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ABSTRACT. Mutual stationarity for (kn | n < w) says that for any stationary
sequence S, C kn and any algebra on sup,, kn, there is a simultaneous witness
for stationarity i.e. an elementary substructure M such that for all n, sup(M N
Kn) € Sp. We prove that mutual stationarity for (X, Ncof(wg) | k < n < w) is
consistent with the tree property at X,,41. Our second theorem is that mutual
stationarity for (X, Ncof(wg) | K < n < w) is consistent with the failure of
SCH at N,,. Both theorems use large cardinal hypotheses.

1. INTRODUCTION

Stationary sets are a fundamental notion in modern set theory. They are related
to elementary substructures by identifying clubs as algebras as follows. For a regular
cardinal k¥ and k < A\, S C k is stationary iff for every algebra 2 on A, there is an
elementary N < 2, such that sup(N N k) € S. This notion has an analogue for
singular cardinals, called mutual stationarity.

Mutual stationary was introduced in 2001 by Foreman and Magidor in |7], and
was used to show the nonsaturation of the nonstationary ideal on P, (A). Here is
the definition:

Definition 1.1. Let R be a set of uncountable regular cardinals and S = (S, |
k € R) be a sequence of stationary sets with S,; C k. The sequence S is mutually
stationary if for every algebra 2 on sup(R) there is M < 2 such that sup(M Nk) €
S, for every Kk € RN M.

Suppose now that R consists of an increasing sequence of cardinals (k. | n < w)
with limit x. Given A,, C k,, we say that mutual stationarity holds at (A, |
n < w) if every sequence of stationary sets S,, C A, is mutually stationary.

Restricting to countable cofinality, in [7] Foreman and Magidor showed that
mutual stationarity holds for (k, N cof(w) | n < w). On the other hand, they
showed that this result does not generalize to higher fixed cofinality. In particular,
in L there is a sequence of stationary sets S, C N, Ncof(wy), n > 1, which is not
mutually stationary. This prompted the question of whether it is consistent to have
mutual stationarity at the N,,’s for higher fixed cofinality.

Since then there has been a long line of results on this topic. It turns out that
mutual stationarity for uncountable cofinality both follows from large cardinals and
has large cardinal strength. Here are some highlights:

(1) If each k., is supercompact, then every sequence of stationary sets S, C
is mutually stationary.
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(2) (Cummings-Foreman-Magidor) [4] If P is the Prikry forcing to singularize x
and (k, | n < w) is the corresponding Prikry sequence, then in V[P] every
sequence of stationary sets S, C k,, is mutually stationary.

(3) (Koepke) [9] From a measurable cardinal, one can force mutual stationarity
for (No,41 Neof(wy) |1 <n < w).

(4) (Koepke-Welch) |10] A measurable cardinal is necessary to obtain mutual
stationarity for (k, N cof(wi) | n < w), where (k,, | n < w) are increasing
regular cardinals.

Still, for a long time Foreman and Magidor’s original question remained open.
Then in 2019, Ben Neria [2] gave a positive answer. More precisely, he showed that
from w supercompacts it is consistent that every sequence of stationary sets S;, C wy,
of some fixed cofinality is mutually stationary. His model is obtained by forcing with
Levy collapses to make the supercompacts be the N,;’s. In Ben Neria’s model, SCH
holds at N, (and actually GCH is true). Moreover, approachability at X, holds,
and all known models of the tree property at X, 1 have failure of approachability
at W,,. This raises some natural questions: whether mutual stationarity at the N,’s
for a fixed uncountable cofinality is consistent with the failure of SCH; and whether
it is consistent with the tree property. In this paper we show the answer to both
questions is yes.

Theorem 1.2. Suppose that {(k, | n < w) are vt-supercompact cardinals, where
v = Sup,, kn- Then for all 0 <l < w, there is a forcing extension where for all
l # k < w, mutual stationarity holds for (R, Ncof(wg) | k < n < w) and the tree
property holds at Ny,41.

Theorem 1.3. Suppose that Kk < p < A are supercompact cardinals, and let 0 < I <
w. Then there is a forcing extension where SCH fails at W, and mutual stationarity
holds for (N, Ncof(wg) | k < n < w) both for all k <1 and for unboundedly many
k>1.

Remark 1.4. The unbounded set of k’s in the theorem above is w\ {{+3i | i < w}.

The first theorem, together with Ben Neria’s model, shows that mutual station-
arity and the tree property are in a sense orthogonal.

The motivation for the second theorem is that the failure of SCH is an instance
of incompactness, since it requires small powerset below a singular x and large
powerset at x. In contrast, mutual stationarity can be viewed as a compactness
type principle, as it is similar in spirit to stationary reflection and follows from
large cardinals. In addition, a corollary of this theorem is that one can reduce the
large cardinal assumption of Ben-Neria’s result in [2] at the price of losing some
cofinalities.

The paper is organized as follows. In section 2 we go over some preliminaries
and facts which will be used to prove mutual stationarity. In section 3 we prove
Theorem Then in section 4 we prove Theorem [1.3

2. OBTAINING MUTUAL STATIONARITY FROM IDEALS

In this section we summarize techniques due to Ben Neria [2] we will use through-
out this paper to prove mutual stationarity. For a more detailed exposition of these
techniques, see |2, Section 2]. Note that |2] uses the Jerusalem forcing convention,
which this paper does not.



MUTUAL STATIONARITY AND COMBINATORICS AT X, 3

Definition 2.1. Suppose M < 2. We call an extension N of M an end-extension
of M above Nif M < N < and NNA=MnNA.

To show that a sequence is mutually stationary, we will work inductively, starting
with M,, and producing an end-extension M, 1. The following standard result
shows that it is enough to verify mutual stationarity on a tail, so we can start this
process at any finite stage n.

Fact 2.2. [7, Lemma 23] Let v be a regular cardinal less than the least element of
a set of regular cardinals K. If {S; | k € K} is mutually stationary, and for all k,
Sk C cof (< v), then for all Ay, ..., A\, greater than v and not in K, and all sequences
of stationary sets Sy, C A\; Ncof (< v), the sequence {S, | kK € K} U{Sy,,...Sx,}
is mutually stationary.

End extensions will be constructed via ideals.

Definition 2.3. A nonprincipal k-complete ideal I on & is u + 1-closed if I has
a <y-dense subset D such that the <;| D is closed under p-sequences.
An ideal on k is nonstationary if it extends the nonstationary ideal.

Definition 2.4. Suppose that P is a forcing with [P| < u, and G is generic for P
over V. A nonprincipal k-complete ideal I € V[G] is formerly p + 1-closed if T is
the downwards closure of a 4 1-closed ideal Iy € V.

Note that p-closed ideals are formerly p-closed, where P is the trivial forcing.

Definition 2.5. Let kK € M be a regular cardinal and A C k an unbounded set.
We say A is A\-homogeneous for M if f [ A is constant for every function f : x — A
in M. A is A-homogeneous and approximated if for every function f:x — XA in M
there is a set Ay € M so that A C Ay C s and f [ Ay is constant.

To build these homogeneous and approximated subsets, we will make use of the
following fact.

Remark 2.6. 2] Let A < . Suppose I is a s-complete ideal on k and f : K — A
is a function. Then if I,f € M and B € IT N M, there is v* < X\ such that
v ynBelt.

We will also need the following lemma, a slight strengthening of [2, Lemma 2.6].

Lemma 2.7. Let P be a forcing with |P| < v, and let G be generic for P. In V]G],
let M < 2 be a |M|-closed model, with |M|=v and P C M, P,G € M. Suppose
Kk > v is a reqular cardinal. Suppose I € M is a k-complete formerly (v + 1)-closed
ideal on Kk, generated by a k-complete (v + 1)-closed ideal Iy contained in V. Then
for every A€ ITNM and A\ € M Nk, there exists a subset B C A in It which is
A-homogeneous and approzimated in M.

Proof. By our assumptions, M is of the form M[G], where M = M N V.

Let <g be a definable well-order of 2. Let D € M be a <y -dense set of I
containing lower bounds to all <;-decreasing sequences of length < v. Enumerate
all functions from x to A in M by (f; | ¢ < v). While the full sequence may not
be in M, since M is v-closed, every initial segment will be. In V', we obtain a
corresponding sequence ( fi | i < v) of names, forced by the empty condition to
enumerate all such functions.
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Working in V, we wish to build a <j,-decreasing sequence of sets A4; € DN M
such that 1p I- fi [ A;1+1 has constant value for each ¢ < v. Choose Ay C A to be
some element of I contained in D N M.

Suppose that we have defined A;. First we show the following claim (in V).

Claim 2.8. There is B C A;, B € IS‘ N D, such that 1p I+ fi [ B is constant.

Proof. Enumerate the conditions in P by (p, | @ < |P|). We will build a <j,-
decreasing sequence of sets (A!, | o < |P|) in I N D, with A} C A;, so that for all
«, p does not force that fl I A/, is not constant. We do so inductively.

At successor stages o + 1, we note that by Remark [2:6] the empty condition
forces that f; must be constant on some subset of A/, that is in I+.

We claim that any set B € IT must have a subset A’ C B in IO+. Let B be a
name for B. For each p € P, let B, = {a'| pI- a € B}; then B = Upeq Byp- Since I
is k-complete and |P| < &, if every By, is in I, B itself would be in I. We conclude
that some B, is in I*. Since this B, is in V/, it must also be in I

So in fact the empty condition forces that fZ is constant on a subset of A/ that
is in Igf N D. It follows that p, cannot force that fz is nonconstant on every subset
of Al, in I N D, so we can find Al,; as desired.

At limit stages v, let A’ be a <y -lower bound of (4], | & < 7) contained in D.

Now that we have built the sequence (AL, | a < |P|), we let B be a <j, -lower
bound of (A7, | @ < |P|) in D. Then, by construction, B is as desired. O

By elementarity, M also satisfies the statement of the claim, so we obtain a set
Ayl € Iar N DN M as desired.

When ¢ is a limit ordinal, we let A; be the <g-least < -lower bound of the
sequence (4; | j <1i).

Finally, let A’ € D be the <g-least < j3-lower bound of the sequence (Ai |1 <v).

Let us pause to ensure that at each stage our construction is definable in M. We
first verify that M is v-closed in V. Since M = M NV and M is v-closed, it follows
that M<*NV C M<* NV CMNV =M.

Since the full sequence of names (f; | i < v) is in V, and M is v-closed in V, all
initial segments of ( fi | i < v)arein M. The sets A; are defined from the sequences
(fj, A; | j < i), the poset P, the dense set D, and the definable well-order <g. It
follows that each A; is contained in M, and thus in M.

By construction, for each ¢ < v, there is some B; € Iy such that the empty
condition forces that A’\ B; C A;. In particular, this means that fl is forced to be
constant on A’\ B;. Let B’ = J,,, B;; this is in Iy by x-completeness. Then A"\ B’
isin I . Let A” = A"\ B’. Since B’ € Iy and A’ <, A, we see that A” € I and
thus in IT. Moreover, A” is forced by the empty condition to be A-homogeneous
and approximated in V[G]. O

The following lemma follows [2, Proposition 2.12], weakening the closure assump-
tion to former closure.

Lemma 2.9. Suppose p < k are reqular cardinals and A is an algebra extending
(Hy, €,<g) for some regular cardinal 6 > 2%. Let M < 2 be a substructure of size
u closed under sequences of size < p, and let S C kNcof(p) be a stationary subset
of k in M. Suppose also that at least one of the following holds:
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(1) S consists of approachable pointsH or
(2) either k is inaccessible or k =7+ and <7 = 1.

If S is positive with respect to some nonstationary k-complete formerly (u+ 1)-
closed ideal on k, then for every regular cardinal A € M Nk, there is a p-closed
substructure N < 2L of size p which is an end-extension of M above A and satisfies
sup(NNk) € S.

Proof. The proof is identical to the proof of |2, Lemma 2.12], using Lemma in
place of [2, Lemma 2.6]. O

Remark 2.10. For the proof in the case of the approachability assumption, see |2}
Remark 2.9] for details.

To check that every sequence of stationary sets is mutually stationary, it suffices
to show that these hypotheses are satisfied at each stage of the induction. Next,
we define a principle that captures the key hypothesis of Lemma [2.9]

Definition 2.11. Let v < 6 be uncountable cardinals. We say tj holds if for all
stationary S C 6, there is a nonstationary #-complete, (v+1)-closed ideal, for which
S is a positive set. Given a poset Q, we say that {j o holds if 1g forces that for
all stationary S C 0, there is a nonstationary #-complete, (v 4 1)-closed ideal, for
which S is a positive set.

Lemma 2.12. Suppose that v < k are cardinals, and 1% holds in V. Let P be
a poset in V, such that |P| < v and P preserves v, and let G be generic for P.
Let S be a stationary subset of k in V|G]. Then in V[G], there is a k-complete
nonstationary formerly-(v + 1)-closed ideal I such that S € IT.

Proof. Since P has size less than k, there is a generic condition p € G, such that
S, ={a|plFY a € S} is stationary.

Let I; be the ideal given by 1% in V applied to S,. Now, going back to V[G], let
I be the ideal obtained from I;. More precisely, I = {X C x| 3X € I, X C X}.

First we show that I is a x-complete ideal. Suppose that for some 7 < k,
(Xi | i< 7)€ V[G] is a sequence of sets in I. Working in V, let D; = {p € P |
IXel,plk Xz- C X}. This is a dense subset of P. For each p € D;, let Xi,p el
witness membership. By x-completeness of I7, we have that X := Ui,p Xi,p e 1.
Since |J; X; C X, we get that | J, X; € I.

Also, since S, € I, and Sp C S, we have that S € I, Alsoif A C kis a
nonstationary set in V[G], since |P| < &, there is a nonstationary A; € V with
AC Ai,andso A € 1. O

By the previous two lemmas, to ensure that mutual stationarity holds below X,
for sets of points of cofinality Ny, it suffices to check that Tg’; holds for cofinitely
many n < w (possibly in an inner model by a small forcing) and that all relevant
stationary sets are approachable. More precisely:

Lemma 2.13. Suppose that P is a forcing in 'V of size < v, such thal for some
k<w, lplkv =2, and let G be P-generic over V. Suppose that for all large n,
T?N Vil holds in V', and that in V|G|, all stationary sets of R, are approachable or

GCH holds. Then in V|G], mutual stationarity holds for (R,Ncof(Rg) | k <n < w).

IFor the definition of approachable points see for example |3, Section 8]
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Proof. Work in V[G]. Fix a stationary sequence S, C W, N cof(Ng), for n >
k. Suppose that 2 is an algebra on N,. Construct a sequence of elementary
substructures of A, (M,, | k¥ < n < w) by induction on n, as follows. Let My be
such that sup(Myy1 N Ng41) € Sk41. Now, suppose n > k + 1 and we have defined
M,,_1. Since TS’; held in V', by Lemma there is a nonstationary R,-complete
formerly (Nj + 1)-closed ideal I on N,, such that S, € ™. Then by Lemma
there is an elementary substructure M,, of 2, such that M, is an end extension of
M,,_ above X,,_; and sup(M, NR,) € S,. Finally, let M = J,, M,, < A. Then
for all n > k, sup(M NR,) =sup(M, NR,,) € S,,. O

Ideals as above are obtained from large cardinal embeddings.

Lemma 2.14. [2, Fact 2.14] Let j : V. — M be an elementary embedding with
crit(j) =k and "M C M. Let P € V be a poset and let G be generic for P. Suppose
that j(P) projects to P, so that every j(P)/G generic contains j°G. Working in
VIG], for every v € j(k) \ k and r € j(IP)/G, define an ideal I, , by

L ={Xc |7 F@ye v ¢ §(X)}
Then this ideal is well defined and has the following properties:

o I, is k-complete and nonprincipal.

e I, is nonstationary iff v IF v € j(C) for every P-name C' for a club subset
of K.

o If j(P)/G is (u+ 1)-closed for some p < k, then I, is a (i + 1)-closed
ideal.

Proof. We only briefly outline the proof. More details can be found in Foreman’s
chapter in the handbook |6], see the interlude to Section 7, “The Basic Idea”.

First, note that if X = X/, then some condition in "G will force that j(X) =
J(X'). Since any generic extension by j(IP)/G must contain j”G, any condition in

j(P)/G will force that j(X) = j(X’). It follows that the ideal is well-defined.

I, , is k-complete because  is the critical point of the embedding, and it is
non-principal, because v > k. The second assertion of the lemma is clear.

The last claim follows from the fact that j(P)/G induces a generic for the poset
(If,,< Iw)' For example, if j is derived from a k-complete measure U, one can

s

consider the following projection 7 from j(PP) /G below 7, to the poset (I, <r, ).

Let v = [f,]u; for ¢ = [f4lu € §(P), ¢ <, set w(q) = {f'y( ) | fo(z) € G}. Clearly,
7(q) is a positive 17 ~ set, since ¢ forces that it is in the dual filter. In particular,
qlkjmya v ejln (q)) := J({f,(x) | f,(x) € G}); since ¢ < r, r certainly can’t force
~ to not be in j(w(q)), so m(q) ¢ I ,. Also, if ¢ < ¢, then w(¢’) C 7(q), so the map
is order preserving.

Finally, we verify that 7 is indeed a projection. Suppose Y =Yg < <t m(q). We

claim that (in V), A == {z | fo(2) I} fy(z) ¢ j(Y )} € U. If A is not in U, then
its complement must be, so q I-;p) ¢ v ¢ j(Y). Note that the empty condition

of j(P)/G forces v € j(n(q)) ©q€ §(G). Tt follows that the empty condition

forces v € j(m(q)) = ~ ¢ j(Y). We conclude that r I+ v ¢ j(V) ﬂj(ﬂ(q)), SO
Ynm(q) € I,,. ButY <it. 7(g) by assumption, so Y Nw(q) € I, a contradiction.
Since A € U, we can define a condition ¢’ = [z — ¢}]u < g, such that for all € A,

¢\ IF f(x) € j(Y) and if x ¢ A, ¢/, | q,. By density, one can find such a condition
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in j(P)/G. Then 7(¢’) =Y. We conclude that 7 is a projection from j(P)/G to
(IF,,<1,,), so a generic for j(IP)/G will induce a generic for (I,, <z ). O

To verify Tﬁi, we will need to use embeddings that give sufficiently closed quo-
tients, and we will need to check that the ideals we produce are nonstationary and
meet the requisite stationary set. To do so we will use the following lemma, which
is implicit in [2].

Lemma 2.15. Let A > 2%, and let j : V — M be a A-supercompactness embedding
with critical point k. Suppose P is a \-cc poset with (|[P|<*)* = X, such that P
and j meet the hypotheses of Lemma and IFp j(P)/G is (u + 1)-closed. Let
G be generic for P over V. Let S C k be a stationary set in V[G]. Then there
s a condition r and ordinal v such that the ideal I, given by Lemma 18
(1 + 1)-closed and nonstationary, and S € Ij’,ﬂ.

Proof. Since P is A-cc, we can enumerate (possibly with repetitions) all P-names
for clubs in k by C = <Ci | © < A). Since j is a A-supercompactness embedding,
this sequence is contained in M. The sequence j”C = (j(C;) | i < A) will also be
in M, and is a sequence of j(P)-names for clubs in j(x). It follows that the empty
condition of j(P) forces that C* = ﬂi</\j(C’i) is a club in j(k).

Let S be a P-name for S; S is forced to be stationary by some condition p € G.
Then the empty condition of j(IP)/G forces that j(S) is stationary in j(%). Then
there is a condition r € j(P)/G and an ordinal v > « such that r I- 5 € j(S) N C*.
Let I = I,,. By Lemma [2.14) we conclude that I is k-complete, nonprincipal,

nonstationary, and (u + 1)-closed. Since 7 IF 4 € j(S), by the definition of I, ,, we
have that S € I'™ (and actually in the dual filter). O

We end this section with a lemma about forcings that preserve f.

Lemma 2.16. Suppose that v < k are cardinals, and 1% holds in V. Let Q be a
poset inV, such that |Q| < k, and Q is < v-distributive (i.e. does not add sequences
of size v). Then if H is Q-generic, 1% still holds in V[H],

Proof. Suppose that S C & is a stationary set in V[H]|. Since Q has size less than &,
there is a generic condition ¢ € H, such that S, = {a/| ¢ H—& o€ S} is stationary.

Let I be the ideal given by 1% in V applied to S,. Now, going back to V[H], let
I be the ideal obtained from I;. More precisely, I = {X C x| 3X € I, X C X}.

First we show that I is a k-complete ideal. Suppose that for some 7 < k,
(X; |t < 7)€ V[H] is a sequence of sets in I. Working in V, let D; = {q € Q |
IX el,qlr Xi C X}. This is a dense subset of Q. For each q € D;, let X},q el
witness membership. By x-completeness of Iy, we have that X := Um Xi,q e 1.
Since |J; X; C X, we get that | J, X; € I.

Also, since S, € I, and Sy C S, we have that S € I, Alsoif A C kis a
nonstationary set in V[H], since |Q| < &, there is a nonstationary A4; € V with
ACAj,andso A€ l.

It remains to show the existence of a closed dense set. Let D be the (v + 1)-
closed dense subset of I 1+ . For the density, we use that if X is an I-positive set
in V[H], by the s-completeness of I; and |Q| < k, there is p € H, such that
X, :={a|plFac X} eI Since D is dense there is A € D with A C X, C X.
For the closure, suppose that (Y; | i < v) € V[H] is a decreasing sequence of sets
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in D. Since Q is < v-distributive, this sequence is in V', and by closure of D,
NY; € D. O

3. MUTUAL STATIONARITY AND THE TREE PROPERTY

To obtain the tree property at W, ;; along with mutual stationarity below N,
we use the arguments of [12}, Section 3]. The main complication is that to use these
techniques, we cannot determine the cardinal that will become Ny in advance.

We will use the following lemma to obtain the tree property. The proof is almost
identical to [12, Lemma 3.6], except that we allow a finite gap in the definition of
L,.

Lemma 3.1. ( [12, Lemma 5.6]) Let (k. | n < w) be a strictly increasing sequence
of regular cardinals with supremum k,, and let 0 < | < w. Suppose that the
following holds:

i -supercompact.

e For each m > 0, there is a generic k] -supercompactness embedding with
domain V' and critical point k., added by a Kk,_1-closed forcing.

® Ko IS K

For each strong limit cardinal p < ko with cf(u) = w, let L, be the poset Col(w, p) %
Col(u™!, < ko). Then there is u < kg such that in the extension by L,, the tree
property holds at k.

Theorem 3.2. Let (K, | n < w) be an increasing sequence of k. -supercompact
cardinals, with supremum kK, and 0 <1 < w. Then there is a forcing extension in
which the tree property holds at N1 and for all |l # k < w, mutual stationarity
holds for (R, Ncof(wg) | k <n <w).

Proof. Let (k, | n < w) be an increasing sequence of supercompact cardinals
with supremum k.. Assume also that kg is indestructibly supercompact. Let
H = (H,,H(n) | n < w) be the full support iteration where each H(n) is a H,,-
name of Col(kp, < kn+1). Let H be generic for H. Note that in V[H], o remains
supercompact and k,1 = &, for all n < w.

Fix n < w and let j be a v supercompact embedding in V with critical point
Kn. Recall that H decomposes into H = H,,_1 * Col(kn—1,< ky) * (H/H,); H,_1
is below the critical point, while Col(k,—1,< ky) * (H/H,,) is k,—1-closed. Note
that the poset j(H) projects to H; this projection is the identity on H,_;, and
the induced quotient is ,_1-closed. It follows that for all n < w, in V[H] there
is a generic kJ-supercompactness embedding with critical point x,, added by a
Kn—1-closed forcing.

Applying Lemma [3.I] we see that there exists some strong limit cardinal p with
cofinality w so that in the extension of V[H] by a generic L for L, := Col(w, i) x
Col(ut!, < ko), the tree property holds at 1. In V[H][L], N,4141 = kn and
N, = K, so the tree property holds at N, ;. Note that GCH holds in this model
below N,,.

Remark 3.3. It follows from work of the first author 1] that when [ = 1 in the
model above, the strong tree property holds at k), = N,41. Defining L, to be
Col(w, ) x Col(utt, < ko) for I > 1, we could even obtain the super tree property.

Now we turn our attention to proving mutual stationarity. Let [ > 0, and L be
generic for L,, := Col(w, ) x Col(u*!, < kg) over V[H]. We claim that in V[H][L],
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for all & # | we have mutual stationarity for (R, Ncof(Rg) | & < n < w). Fix
0<k<w, k#I, and denote v = (R;,)VIHIL We divide into two cases.

Case 1. k > [. Then v > ko and since |L,| < v and &, = (Nn+l+1)V[HML],
by Lemma it is enough to show 1} in V[H] for all large n in order to get
mutual stationarity in V[H][L]. To that end, let n > k and in V[H], let S C &,, be
stationary. In V, let j be a k,1-supercompactness embedding with critical point
Kn. As before, j(H) projects to H with a k,_1-closed quotient. In particular, we
meet the hypotheses of Lemma |2.14

Now consider the decomposition H = H,, ;1 * H/H,, ;1. Note that the quotient
H/H,,+1 is < kpy1-distributive, and so S is a stationary set in V[H,41]. Since
H,, 41 is Kpy1-cc, we apply Lemma in V[H,,4+1] to conclude that there is some
condition r € H,4; and ordinal v such that in V[H,,41], I, is nonstationary and
v + 1l-closed and S € Ij,r' Since the rest of the forcing is < k,,1-distributive,
L, still has the desired properties in the full extension. We have verified that {},
holds, as desired.

Case 2. k < I. Write L = Lo x Ly, where L is Col(w, u)-generic and L; is
Col(ut!, < Kg)-generic. Note that the collapses are computed the same way in V'
and in V[H]. Then (ut)V = (ut)VIHI] = NY[H][L} <v < utl Fix n > k. Since
|Col(w, )| < v, it is enough to show ) in V[H][L,] for all n in order to get mutual
stationarity in V[H][L]. Again, we verify the hypotheses of Lemmas and

Let n > 0 and in V[H][L1], let S C K, be stationary. In V, let j be a kp41-
supercompactness embedding with critical point k,. As before, j(H) projects to H
with a k,,_1-closed quotient. Also, since n > 0, j(Col(ut!, < ko)) = Col(ut!, < ko).
So, j(H x Col(u*t, < ko)) projects to H x Col(u™!, < ko), and with a u*!-closed
quotient. In particular, the quotient is (v + 1)-closed, and we meet the hypotheses
of Lemma 2.T41

As before, since the quotient H/H,, 11 is < ky1-distributive, S is a stationary
set in V[Col(ut!, < ko) x H,41]. Since Col(ut!, < ko) x Hy, 41 is kpp1-cc, we apply
Lemma in V[Col(u*!, < ko) x H,41] to conclude that there is some condition
r € Col(put!, < ko) x H, 41 and ordinal « such that in V[Col(ut!, < ko) x Hy,41],
L, , is nonstationary and v + 1-closed and S € Ij’r. Since the rest of the forcing is
< Kpy1-distributive, I, , still has the desired properties in the full extension. We
have verified that {}; holds, completing the proof.

O

4. MUTUAL STATIONARITY AND THE FAILURE OF SCH

Suppose that in Vo, & < p < A are all supercompact cardinals, with x indestruc-
tibly supercompact. Let H be Col(k, < p) * Col(u, < ) * Add(k, \) -generic and
let V =V,[H]. Fix |l < w.

Lemma 4.1. E| There is a normal measure U* € V' on P.(AT), such that if U, is
the projected measure to Py (p), then for every v < ju, (k), v = ju-(f)(k) for some
fik— K.

Proof. Let jy+ : V — M* be a AT-supercompact embedding with critical point .

Let j, : V — M be the projected ultrapower to a normal measure on P(1). Let
V = VI[E], where E is the Add(x,\)-generic. Let j, : V. — M be the restriction

2We do not need this lemma, if we assume a slightly stronger large cardinal hypothesis. See

Remark
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of j, to V and jy+ : V — M* be the restriction of jy+ to V. Since |j, (k)Y =
lju(k)|Y = 2% = X, enumerate (in V) the interval [, j, (k) = (ua | @ < A). We
can view the Add(k, A)-generic F as a function from A x k — k, and let E, : k = K
be E,(8) = E(a,d). Let E* = j\+(E); a function from jy+(A\) X ja+ (k) = ja+ (k).
Next we make small changes to E* to obtain a generic F* for jy+ (Add(k,\)). Set
F* to be such that for all @ < \, F*(jy+(a),k) = ua, otherwise F* coincides
with E*. Since the change is captured by a condition, F™* is still generic, and by
construction, jy+”E C F*. So now we can lift jy+ to ji, : V = V[E] — M*[F*].

Claim 4.2. For every uq, there is a function f : k — K, such that j\ . (f)(k) = uq.

Proof. Take f = E,. Then ji,(f)(k) = F;,+(a)(/i) = F*(ji+ (@), k) = uq. O
A

We make the analogous change to j,(F) to obtain a generic F for j,(Add(k, \)),
such that for all o« < X\, F(j, (@), k) = ua. Here although the change is not quite
captured by a condition, all of its initial segments are, so we still have that F' is
generic. This argument is due to Gitik-Sharon ( [8], see Lemma 2.26).

Lift j, to j,, with respect to F. As in [5, Section 4.1], ji, is obtained by a
normal measure Uy+ on P, (A1), and jL is obtained from its projection to a normal

measure on Py (u).
(]

Let Uy+ be the normal measure on P,(A") from the above lemma, and let
Uy be its projection to P.(A). Also let U, be its projection to P.(n) and let
U be its projection to a normal measure on k. Set ja+ := ju,, : V — My+,
Jxi=Jgu, V= My, ju:=ju,: V=M, and j:=jy:V — M.

Let k : M — M, be k([flv) = ju(f)(k). Then j, = ko j, and by construction
each u, is in the range of k. It follows that crit(k) > j,(x). And actually, since
Ju(k) is also in the range of k, crit(k) > j,(k), and so j(k) = ju (k).

Similarly, let k* : M — M+ be k*([f]v) = ja+ (f) (k). Then jy+ = k*oj, and by
construction each u, is in the range of k*. It follows that crit(k*) > j,.(x) = j(k).
Since [j(k)|Y = A < |+ (£)|Y = AT, we must have crit(k*) = j(x).

Let P be the Prikry forcing with respect to U with interleaved collapses and
guiding generics to make k = N, and preserve cardinals above x, with the Prikry
sequence starting above w;. More precisely, conditions in P are of the form p =

(d, g, €y ooy Op—1, Cn—1, A, C), where lh(p) = n and:
(1) (o | i <mn) is an increasing sequence in x with o > wy, and A € U;
(2) de Col(wl, < ap) if n > 0; otherwise d € Col(w;, < m)
(3) ¢ € Col(aft, < 1) ifi<n—1,and ¢,—1 € Col(a;} ), < K);
(4) dom(C) = A for each o € A, C(« ) € Col(att,< k), [C] € K, where K is

a guiding generic for Col(kt, < j(k))VHV-V),

Let us briefly describe how we get K. The number of antichains in C :=
Col(kt+, < j(k)VHVU) is gT+: enumerate them by (4; | i < x*+). By the
high critical point of k, we have that k(C) = C and for each i, k(4;) = k" A; = A;.
So working in M,,, which is closed under sequences of length £, and satisfies that C
is < k1T *-closed, build a decreasing sequence of conditions meeting these antichains.
Then use them to define K.

Let G be P-generic. We have the following standard properties about V[G]:

(1) k is preserved by the Prikry lemma, and becomes X,,.
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(2) P has the k% chain condition, so cardinals above s are preserved, and
QN“’ == Nw+2.

(3) G adds a Prikry sequence (k, | n < w), with limit &, such that for all
A e U, for all large n, k, € A;

(4) G adds a sequence (¢ | n < w) and d*, such that for each n, ¢ is generic
for ColV (K, < Kn41), and d* is generic for Col" (wy, < ko).

We will show that V[G] is the desired model for theorem Note that when
showing mutual stationarity for the R;’s, as computed in V[G], we only have to
worry about cardinals of one of the following three types: k,, &}, and st for
n < w.

More precisely, we will prove that for all k& € w \ {l + 3¢ | ¢ < w}, mutual
stationarity for (X, Ncof(N;) | & < n < w) holds in V[G]. Note that the first
Prikry point becomes X;, ;1 in V[G], and for all k <1, (R;,)Y = (R;)VIC]. Since the
arguments when k£ > [ is a little different than when k < [, we will argue in parallel
for the two cases.

To address the former case, for the duration of this section, fix k > I,k €
w\ {l+3i|i<w}. Then in V[G], N, is either a Prikry point or its successor. Let
7 < k and 71 < w be such that some condition in G forces that 7 = N; € {kn, £ }.

Now, set W := V[(kn | n < w),{(c | 7 < n < w)], i.e. the generic extension
obtained when we take P but omit collapses below the Prikry point x5 (and so all
the collapses used are vt-closed). Then V[G] = Wi[(d*, ¢ | n < n)], i.e. V[G] is
an extension of Wi by a forcing of size k5 < 7. So, by Lemma to show the

desired mutual stationarity, it is enough to prove the following;:
(1) In V[G], for all k <1, 1%, 1%, and 7%, hold for all large n;

(2) In Wy, the properties 17 | TZ:, and TZ++ hold for all large n;
(3) All relevant stationary sets consists of approachable points.

4.1. The Prikry points. Let v € {w;, | 0 < k <[} U {7}

Lemma 4.3. In V', for all reqular T with v < 7 < k, we have that T:,COZ(T++,<H)

holds. Moreover, there is a measure one set A, € U, such that for oll a € A,
holds.

14
Ta,Col(T++,<a)

Proof. Note that TZ)COl(Tth <x) Asserts the existence of certain ideals on k, which
are subsets of 2%. We will construct these ideals from the supercompactness of k,
using Lemma [2.14]

Fix 7. Recall that j, : V — M, is the A-supercompactness embedding with
critical point k, projecting to U. Le. U = {4 | k € jx(A)} is the normal measure
used in the definition of the Prikry forcing. We have that there exists a projection
from j\(Col(77F,< k)) onto Col(tT",< k) with a 7+ -closed quotient, so by
Lemma every ideal I, will be (v +1)-closed. It remains to verify that for any
name for a stationary set S, there is some choice of (,r) such that the ideal L, is
nonstationary and Sis a positive set with respect to this ideal. This follows from
Lemma noting that Col(771, < k) is k-cc. So, Th Col(r++,<xy DOlds in V.

Since My = M?" C My, in My, 1Y Col(r++ <x) @ls0 holds. It follows that for
U-many o, TZ,COZ(T++,<0¢) holds in V. O

Now, let A, be given by the above lemma for each 7 > v and set A* = A A;.
By forcing below A*, we may assume that each Prikry point «, € A*.
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Lemma 4.4. For all large n, in V, T: ) holds.

n,Col(nIf1,<l~en

Proof. Fix n such that it is forced that v < k,_1. By choice of A*, we have that
for all 7, for all @ € A*\ (7 + 1), {/ Col(r++,<o) Dolds in V. In particular, for all
a € A* with a > Kkp_1, TZ Col(x**. <a) holds in V. Since k,, € A* with k,, > kn_1,

we have that T: holds in V. (]

nyCol(k b <rn)
As a corollary, by definition of |, we have that:
Lemma 4.5. For all large n, 1, holds in Vc},_,].

n—1

Lemma 4.6. For all k <[, for all large n, 1% holds in V[(d*,c} | i < n)]. Also,
for all large n, 17, holds in V[(c; | n <i < mn)].

Proof. The first statement follows from Lemma [2.16] since the poset to get from
Vier _4] to V[{d*,c} | i < n)] has size < k,, and is wj-closed.

The second statement also follows from Lemma [2.16] since the poset to get from
Vici_1] to V[(cf | » < i < n)] has size < &, and is k1 "-closed, and 7 < s ™.
(Because recall that 7 € {kg,#7}.) So in particular, it is 7% closed and we can
apply the lemma. ([

Lemma 4.7. In V[G], for all k <1, for all large n, 1%* holds. And in Wy, for all
large n, 17, holds.

Proof. First note that V[G] projects to V[(d*, ¢} | i < n)] by a quotient that does
not add subsets of k, 41 (this is [11, Theorem 3.2]), and {} is a statement about
subsets of P(k,). So if {} holds in V[(d*, ¢} | i < n)], then it also holds in V[G].
Similarly, each W5, projects to V[(cf | i < i <n)] by a quotient that does not add
subsets of k,41, and so if 17 holds in V[(¢] | 7 < i < n)], then it also holds in W.
It follows, by the preceding lemma, that in both cases it is enough to show that
c;, preserves 12 Recall that ¢}, is generic for Col(k™, < knq1), and let W’ denote
some ground model where 1}, holds. We claim that {, still holds in W’[c}].
Suppose that S C &, is a stationary set in W’[c}]. By closure of Col(x};T, <
Knt1), S € W’. Let I € W' be the nonstationary k,-complete, v + 1-closed ideal
on kn, with S € I, given by 17 in that model. Since Col(r}}", < Knq1) does
not add new subsets of k,, I is still a non stationary ideal in the bigger model
W'[ck]. Moreover, since Col(k} T, < kpt1) is k) T-closed, I is still £,-complete and
v + 1-closed. So [ is as desired. 0

4.2. The first successors, .

Lemma 4.8. In V|G|, for oll k <1, for all large n, T‘:ﬁ holds. And in Wy, for all

large m, TZJr holds.

Proof. As before, let v € {w |0 < k <1} U{D}.
Claim 4.9. For all large n, T:+ holds in V.

Proof. Recall that V' is the extension of Vy by the poset Col(k, < p) * C"ol(,u7 <
A) * Add(ﬁ},)\). Let 7 : Vj — My be a 2 = A-supercompactness embedding with
critical point p. Note that i(Col(k, < ) *Col(u, < \)* Add(k, X)) absorbs Col(r, <
1) % Col(p, < A) % Add(k, \) and the quotient is k-closed.
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By Lemmas and noting that Col(k, < ) * Col(u, < A) x Add(r, \) is
A-cc and r-closed, we conclude that 1}, holds in V.

Now we use the A-supercompactness embedding with critical point &, j) : V —
M. Since 2* = X and M;\ C M), we also have that (i.e. f¥;) holds in M.
Then there is a measure one set A € U such that for all &« € A, ¥, holds in V. It
follows that for all large n, k, € A, and so . holds in V. O

Claim 4.10. For all large n, 1*, holds in V[cy].

Proof. Let n be such that T:+ holds in V. Suppose that S C k! is a stationary set
in Vet]. Since Col(k; T, < Kp+1) does not add any subsets of 7, S is a stationary
set in V. Let I € V be a nonstationary, r; -complete, (v + 1)-closed ideal on &}
with § € I't, given by 1, in V. Since Col(k;} ", < fip11) is K, T-closed, I remains

a nonstationary, x; -complete, (v + 1)-closed ideal in V[c}]. O

Next, by Lemma and the above claim we get that for k < [, T:ﬁ holds in
VI, e} | i < n).
Note that 25+ = 1 +. Since the quotient to get to V[G] from V[(d*, ¢} | i < n)]

does not add subsets of x,11, we have that T:Li holds in V[G] for k < .

Similarly, by Lemma , we have th in Vn[<c;‘ | 7 <4 <n)]. And since the the
quotient to get to Wi from V[(c} | 7 < i < n)] does not add subsets of k41, we
get 17, in Wj.

" 0

4.3. The second successors, ;. Again, we set v € {wy, | 0 < k <[} U {7}
Lemma 4.11. In 'V, TK)COW\KT) holds for all T > A.

Proof. Let 7 > A. Let V' be a generic extension of Vj by Col(k, < u), and let
j: V! — M be a m-supercompact embedding with critical point A. Since j(Col(u, <
A) % Add(k, \) x Col(\, < 7)) projects to Col(u, < A) * Add(r, \) * Col(\, < 7),
we can lift j to j : V/[Col(u, < \) * Add(k,\) * Col(\, < 7)] — M*. Moreover,
P := Col(p, < \) * Add(r, \) x Col(\, < 7) is T-c.c.

Let S be stationary in V'[Col(p, < ) * Add(k,\) * Col(\, < 7)]. By Lemma
that there is some condition r € j(P)/P and ordinal v € j(x) \ k so that the
ideal I, , is nonstationary and S € I;"J,. Note also that the quotient j(Col(u, <
N)xAdd(k, \)xCol(A, < 7)) /(Col (1, < N)xAdd(r, \)xCol(), < 7)) is k-closed. Since
v < K, from Lemma [2.14} we can conclude that I, , is A-complete, nonprincipal,
and (v + 1)-closed.

Since V is the extension of V' by Col(u, < \) * Add(k, \), we conclude that in

V, TK,Col(/\,<T) holds. O

Remark 4.12. By the same argument as above, we can get 1 Col(M<7) in V even

if v is not a cardinal. We just have to use a |y|T-supercompact embedding with
critical point A.

Remark 4.13. Next we will use Lemma[£.Il We note that we do not need it if we
assume a slightly stronger large cardinal hypothesis that there is a normal measure
on P, (A), such that for measure one many 7 < k, 7 is < j(k)-supercompact in the
ultrapower.
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Lemma 4.14. In V[G], for all k < 1, for all large n, T:L holds. And in W, TZ**
holds for all large n. ! '

Proof. As before, it is enough to show that 1, holds in V[c}].

Recall that we chose a AT-supercompact embedding with critical point x, jy+ :
V — M+, so that the corresponding k* : M — M,+ has critical point j(x). (Here
M = Ult(V,U) where U is the projected normal measure on x, used in the definition
of the Prikry forcing).

Claim 4.15. There is a measure one set A € U such that for all « € A and all T
with o™ < 7 < k we have 1", Col(a++,<r) holds in V.

Proof. Let A < v < j(k), v a cardinal in M. By Lemma and the subsequent
remark,+we have that TK,Col(A,<v) holds in V. Since |y < A, 2* = A*, and
(My+)»" C My+, we also have that, X Col(r, <) holds in My

By the high critical point of k*, k*(y) =+, so by the elementarity of k*, M |=
-I-K7C'0l(k,<’y)'

We have shown that in M, for all 7 with A < 7 < j(k), 1§ Col(x,<r) Dolds. So
there is A € U, such that for all & € A, and all 7 with o™ < 7 < k we have

T;++7col(a++7<7) holds in V. (I
It follows from the claim that for all large n, V = [ Col(sE™ <rnin)’ So for all
large n, 1. holds in V[cy]. O

4.4. Mutual stationarity in the final model. We can finally prove the main
theorem of the section:

Theorem 4.16. In V[G], we have the failure of SCH at X,, and mutual stationarity
for (R, Ncof(Ry) | k < n < w) for every k <1 and for all k > with k € w\ {I+ 3¢ |
i <w}.

Proof. Clearly SCH at X, fails. Fix k < w. It is a well-known fact due to Shelah [13]
that for all n > k 4+ 1, X,, N cof(Rg) is approachable. Mutual stationarity follows
since in V[G], for the specified values of k, we have Tﬁ’; for all large n. O

We end with the following open questions:

Question. Do the analogues of our two main theorems hold for singular cardinals
of uncountable cofinality? In particular, for any countable p, can we obtain mutual
stationarity for (X, Ncof(R,41) | p+1 <1 < wq) together with the failure of SCH
at N, 7 What about together with the tree property at N,,, 417

Question. Can we obtain a model where mutual stationarity for (X, N cof(Ny) |
k < n < w) holds together with reflection at N1 and the failure of SCH at X,,?
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