x 65
grid. (We successively doubled the number of panels in each test.) For a given mesh size,
the curves indicate that the procedure is rapidly convergent. As the mesh size decreases,
the number of iterations required to achieve a given level of accuracy increases somewhat,
but only by a very negligible amount (about 2 iterations each time the mesh is refined by a
factor of two). This fact demonstrates the efficacy of the preconditioner.

4. Implementation on Parallel Processors. In this section we describe a direct
method for solving the discrete Laplace equation on a rectangular domain which consists
of combining solutions of Laplace’s equation on rectangular subdomains. Each of the sub-
domain solutions can be carried out simultaneously, and hence the method is suitable for
computers with multiple processors.

Our domain is the rectangular region Q2 which is described by 0 < z < aand 0 <y < b.
We assume that a uniform grid covers the domain. There is a division of the top and bottom
sides into m panels and the left and right sides into n panels. The mesh widths are then

b
b = % and 8y = = The equation to be solved is

(4.1) AU = F  in Q
(4.2) U =20 on 0Q

~where A" is the discrete five-point Laplace operator. The case of no'n-homogeneous bound-
ary conditions can be taken care of by a suitable change of the right hand side of (4.1).

I T r r
1, 2 k p-1,

T T 1<

Q |Q, R N el
X 13
- —— M _— m -
1 2
panels panels
Figure 2

Rectanqular domain decomposed into p strips
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Rectangqular domain decomposed into p*q boxes.

We will describe two different techniques for solving this problem, one cofresponds to
decomposing the domain into strips (see Figure ,( )gfand the other corresponds to decomposing
the domain into boxes (see Figure 2)> When solving Laplace’s equation on a multiple
processor machine, it is natural to think of associating a processor with each subdomain. -
With this objective in mind, we shall describe a method which combines solutions of the
discrete Laplacian on each subdomain (which can be computed by the individual processors)
so that the result is a solution on the whole domain. The method we present for doing this is -
direct in the sense that it requires just two or three solutions of Laplace’s equation on each
subdomain and a few discrete sine transforms along the interfaces between the domains.
There is no iteration performed.

In the method for the strips we assume that the domain is broken up into p pieces as
in Figure £ We denote the interfaces between adjacent regions by ['x. There is no need
for the widths of the regions to be equal - although from a parallel processing viewpoint,
this is probably the most efficient one. The first step of the method consists of solving a
discrete Laplace equation on each subdomain assuming homogeneous boundary data along

the interfaces. For k = 1...,p we compute Uk, the solution to
ART, = i Q
(4.3) A_ Uk Fr  in &
Uk = 0 on Q%

where Fj is the restriction of the right hand side to Q. We denote the solution which is
the union of these solutions by U, i.e.

- [ Uk in Qu
(44) U-{ 0 on [

The function U satisfies (4.1)-(4.2) except at points along the interior interfaces ['c. We
now add to U a collection of correction functions (one associated with each interface) in
order to construct the complete solution -

p—-1
(4.3) U(i,j) = 0, j) + X CelivJ)
=1
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For our Cy we will use a sum of the special functions (2.5) which are described by Proposition
2.2 in the preliminaries. Specifically, if T is located m¥ panels from the left edge and mk
panels from the right edge (see Figure 2) then we choose

mrj&y)
2b

n—1
(4.6) Cr(5,5) = 3, ckze(i — mf) sin(
k=1
where 2, is a function of the form given by (2.6). Now what remains to be determined are
the coefficients cﬁ in each of these correction functions. Fortunately, and this is why these
functions were selected, the functions Cj are discrete harmonic at all points in the domain
except along the interface I'y. Thus, when we consider the result of applying the discrete
Laplace operator to (4.5),

p—-1
APU = F = AMD 4 AP (Z Ck(i,j)) ;
k=1

we find that this expression is zero at all points of the domain except along the interfaces.
Along each interface we get the equation

(4.7) APCL=F - AT =F*  (i,j) €4

Thus we get p — 1 sets of equations for the p — 1 sets of coefficients ck. In view of the
structure of Cx we observe that the equations for the coefficients cf. are diagonalized by
the discrete sine transform. If we denote by S the matrix corresponding to the discrete sine
transform of n — 1 points, then we have

(4.8) HeF = S(FF)

where H is the diagonal matrix with entries

— _ 2 Kb _2
oy = Z2) =2 2a(=1) | Zeos(5) — 2
bx? oy?

We can therefore determine all of the sets of coefficients of the correction functions by
performing a discrete sine transform of the appropriate data along I'y, and then multiplying
the result by a diagonal matrix (the inverse of H).

This process allows one to compute the representation of the complete solution in the
form (4.5). It now remains to evaluate this solution at all of the grid points of the domain.
If the formula (4.5) is used directly, then the cost of evaluation is O(mn?) per subdomain.
A more efficient way to evaluate the solution is to just evaluate (4.5) at the boundaries and

then fill in the solution by solving Laplace’s equation with this boundary data. On each
subdomain we solve for

AhUk = Fk in Qk

4.9 rl ..
(4.9) Uy = kz Ck(1,7) on 9Q
=1
In the formation of the boundary values it is expedient to gather together all of the sine
coefficients first and then do one sine transform to obtain the boundary values - i.e. we
have
p—1

> Ck(3,5)
k=1

p—1 n-1 .
Y Y chz(i — mk)sin(552)
k=1

x
[

= z( C’ézn(i—m'i’)) sin (Y
k=1 \k=1
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so it is useful to form the inner sum of this last expression first.
We now summarize the steps in the method:

(i) Solve a discrete Laplace equation with homogeneous data on each subdomain % to
obtain U.

(ii) Evaluate the sine transform of the right hand side of (4.7) and multiply the result by

the inverse of H in (4.8) to obtain the coefficients of the correction functions ck

(iii) Evaluate the correction functions for each interface at every other interface to deter-
mine the boundary values of the solution along the interfaces.

(iv) Solve a discrete Laplace equation (4.9) in each subdomain to construct the solution in
the subdomain.

Each of the steps described above can be carried out simultaneously, and so the method
is suitable for multiple processor computer.

To obtain a method for a domain decomposed into rectangles (see Figure 3) one can
apply the method for strips recursively. In this form, one uses the method described above
to combine solutions on vertical (or horizontal) strips. When it is necessary to form the
solution on the individual strips, the strips are further subdivided into boxes and solutions
on these boxes are combined to form a solution on the strip. This application leads to a
direct solution procedure which requires four solutions of Laplace’s equation on the boxes
which make up the domain. A slightly different approach provides a method by which one
can obtain the complete solution to (4.1)-(4.2) at a cost of only three subdomain solves.

We assume that the region is divided up by p — 1 internal vertical boundaries (denoted
by T'x) and ¢ — 1 internal horizontal boundaries (denoted by A;). In this decomposition
there are pg rectangular subdomains which we label by Q;;. We label the left and right
edges by I'g and I', respectively and the top and bottom edges by Ag and A;. With such
a labelling, then ; is that domain which is bordered by I'y_; on the left and I'; on the
right and A;_; on the bottom and A; on the top.

The first step of our method is to construct the solution of a discrete Laplace equation
with homogeneous boundary data on each subdomain. We compute ka,z, the solution to

A’jﬁkyz = Fpy in Qg
Uy = 0 on 0y

where Fy ; is the restriction of the right hand side to ;. We then form the union of these
solutions,

- Uk in Qi
4.10 U= ' '
(4.10) {o on (Ui Tw)U (UL, Ay)

To this solution we add a collection of corrections functions which are associated with

both vertical and horizontal dividing lines. We seek a solution on the whole domain of the
form

(4.11) U(i,5) = U(i,5) + 5_‘_, Ck(i,5) + 2_“, Di(3, 5)
k=1 =1

where the functions Cj, are as described by (4.6) and D; are similarly defined functions with
respect to the interfaces A,

m—1 .
.. . . Kkmibzx
Diid) = 3 ezl - nhsin(2Z)
k=1
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if n'1 and nl2 are the number of panels that the vertical interface A; is from the bottom and
top respectively.

When we consider the application of the discrete Laplacian to the solution of the form
(4.11) we obtain equations along the interfaces 'y and A; for the coefficients in the correction
functions Cx and D;. Specifically, we get the following equation along each I,

(4.12)

g, [ FoAT o () €TW/T NG A
k= - -
E=20) for  (ij)eTeni A

and along A; we get the equation

413) APD = FF— AAhEﬁ for  (i,5) € Ai/(Ar EZ] Tx)

L—2_2 for  (i,j) € A MG_] T
These equations are the same as those for the strip case except that at the points where
the interfaces intersect (the interior corner points) the right hand side of the equations is
weighted by % This weighting accounts for the fact that the Laplacian of both types of
correction functions C; and D; contribute at those points.

The equations (4.12)-(4.13), being similar to the strip case, are diagonalized by the
discrete sine transform and thus their solution is efficiently accomplished. This allows one
to determine the coefficients in the expansion of the solution (4.11).

At this point the complete solution is obtained in the form (4.11). The cost to obtain
this representation is one solution of a Laplace equation on each subdomain and two sine
transforms along each horizontal and vertical interface. It is the evaluation of the solution
given by (4.11) at the interior points which introduces difficulties. One does not want to
evaluate the sums in (4.11) at all interior points in the domain directly - this is computa-
tionally very expensive. Qur method will be to use the values of the solution (4.11) along
the edges in combination with two solutions of Laplace’s equation in each subdomain to
form the interior values of the solution.

We assume that U in (4.10) has been saved and what remains to be determined is the
contribution to the solution from the correction functions. We first evaluate the function

p—-1
(4'14) Z Ck(z’])

k=1

along all of the vertical interfaces I'y. The function (4.14) is then the harmonic function in
the vertical strips {2 with these boundary values. Similarly the function defined by

(4.15) S Dii, )
=1

is harmonic in the horizontal strips divided by A; with boundary values given by (4.15)
along these boundaries. We can now evaluate these correction functions at interior points
by a solving a homogeneous Laplace equation in the horizontal strips (to obtain (4.14))
and the vertical strips (to obtain (4.15)). To accomplish this we employ the strip technique
described above to construct the solution from solutions on each of the domains Qg ;. If
these vertical and horizontal solutions are obtained separately then the cost becomes that
of four subdomain solutions for each Q4 ;. (Two solutions are necessary for the horizontal
strips and two solutions necessary for the vertical strips.) However, we can combine these
problems and obtain a solution on both the horizontal and vertical strips at a cost of
computing two solutions on the subdomains.
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When the strip method is applied to finding the solution in either the horizontal or
vertical strips, one begins by constructing a solution to Laplace’s equation in each of the
subdomains Q,; with homogeneous boundary data. In our particular instance, the right
hand side for the subdomain problem consists of the incorporation of the boundary values
of (4.14) along T and the boundary values of (4.15) along A;. When employing the strip
method to determine the values of (4.14) in the vertical strips, we use functions of the form
Wk,z and they are determined as the solution of

A"Wk,l = 0 in Qk,l
p—1
= i, 7 Q T2 UL
Wkl — k§l Ck(”)]) on d k,l n( k-1 U k)
0 on QraN(A1 U A))

To determine the values of (4.15) in the horizontal strips, we use functions of the form Zk’,
and they are determined as the solution of

A"Zk,, = 0 n Qg
0 on QN (Fk—l UTk)

Zkl = 9=1 ..
’ IZ Di(%, 5) on 0Qk N (A1 UA))
=1

The subdomain solutions are then combined to form W = UW“ and Z = qu,,. These solu-
tions in turn are used in the computation of the right hand side for the correction equations
of the form (4.7) along the subinterfaces. (By subinterfaces we mean the vertical dividing
lines of the horizontal strips and the horizontal dividing lines of the vertical strips.) This
computation consists of evaluating the discrete Laplacian of these functions i.e. computing
APW along the horizontal subinterfaces and A*Z along the vertical subinterfaces. Consider
the solution to

Ahvk,l = 0 in Qg1

b

p—1
_ > Ck(i,j) on an,z n (Fk—l U Fk)
(4.16) Vit =1

g-1
IX:l Di(z,7) on 0Q N (A1 UAY)

and designate the union of these solutions over the whole domain by V. Solutions of
Laplace’s equation are linear in the boundary data, so V = W + Z. Furthermore, along the
Ith horizontal subinterface between I'y_; and I'y we have that

(4.17) AMW, = ARV — APZ.

It is important to observe that the term APZ can be evaluated with the aid of a discrete

sine transform. Specifically, this term is the discrete Laplacian applied to the union of the
two solutions

(4.18) APZL, = 0 in Qiy
(4.19) G, = Z: 1(4, 5) on 0Qr N (A1 UA))
’ 0_ on QriN (e U L)
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and
(4.20) AP Zk,z+1 =0 in Qi 141

q—1

IZ Dl(i,j) on 041 N (A( U Al)
=1

0 on Qki+1 N (Tr=1UT%)

(4.21) Zk,m =

If we designate the nonzero data along the [ — 1, I, and [ +1 gubinterfaces in (4.19) and
(4.21) by di_1, di, and dj41, and their sine transform by Jl_l,~d1, and dj4+1, then by using
the result of Proposition 3.1 we find that the transform of A*Z along the Ith subinterface
between I'y_1 and I is given by

A/"\Z(fc) =
1) = 24 z(—1)  2cos(Z=8¥) — 9
di_1(k)2(n' = 1) + di(k) (Z"( ) Eyf 2e(1) | 2eos( = ) +dipaz (0 - 1)

(4.22)

where & is the wave number and 2!, and 24! are the functions corresponding to the solutions
given by Proposition 3.1 when the domain is Qk; and Q41 respectively. (We are assuming
the subdomains have a height of n’ panels. We find the values of AP7Z along this subinterface
by taking the inverse transform of (4.22). In this way we can form each of the terms in
(4.17) and hence the right hand sides for the equations on the horizontal subinterfaces which
determine the correction functions used in evaluating (4.14) in a vertical strip. In a similar
fashion one determines the right hand sides on the vertical subinterfaces used in the process
of determining (4.15) on the horizontal strips.

With the right hand sides of the equations on the subinterfaces formed, the correction
functions associated with these subinterfaces are determined by solving the analog of (4.8).
Using these correction functions the values of (4.14) along horizontal subinterfaces can be
computed and as well as the values of (4.15) along vertical subinterfaces.

The values of (4.14) and (4.15) are now known at all points of both I'; and A;. Since both
of these functions are harmonic at interior points of {2 ;, we can evaluate these functions
in the interior by performing one more subdomain solve on 2 ; using the sum of their
boundary values as boundary data. This solution is then added to U and the complete
solution of the problem is obtained.

The complete technique is summarized as follows,

(i) Solve a discrete Laplace equation with homogeneous data on each subdomain Q.

(ii) Evaluate the sine transform of the right hand side of (4.12)-(4.13) along the vertical
and horizontal dividing lines 'y, and A;. Determine the coefficients of the correction
functions associated with these interfaces (using the analog of (4.7)-(4.8)).

(iii) Evaluate the correction functions associated with each interface at every other inter-
face.

(iv) Solve (4.16), a discrete Laplace equation in each subdomain using these values as
boundary data.

(v) Compute the right hand sides of the subinterface equations by combining differences of
the solution defined by step (iv) and a correction which is obtained using formulas
similar to (4.22).
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(vi) Solve the subinterface equations using discrete sine transforms and thus determine the

values of the horizontal corrections along the vertical interfaces and the vertical
corrections along the horizontal interfaces.

(vii) Solve a homogeneous Laplace equation with boundary values given by the sum of

the correction functions (4.12)-(4.13) to obtain the values of the correction at all
interior points. Add this result to the function defined by (4.10) to obtain the
complete solution.

As is the case with the strip method, most of the work in each step can be carried out

simultaneously.
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