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Introduction

If in doubt, all notations and assumptions are with respect to [7]. Generally speaking, exercises are things
which I know are true, or I strongly suspect are true, and questions are things which I do not know the answer
to. Please share with me any comments, additional exercises or questions which you think are relevant or
interesting.

1. Week 1

Exercise 1.1. Let T be the theory of dense linear orders without endpoints (DLO) in the language L = {<},
and let T ′ be a theory expanding T in some language L′ ⊇ L with the property that every model M |= T ′,
every L′-definable X ⊆Mn is L-definable. Show that T ′ does not have definable Skolem functions.

Exercise 1.2 (cf. pg. 61 [7]). Show there is an L2-theory T 2 whose models are exactly the elementary
pairs.

Exercise 1.3 (cf. pg. 62 [7]). Show there is an L2-theory T d whose models are exactly the dense (elementary)
pairs.

Exercise 1.4 (cf. pg. 62-63 [7]). Let V ⊆ R be a finite dimension Ra-vector space. Show that V is Ra-small
in the dense pair (R,Ra), where T is the theory of ordered divisible abelian groups.

Solution. Let {β1, . . . , βn} ⊆ R be such that V = spanRa{β1, . . . , βn}. Then the B-definable function
(x1, . . . , xn) 7→

∑n
i=1 xiβi : Rn → R has the property that V = f((Ra)n). Thus V is Ra-small. �

Exercise 1.5 (cf. pg. 63 [7]). Give examples of o-minimal structures with the property that not every open
interval has the same (infinite) cardinality.

Solution. The dense linear order R + Q has this property. The ordered divisible abelian group R ⊕ Q with
the lexicographic order also has this property. �

Question 1.6. Suppose T is a complete o-minimal theory that extends the theory of ordered abelian groups,
and T has the property that for every A |= T , and every a < b ∈ A, |A| = |(a, b)|. Then does T interpret
RCF? Can one define in A = (A; +, <, . . .) |= T a function × : A2 → A which makes (A; +,×, <) a model of
RCF?

Exercise 1.7 (cf. Theorem 3(3) [7]). Suppose f : An → A is definable in (B,A) and f1, . . . , fk : An → A
are definable in A are such that for each x ∈ An there is i ∈ {1, . . . , k} with f(x) = fi(x). Furthermore
assume that for each i ∈ {1, . . . , k} the set Di := {x ∈ An : f(x) = fi(x)} ⊆ An is definable in A. Then f is
definable in A.

Solution. The following defines the graph of f in A:

f(x) = y :⇐⇒
k∨
i=1

(
Di(x) ∧ fi(x) = y

)
. �

Exercise 1.8 (cf. Theorem 3(3) [7]). Give an example of a dense pair (B,A) and a function f : An → A
definable in (B,A) which is not definable in A.
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Question 1.9 (cf. pg. 63 [7]). Given a dense pair (B,A), can you always find (B′,A′) ≡ (B,A) such that
|A| < |B|?

Exercise 1.10 (cf. Theorem 4 in [7]). Given a dense pair (B,A), a set X ⊆ B definable in (B,A), and
b0 < b1 from B ∪ {±∞}, we say that that X is co-A-small on (b1, b2) if (b0, b1) \X is A-small.

Show that if S ⊆ B is definable in (B,A), then there is a partition

−∞ = b0 < b1 < · · · < bk < bk+1 = +∞
of B such that for each i = 0, . . . , k either

(1) S ∩ (bi, bi+1), or
(2) (bi, bi+1) ⊆ S, or
(3) S ∩ (bi, bi+1) and (bi, bi+1) \ S are dense in (bi, bi+1), and S ∩ (bi, bi+1) is A-small, or
(4) S ∩ (bi, bi+1) and (bi, bi+1) \ S are dense in (bi, bi+1), and S ∩ (bi, bi+1) is co-A-small on (bi, bi+1).

Prove this as a consequence of Theorems 1-5 in the introduction, not from scratch.

Exercise 1.11 (cf. pg. 64 [7]). Here T is an arbitrary complete theory with infinite models.

(1) Show that T has a universal axiomatization (UA) iff for every M |= T , and every A ⊆M , 〈A〉 |= T .
(2) Show that if T has QE and UA, then for every M |= T , and every A ⊆M ,

〈A〉 = dcl(A) = acl(A) 4M.

(3) Does the converse of (2) hold?

Exercise 1.12. Suppose M is a one-sorted structure, A ⊆M , and there exists an A-definable total ordering
on M . Then dcl(A) = acl(A) inside M. In particular, if there is a ∅-definable total ordering on M (as is the
case for every structure considered in [7]), then for every A ⊆M , dcl(A) = acl(A).

Exercise 1.13 (cf. pg. 64 [7]). Let B |= T , and S ⊆ Bn be definable and nonempty. Show that for every
a ∈ Bn, d(a, S) exists, and the function x 7→ d(x, S) : Bn → B≥0 is definable.

Exercise 1.14 (cf. pg. 64 [7]). Given B |= T , say that B is downward-pairable if there is A 4 B such
that (B,A) |= T d. Now assume T has QE and UA, let M |= T be highly saturated, and define P := 〈0〉 4M.

(1) Show that P is not downward-pairable.
(2) Give an example of B 4M such that B 6= P, and B is not downward-pairable. How “large” can you

make B?
(3) Given an ∅-indiscernible sequence (ai)i∈I in M, is P〈(ai)i∈I〉 downward-pairable or non-downward-

pairable? Are there examples of both? What if (ai)i∈I is a Morley sequence?

Solution. (1) Suppose A 4 P. Since 0 ∈ A, P = 〈0〉 ⊆ A and so A = P. Thus P is not downward-pairable.
(2) Take a ∈ M such that a > P. Define B := P〈a〉. Note that rk(B|P) = 1. Thus if A 4 B, either

A = P or A = B. We claim that (B,P) is not a dense pair. Indeed, inside B, (a, a + 1) > P, and thus
(a, a+ 1) ∩ P = ∅. �

Exercise 1.15. Given A |= T , way that A is upward-pairable if there is B < A such that (B,A) |= T d.

(1) Give an example of T and A |= T such that A is not upward-pairable.
(2) How general of an example is there?

Solution. (1) Let T be an theory which has a model whose underlying set is R, and let A be that model.
We claim the A is not upward-pairable. Assume towards a contradiction there is B � A is such that (B,A)
is a dense pair. Then the underlying ordered group of B is not archimedean. If there is an element b ∈ B
such that b > A, then (b, b + 1) ∩ A = ∅. If there is an element b ∈ B such that 0 < b, and b < a for every
a ∈ A such that a > 0, then (b/2, b)∩ = ∅. �

2. Pregeometries

Some of the material in this section is adapted from [6, Appendix C].

Definition 2.1. Given a set X and a function cl : P(X) → P(X), we say that cl is a closure operator
(on X) if it satisfies:
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• (Extension) for every A ⊆ X, A ⊆ cl(A),
• (Increasing) for every A ⊆ B ⊆ X, cl(A) ⊆ cl(B), and
• (Idempotent) for every A ⊆ X, cl(A) = cl(cl(A)).

We say that a closure operator cl on X has finite character if it satisfies:

• (Finite Character) for every A ⊆ X, and a ∈ cl(A), there is some finite A0 ⊆ A such that a ∈ cl(A0).

We say that a closure operator cl on X has exchange if it satisfies:

• (Exchange) for every A ⊆ X, and a, b ∈ X, if a 6∈ cl(A) and b 6∈ cl(A), then a ∈ cl(A ∪ {b}) iff
b ∈ cl(A ∪ {a}).

We say the pair (X, cl) is a pregeometry if cl is a closure operator on X that satisfies both finite character
and exchange.

By convention, if we refer to a pair (X, cl) as a closure operator, we mean that X is a set, and cl : P(X)→
P(X) is a closure operator on X.

Exercise 2.2. Give an example of a set X and a closure operator cl on X which does not satisfy finite
character.

Solution. Let X = R and cl be the operation of topological closure with respect to the usual euclidean or
order topology on R. Then 0 ∈ cl(A) where A = {1/n : n ≥ 1}, but 0 6∈ cl(A0) for every finite A0 ⊆ A. �

Most closure operators that arise in model theory have finite character:

Exercise 2.3. Let M be a first-order structure. Note that for every A ⊆M ,

A ⊆ 〈A〉 ⊆ dcl(A) ⊆ acl(A) ⊆M.

(1) Show that the following operations are all closure operators of finite character on M :
(a) A 7→ A,
(b) A 7→ 〈A〉,
(c) A 7→ dcl(A),
(d) A 7→ acl(A),
(e) A 7→M .

(2) Give examples of specific M where various combinations of the above closure operators are the same
or different.

Definition 2.4. Let (X, cl) be a closure operator. A subset A of X is called

(1) independent if for every a ∈ A, a 6∈ cl(A \ {a}),
(2) a generating set if X = cl(A), and
(3) a basis if A is an independent generating set.

Exercise 2.5. Suppose (X, cl) is a closure operator. Then ∅ is independent and X is a generating set.

Exercise 2.6. Suppose (X, cl) is a closure operator with finite character. Suppose (Ai)i∈I is an increasing
union of independent subsets of X. Then

⋃
i∈I Ai is an independent set. Give an example of a closure

operator without finite character where this fails (bonus points if the example has Exchange).

Lemma 2.7 (Basis Existence Lemma). Let (X, cl) be a pregeometry, and suppose E is a generating set.
Suppose B0 is an independent subset of E. Then B0 can be extended to a basis B ⊆ E. In particular, X
has a basis.

Proof. Suppose B is an independent set. We claim that if x ∈ X \ cl(B), then B ∪ {x} is also independent.
Clearly x 6∈ cl((B ∪{x}) \ {x}) by assumption. Suppose b ∈ B. Then b 6∈ cl(B \ {b}) since B is independent,
so b 6∈ cl((B \ {b}) ∪ {x}) by Exchange (otherwise x ∈ cl(B), a contradiction).

By Finite Character, and an exercise above, we may apply Zorn’s Lemma to obtain a maximal independent
subset B of E. The above claim shows that E ⊆ cl(B), and thus X = cl(B). �

Exercise 2.8. Give an example of a closure operator where the Basis Existence Lemma fails. Can you find
an example that has Finite Character? An example that has Exchange?

3



Lemma 2.9 (Invariance of Basis Cardinality). Let (X, cl) be a pregeometry, and let B0 and B1 be two bases
of X. Then |B0| = |B1|.

Proof. Let A be independent and B a generating subset of X. It suffices to show that |A| ≤ |B|. Assume
first that A is infinite. By Basis Existence we extend A to a basis A′. Using Finite Character, choose for
every b ∈ B a finite subset Ab of A′ with b ∈ cl(Ab). Since

⋃
b∈B Ab ⊆ A′ is a generating set (its cl contains

B, hence its cl2 = cl is all of X), we necessarily have
⋃
b∈B Ab = A′. This implies that B is infinite (if it is

finite, then the union is finite), and |A| ≤ |A′| ≤ |B|:

A′ =
⋃
b∈B

Ab ≤card

⋃
b∈B

Ab × {b}︸ ︷︷ ︸
⊆A×B

≤card ω ×B =card B.

Now assume that A is finite. Then |A| ≤ |B| follows from the following claim: Given any a ∈ A \B, there
is some b ∈ B \ A such that A′ = {b} ∪ A \ {a} is independent (A′ has the same cardinality as A, applying
the claim enough times yields an independent subset of B with the same cardinality of A). To prove the
claim, suppose a 6∈ A \B. Since a ∈ cl(B), then B 6⊆ cl(A \ {a}). Choose b ∈ B \ cl(A \ {a}). It follows from
Exchange that A′ = {b} ∪A \ {a} is independent. �

Definition 2.10. Given a pregeometry (X, cl), the dimension dim(X) of (X, cl) is the cardinality of a
basis. Note: In the setting of [7], the dimension of the relevant pregeometries is referred to as rank, as
dimension already has a different meaning for o-minimal structures.

Exercise 2.11. Give an example of a closure operator (X, cl) which has two bases B0 and B1 such that
|B0| 6= |B1|.

3. Week 2

Recall the Monotonicity Theorem [8, Chapter 3, (1.2)]:

Theorem 3.1. In an o-minimal structure R, if f : (a, b) → R is an A-definable function on the interval
(a, b), then there are a = a0 < a1 < · · · < ak = b such that on each subinterval (ai, ai+1) the function f
is continuous, and (depending on i) either constant, strictly increasing, or strictly decreasing. Furthermore,
the ai can be taken to be A-definable.

Exercise 3.2 (cf. pg. 64 [7]). Given an o-minimal structure A, show that the operation C 7→ dcl(C) satisfies
Exchange, and thus (A,dcl) is a pregeometry.

Solution. This argument is basically [4, Remark after Theorem 4.2]. Suppose a, b ∈ A and B ⊆ A are such
that a, b 6∈ dcl(B), and suppose a ∈ dcl(Bb). Then there is a B-definable function f : A → A such that
f(b) = a. Let −∞ = a0 < a1 < · · · < ak = +∞ be as in the Monotonicity Theorem above applied to
f ; in particular, arrange that the ai’s are B-definable. Then b 6= ai for each i since b 6∈ dcl(B), thus b is
in (ai, ai+1) for one of the i’s. If f � (ai, ai+1) is constant, then f(b) is B-definable, so f � (ai, ai+1) is
strictly monotone. Let g be the B-definable partial inverse to f on (ai, ai+1). Then g(a) = b which witnesses
b ∈ dcl(B, a). �

Exercise 3.3 (cf. pg. 65 [7]). The point of this exercise is to figure out how sharp the “∃∞∃∞” hypothesis
in the Peterzil-Starchenko Theorem is. Let A be an o-minimal expansion of an ordered vector space over an
ordered field F .

(1) Given λ0, . . . , λn, show that there is g : Ap+1 → A definable in A and tuples a0, . . . , an ∈ Ap such
that g(ai, x) = λix for all x and i = 0, . . . , n.

(2) Given x0, . . . , xn, can you find a function g : Ap+1 → A definable in A such that for infinitely many
scalars λ ∈ F there is a tuple aλ ∈ Ap such that g(aλ, xi) = λxi for i = 0, . . . , n. Prove or give
counterexample.

Exercise 3.4 (cf. Corollary 1.3 [7]). Given an arbitrary complete o-minimal theory, generalize the definitions
of elementary pair, dense pair and A-small to this setting in the obvious way.
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(1) Can you find a complete o-minimal theory and a dense pair (B,A) in this theory such that Corollary
1.3 of [7] fails? I.e., B is A-small? What about an example with T expanding the theory of ordered
divisible abelian groups?

(2) Suppose T extends RCF, and (B,A) |= T 2 with B 6= A. Show that B is not A-small.

Exercise 3.5 (cf. Corollary 1.3 [7]). Assume T has QE and UA, working in M highly saturated, define
P := 〈0〉, and define rk(B) := rk(B|P).

(1) Suppose for cardinals κ ≤ λ there is a model B with rk(B) = λ. Find A 4 B such that rk(A) = κ.
(2) Suppose for cardinals κ ≤ λ there is a model B with rk(B) = λ. Find A 4 B such that rk(B|A) = κ.
(3) Give an example of a theory T ′ with QE, UA, and at least one constant symbol in the language, and

a model B |= T ′ such that B 6= 〈∅〉, however there is no A ≺ B such that there exists b ∈ B \A with
B = A〈b〉.

Solution. In the situation of (1) and (2), we may take a basis H of B over A, i.e., H ⊆ B is A-independent
and B = A〈H〉. Let H0 ⊆ H be such that |H0| = κ. For (1), A := 〈H0〉 works. For (2), A := 〈H \ H0〉
works. �

4. Some independence relations

In this section we discuss some independence relations which are implicitly being used in [7]. For concreteness,
we restrict our discussion to the setting of [7] and assume that T has QE and UA, although everything can
be done in a more general pregeometry. Let D be an arbitrary model of T and let A,B,C range over subsets
of D.

The first independence relation is rather coarse, but is automatically forced in arbitrary extensions of pairs:

Definition 4.1. We define B |̂0
A
C which is read as B is (acl-) disjoint from C over A if:

B |̂0
A

C :⇐⇒ acl(BA) ∩ acl(CA) = acl(A) ⇐⇒ 〈BA〉 ∩ 〈CA〉 = 〈A〉

Remark 4.2. If A,B,C are the underlying sets of models A,B, C such that A ⊆ B and A ⊆ C, then

B |̂0
A

C ⇐⇒ B ∩ C = A.

In particular, if (B,A) ⊆ (D, C) |= T 2 is an extension of elementary pairs, then automatically B |̂0
A
C.

The next exercise is essentially [1, Prop 1.5]:

Exercise 4.3. The relation |̂0 satisfies the following axioms:

(1) (Full existence) Assume D is sufficiently saturated relative to A, B, and C. Then there is B′ ≡A B
such that B′ |̂0

A
C.

(2) (Invariance) Suppose σ is an automorphism of D. If B |̂0
A
C, then σB |̂0

σA
σC.

(3) (Monotonicity) If B |̂0
A
C, B′ ⊆ B and C ′ ⊆ C, then B′ |̂0

A
C ′.

(4) (Normality) If B |̂0
A
C, then BA |̂0

A
C.

(5) (Finite character) If B0 |̂0 A C for every finite B0 ⊆ B, then B |̂0
A
C.

(6) (Transitivity) Suppose E ⊆ A ⊆ B. If B |̂0
A
C and A |̂0

E
C, then B |̂0

E
C.

(7) (Extension) Assume D is sufficiently saturated relative to A, B, C and Ĉ ⊇ C. If B |̂0
A
C, then

there is B′ ≡CA B such that B′ |̂0
A
Ĉ.

(8) (Local character) For every B, there is a cardinal κ(B) such that for every C there is A ⊆ C of
cardinality |A| < κ(B) such that B |̂0

A
C.

(9) (Anti-reflexivity) For every b ∈ D, b |̂0
A
b implies b ∈ dcl(A).

(10) (Symmetry) B |̂0
A
C iff C |̂0

A
B.

Solution. (Invariance) Suppose σ is an automorphism of D. Note that

B |̂0
A

C ⇒ 〈BA〉 ∩ 〈CA〉 = 〈A〉 ⇒ σ(〈BA〉 ∩ 〈CA〉) = σ(〈A〉)⇒ σ(〈BA〉) ∩ σ(〈CA〉) = 〈σ(A)〉
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⇒ 〈σ(B)σ(A)〉 ∩ 〈σ(C)σ(A)〉 = 〈σ(A)〉 ⇒ σ(B) |̂0
σ(A)

σ(C).

(Monotonicity) Suppose B |̂0
A
C, B′ ⊆ B and C ′ ⊆ C. Then

〈A〉 ⊆ 〈B′A〉 ∩ 〈C ′A〉 ⊆ 〈BA〉 ∩ 〈CA〉 = 〈A〉

so 〈B′A〉 ∩ 〈C ′A〉 = 〈A〉. We conclude that B′ |̂0
A
C ′.

(Normality) Suppose B |̂0
A
C. Then 〈A〉 = 〈BA〉 ∩ 〈CA〉 = 〈(BA)A〉 ∩ 〈CA〉, and so BA |̂0

A
C.

(Finite Character) Assume that B 6 |̂0
A
C. Then there is b ∈ 〈BA〉 ∩ 〈CA〉 \ 〈A〉. Let B0 ⊆ B be finite

such that b ∈ 〈B0A〉. Then b ∈ 〈B0A〉 ∩ 〈CA〉 \ 〈A〉. Thus B0 6 |̂0A C.

(Transitivity) By assumption, B |̂0
A
C which means 〈B〉 ∩ 〈CA〉 = 〈A〉, and A |̂0

E
C which means

〈A〉 ∩ 〈CE〉 = 〈E〉. Note that

〈B〉 ∩ 〈CE〉 = (〈B〉 ∩ 〈CA〉) ∩ 〈CE〉 = 〈A〉 ∩ 〈CE〉 = 〈E〉.

(Local character) Given sets B and C, construct An ⊆ C and Dn ⊆ D as follows: A0 = D0 = ∅.
Dn+1 := 〈BAn〉 ∩ 〈C〉. For every d ∈ Dn+1, let c̄d ∈ C be a finite tuple such that d ∈ 〈c̄d〉. Let An+1 be the
union over all tuples c̄d. Set A :=

⋃
nAn. It is easy to see that A ⊆ C and |A| ≤ |T |+ |B|. Furthermore, if

d ∈ 〈BA〉 ∩ 〈CA〉, then d ∈ 〈BAn〉 ∩ 〈CA〉 ⊆ Dn+1 for some n, and so d ∈ 〈An+1〉 ⊆ 〈A〉.
(Anti-reflexivity) Suppose b |̂0

A
b. Then 〈bA〉 ∩ 〈bA〉 = 〈bA〉 = 〈A〉. Thus b ∈ 〈A〉.

(Symmetry) This is immediate from the definition. �

Exercise 4.4. Show that |̂0 satisfies the following, or find a counterexample:

(Base monotonicity) Suppose E ⊆ A ⊆ C. If B |̂0
E

C, then B |̂0
A

C.

The next independence relation |̂ is in general finer than |̂0 . It plays an important role in distinguishing
which extensions of pairs are admissible, and serves as an obstruction to full model completeness.

Definition 4.5. We define B |̂
A
C which is read as B is free from C over A if:

B |̂
A

C :⇐⇒ for every finite Y ⊆ B, rk(〈YA〉|〈A〉) = rk(〈YAC〉|〈AC〉)

Exercise 4.6. If B |̂
A
C, then B |̂0

A
C.

Solution. Suppose B |̂
A
C and assume towards a contradiction that B 6 |̂0

A
C. Take b ∈ 〈BA〉∩ 〈CA〉 \ 〈A〉.

Then b ∈ 〈BA〉 \ 〈A〉 and by Exchange there is a finite B0 ⊆ B such that B0 is independent over A and
b ∈ 〈B0A〉 \ 〈A〉. Say |B0| = n. Then by Exchange there are b2, . . . , bn ∈ 〈B0A〉 such that bb2 · · · bn is
independent over A and 〈bb2 · · · bnA〉 = 〈B0A〉. Thus

n = rk(〈B0A〉|〈A〉) = rk(〈bb2 · · · bnA〉|〈A〉)

However, since b ∈ 〈AC〉, bb2 · · · bn is not independent over AC. Thus

n > rk(〈bb2 · · · bnAC〉|〈AC〉) = rk(〈B0AC〉|〈AC〉).

We conclude that B 6 |̂
A
C, a contradiction. �

Remark 4.7. If A,B,C are the underlying sets of models A,B, C such that A ⊆ B and A ⊆ C, then

B |̂
A

C ⇐⇒ for every finite Y ⊆ B, rk(A〈Y 〉|A) = rk(C〈Y 〉|C).

Exercise 4.8. The relation |̂ has the following properties:

(1) (Invariance) Suppose σ is an automorphism of D. If B |̂
A
C, then σB |̂

σA
σC.

(2) (Finite character) If B0 |̂ A C for every finite B0 ⊆ B, then B |̂
A
C.

(3) (Monotonicity) If B |̂
A
C, B′ ⊆ B and C ′ ⊆ C, then B′ |̂

A
C ′.

(4) (Symmetry) If B |̂
A
C, then C |̂

A
B.

(5) (Base monotonicity) Suppose E ⊆ A ⊆ C. If B |̂
E
C, then B |̂

A
C.

(6) (Normality) B |̂
A
C implies BA |̂

A
C.
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Solution. (Invariance) This is immediate from the definition using the fact that all notions involved are
invariant.

(Finite character) Suppose B0 |̂ A C for every finite B0 ⊆ B. Let Y be a finite subset of B. Then

Y |̂
A
C by assumption, and Y is a finite subset of itself, so rk(〈Y A〉|〈A〉) = rk(〈Y AC〉|〈AC〉) by definition

of Y |̂
A
C. We conclude that B |̂

A
C.

(Monotonicity) Suppose B |̂
A
C, B′ ⊆ B and C ′ ⊆ C. Let Y be an arbitrary finite subset of B′. Since

Y ⊆ B and B |̂
A
C, it follows that rk(〈Y A〉|〈A〉) = rk(〈Y AC〉|〈AC〉). Thus B′ |̂

A
C.

We will now show B |̂
A
C ′. Take a finite subset Y of B such that n = rk(〈Y A〉|〈A〉). Let y1, . . . , yn ∈

〈Y A〉 be a basis of 〈Y A〉 over 〈A〉. Then y1, . . . , yn is a basis of 〈Y AC〉 over 〈A〉 since B |̂
A
C. Thus

y1, . . . , yn is a basis of 〈Y AC ′〉 over 〈AC ′〉. We conclude that rk(〈Y AC ′〉|〈AC ′〉) = n.
(Symmetry) Suppose towards a contradiction that C 6 |̂

A
C. Then there is a finite Y ⊆ C such that n =

rk(〈Y A〉|〈A〉) > rk(〈Y AB〉|〈AB〉) = m. Then there is some finite B0 ⊆ B such that rk(〈Y AB0〉|〈AB0〉) = m.
By Monotonicity and B |̂

A
C however, p := rk(〈AB0〉|〈A〉) = rk(〈Y AB0〉|〈Y A〉). By additivity of rank,

rk(〈Y AB0〉|〈A〉) = n+ p = m+ p, which forces n = m, a contradiction.
(Base monotonicity) Let Y be a finite subset of B. Define b = rk(〈Y A〉|〈A〉) and c = rk(〈Y AC〉|〈AC〉).

It suffices to show that b = c. Define a = rk(〈Y E〉|〈E〉) and note that by the assumption that B |̂
E
C, we

have a = rk(rk〈Y EC〉|〈EC〉) = c. Since a ≥ b ≥ c, we must necessarily have b = c.

〈Y AC〉 = 〈Y EC〉

〈Y A〉 〈AC〉 = 〈EC〉

c

〈Y E〉 〈EA〉 = 〈A〉

b

〈E〉

a

(Normality) Suppose B |̂
A
C. Let Y be a finite subset of BA. Partition Y = Y0∪Y1 such that Y0 ∈ B\A

and Y1 ⊆ A. Then rk(〈Y A〉|〈A〉) = rk(〈Y0A〉|〈A〉) = rk(〈Y0AC〉|〈AC〉) = rk(〈Y AC〉|〈AC〉). �

Exercise 4.9. If B |̂
A
C, then 〈B〉 |̂

A
C.

Solution. Suppose B |̂
A
C. By Symmetry, C |̂

A
B. By definition of |̂ , C |̂

A
〈B〉. By Symmetry again,

〈B〉 |̂
A
C. �
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Exercise 4.10 (cf. pg. 66 [7]). Suppose A,B,C are the underlying sets of models of D such that A ⊆ B,
A ⊆ C, and B |̂ A C. If Z ⊆ C, then B〈Z〉 |̂ A〈Z〉 C.

Solution. Suppose B |̂ A C and Z ⊆ C. Then A ⊆ A〈Z〉 ⊆ C and by Base Monotonicity, B |̂ A〈Z〉 C. By

Normality, BA〈Z〉 |̂ A〈Z〉 C. Finally, by the previous exercise, B〈Z〉 |̂ A〈Z〉 C. �

Exercise 4.11 (cf. Case 2 of Theorem 2.5 [7]). (Transcendental extension) Suppose b ∈ D is such that
b 6∈ dcl(ABC). If B |̂

A
C, then Bb |̂

A
C, B |̂

A
Cb, and B |̂

Ab
C.

Solution. Suppose B |̂
A
C and b 6∈ dcl(ABC). We will first show Bb |̂

A
C. Suppose Y is a finite subset

of Bb such that Y = Y0b where Y0 ⊆ B. Then

rk(〈Y A〉|〈Y 〉) = 1 + rk(〈Y0A〉|〈A〉) = 1 + rk(〈Y0AC〉|〈AC〉) = rk(〈Y AC〉|〈AC〉).

To get B |̂
A
Cb, we apply Symmetry (twice) and the first result. To get B |̂

Ab
C, suppose B |̂

A
Cb, then

apply Base Monotonicity to get B |̂
Ab
Cb, then Monotonicity to get B |̂

Ab
C. �

5. Week 3

Exercise 5.1. Give an example of T with models A,B, C such that B |̂0 A C but B 6 |̂ A C.

Solution. This example comes from [5, pg. 183]. The theory is TRCF , let R = (R; 0, 1,+, ·, <), and let A be
the submodel of R with underlying set Ra. Let s1, s2, t1 ∈ R be three real algebraically independent tran-
scendental numbers. Define t2 := −s1t1 − s2. Then both {t1, t2} and {s1, s2} are algebraically independent
over Ra. Define B = Ra(s1, s2)rc, C = Ra(t1, t2)rc, and D = Ra(s1, s2, t1, t2)rc = Ra(s1, s2, t1)rc.

We will first show that B |̂0 A C. Suppose towards a contradiction that there is some ξ ∈ (B∩C)\A. Then

there are irreducible polynomials p(X) ∈ Ra[s1, s2][X] and q(X) ∈ Ra[t1, t2][X] such that p(ξ) = q(ξ) = 0.
As the rings Ra[s1, s2] and Ra[t1, t2] are UFDs, we may arrange that the polynomials p and q are primitive
in these rings (i.e., the gcd of the coefficients of p in Ra[s1, s2] is 1, same for q in Ra[t1, t2]). Now define
R0 = Ra[s1, s2, t1, t2] = Ra[s1, s2, t1] = Ra[t1, t2, s1]. Let Q0 be the field of fractions of R0. Since p and q have
a common root ξ in a finite extension of Q0, they must have a common factor in Q0[X]. The coefficients of
p(X) belong to R0, and so if p(X) is reducible in Q0[X] it must be reducible also in R0[X] by Gauss’s Lemma.
Since p(X) is irreducible in Ra[s1, s2][X] and t1 is transcendental over Ra[s1, s2], it follows that p(X) is
irreducible inR0[X]. Similarly, q(X) is irreducible inR[X]. Since p(X) and q(X) have a common factor, there
is d ∈ Q0 such that p(X) = dq(X). We may write d = d1(s1, s2, t2)/d2(x1, s2, t1) where d1(X), d2 ∈ Ra[X]
and do not have a nontrivial common factor. Then we get d2(s1, s2, t1)p(X) = d1(s1, s2, t1)q(X). It follows
that d1(s1, s2, t1) divides the coefficients of p(X), but p(X) is primitive in M0[s1, s2][X] and hence also in
R0[X]. Thus d1 ∈ Ra. Writing −s1t1 − t2 for s2 in d2, we obtain a polynomial of t1, t2, s2 with coefficients
in Ra and conclude in the same way that d2 ∈ Ra, hence p(X) = dq(X) for some d ∈ Ra. Now for n ≥ 0,
we’ll compare the coefficients of Xn in p(X) and q(X). Denote this coefficient by pn(s1, s2), qn(t1, t2) for
pn, qn ∈ Ra[X1, X2]. Then pn(s1, s2) = dqn(t1, t2), and so pn(s1, s2) = dqn(t1,−s1t1−s2). Since s1, s2, t1 are
algebraically independent over R0, we may substitute 0 for s1 and get pn(0, s2) = dqn(t1,−s2). It then follows
that the LHS and RHS are both independent of t1, and so qn(t1, t2) is also independent of t1. Similarly
pn(s1, s2) is independent of s1. This implies that pn(s1, s2) = dqn(t1, t2) really is an algebraic relation
between s2 and t2, which are algebraically independent over Ra, and so the coefficients of p, q must all be in
Ra (to prevent a nontrivial algebraic relation from occurring). This implies that ξ ∈ Ra, a contradiction.

It is clear that B 6 |̂ A C since s1, s2 are algebraically independent over A, but not algebraically independent
over C since s1t1 + s2 + t2 = 0. �

Exercise 5.2 (cf. Lemma 2.3 [7]). Give an example of T and an extension (B,A) ⊆ (D, C) of models of T d

such that B 6 |̂
A
C. By completeness of T d, this shows that T d is not model complete in general.

Solution. We’ll use Exercise 5.1 with T = TRCF , D = R, and A,B, C occurring as in that exercise. By
completeness of T d, we have (B,A) ≡ (D, C), however by [7, Lemma 2.3], (B,A) ⊆ (D, C) is not an elementary
extension of models of T d. Thus T d is not model complete. �

Exercise 5.3. Give an example of T such that T d actually is model complete.
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Solution. Let K be an ordered field, and let TK be the (complete) theory of infinite ordered K-vector spaces.
Then T dK has QE and hence is model complete, see [3, 5.8]. �

Exercise 5.4. Read [2, Proposition B.5.4] and justify why the existence of a back-and-forth system as in
the proof of [7, Theorem 2.5] between (B,A) and (D, C) proves that T d is complete.

Solution. Let (B0,A0) and (D0, C0) be two arbitrary models of T d. Let (B,A) and (D, C) be κ-saturated
elementary extensions of (B0,A0) and (D0, C0) respectively. By [2, Proposition B.5.4] and the proof of
the existence of the back-and-forth system between (B,A) and (D, C) in [7, Theorem 2.5], it follows that
(B,A) ≡ (D, C). By the definition of elementary extension, it also follows that (B0,A0) ≡ (B,A) and
(D0, C0) ≡ (D, C). By transitivity of ≡, we get (B0,A0) ≡ (D0, C0). We conclude that T d is complete. �

Exercise 5.5. In Case 2 of the proof of Theorem 2.5 in [7], justify why B′〈b〉 |̂ A′ A. Also justify why there

is necessarily an element d ∈ D \D′〈C〉 such that the cuts realized by b in B′ and by d in D′ correspond via
i.

Solution. B′〈b〉 |̂ A′ A follows from Exercise 4.11 above. By assumption, (D, C) is κ-saturated and so

rk(D|C) ≥ κ by [7, Lemma 1.5]. Furthermore, |D′| < κ and so rk(D|D′〈C〉) ≥ κ > 0. Thus D 6= D′〈C〉 and
so (D,D′〈C〉) |= T d. By [7, Lemma 2.4], D \ D′〈C〉 is dense in D. Thus κ-saturation and |B′| < κ allows us
to find such a d. �

6. Week 4

Exercise 6.1. Read [2, B.9.2 and B.9.3], and use this to explain how we are obtaining the quantifier
reduction result in Theorem 2.5 of [7].

Exercise 6.2. Suppose there is a back-and-forth system Γ between two structures M and N , which share
a common substructure B such that the identity f : A→ A is in Γ. Let a ∈Mn and b ∈ Nn be two tuples.
Suppose there is g ∈ Γ such that g ⊇ f , a ∈ dom(g), and g(a) = b. Then tpM (a/A) = tpN (b/A).

Exercise 6.3. (An elementary extension test, [7, Cor 2.7]) Suppose M ,N ,M∗ are models of an L′-theory
T ′ such that M ⊆N and M 4M∗, in picture form:

N M∗

M

4

Suppose for every finite tuple a ∈Mn, tpM∗(a) = tpN (a). Then M 4N . (This basically says “If N views
everything down in M as if N were an elementary extension, then N actually is an elementary extension.”)

Exercise 6.4 (cf. Proof of Theorem 2 [7]). Let (B,A) |= T d and let φ(y) be an L2(B)-formula, with
y = (y1, . . . , yn). Suppose for any two elementary extensions (B1,A1) and (B2,A2) of (B,A) and any two n-
tuples a1 ∈ (A1)n and a2 ∈ (A2)n that realize the same types over B (in B1 and B2) we have (B1,A2) |= φ(a1)
iff (B2,A2) |= φ(a2). Show that there is an L(B)-formula ψ(y) such that (B,A) |= U(y)→ (φ(y)↔ ψ(y)).

7. Week 5

Exercise 7.1 (cf. Proof of Corollary 3.4 [7]). (Two forms of transcendence) Let (B,A) ≺ (B∗,A∗) |= T d

and suppose b∗ ∈ B∗. Show that b∗ /∈ X∗ for all A-small sets X ⊆ B iff b∗ 6∈ B〈A∗〉.

Exercise 7.2 (cf. Proof of Corollary 3.4 [7]). Assume (B,A) ≺ (B∗,A∗) |= T d is a sufficiently saturated
elementary extension. Suppose that if b∗ ∈ B∗ \B〈A∗〉, then F (b∗) ∈ B〈b∗〉. Conclude that F agrees off some

A-small subset of B with a function F̂ : B → B that is definable in B.

Exercise 7.3 (cf. Proof of Corollary 3.6 [7]). Here (B,A) |= T d, f : An → A is definable in (B,A). Suppose
that given an elementary extension (B∗,A∗) of (B,A) and a point a∗ ∈ (A∗)n, we have f(a∗) ∈ A〈a∗〉.
Conclude that there are functions f1, . . . , fk : An → A definable in A such that for each a ∈ An we have
f(a) = fi(a) for some i ∈ {1, . . . , k}.
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