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Abstract. Mutual stationarity for ⟨κn | n < ω⟩ says that for any stationary

sequence Sn ⊂ κn and any algebra on supn κn, there is a simultaneous witness
for stationarity i.e. an elementary substructure M such that for all n, sup(M∩
κn) ∈ Sn. We prove that mutual stationarity for ⟨ℵn ∩ cof(ωk) | k < n < ω⟩ is
consistent with the tree property at ℵω+1. Our second theorem is that mutual
stationarity for ⟨ℵn ∩ cof(ωk) | k < n < ω⟩ is consistent with the failure of

SCH at ℵω . Both theorems use large cardinal hypotheses.

1. Introduction

Stationary sets are a fundamental notion in modern set theory. They are related
to elementary substructures by identifying clubs as algebras as follows. For a regular
cardinal κ and κ < λ, S ⊂ κ is stationary iff for every algebra A on λ, there is an
elementary N ≺ A, such that sup(N ∩ κ) ∈ S. This notion has an analogue for
singular cardinals, called mutual stationarity.

Mutual stationary was introduced in 2001 by Foreman and Magidor in [7], and
was used to show the nonsaturation of the nonstationary ideal on Pω1

(λ). Here is
the definition:

Definition 1.1. Let R be a set of uncountable regular cardinals and S = ⟨Sκ |
κ ∈ R⟩ be a sequence of stationary sets with Sκ ⊆ κ. The sequence S is mutually
stationary if for every algebra A on sup(R) there is M ≺ A such that sup(M ∩κ) ∈
Sκ for every κ ∈ R ∩M .

Suppose now that R consists of an increasing sequence of cardinals ⟨κn | n < ω⟩
with limit κ. Given An ⊂ κn, we say that mutual stationarity holds at ⟨An |
n < ω⟩ if every sequence of stationary sets Sn ⊂ An is mutually stationary.

Restricting to countable cofinality, in [7] Foreman and Magidor showed that
mutual stationarity holds for ⟨κn ∩ cof(ω) | n < ω⟩. On the other hand, they
showed that this result does not generalize to higher fixed cofinality. In particular,
in L there is a sequence of stationary sets Sn ⊂ ℵn ∩ cof(ω1), n > 1, which is not
mutually stationary. This prompted the question of whether it is consistent to have
mutual stationarity at the ℵn’s for higher fixed cofinality.

Since then there has been a long line of results on this topic. It turns out that
mutual stationarity for uncountable cofinality both follows from large cardinals and
has large cardinal strength. Here are some highlights:

(1) If each κn is supercompact, then every sequence of stationary sets Sn ⊂ κn

is mutually stationary.

The second author was partially supported by the National Science Foundation under Grant
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(2) (Cummings-Foreman-Magidor) [4] If P is the Prikry forcing to singularize κ
and ⟨κn | n < ω⟩ is the corresponding Prikry sequence, then in V [P] every
sequence of stationary sets Sn ⊂ κn is mutually stationary.

(3) (Koepke) [9] From a measurable cardinal, one can force mutual stationarity
for ⟨ℵ2n+1 ∩ cof(ω1) | 1 < n < ω⟩.

(4) (Koepke-Welch) [10] A measurable cardinal is necessary to obtain mutual
stationarity for ⟨κn ∩ cof(ω1) | n < ω⟩, where ⟨κn | n < ω⟩ are increasing
regular cardinals.

Still, for a long time Foreman and Magidor’s original question remained open.
Then in 2019, Ben Neria [2] gave a positive answer. More precisely, he showed that
from ω supercompacts it is consistent that every sequence of stationary sets Sn ⊆ ωn

of some fixed cofinality is mutually stationary. His model is obtained by forcing with
Levy collapses to make the supercompacts be the ℵn’s. In Ben Neria’s model, SCH
holds at ℵω (and actually GCH is true). Moreover, approachability at ℵω holds,
and all known models of the tree property at ℵω+1 have failure of approachability
at ℵω. This raises some natural questions: whether mutual stationarity at the ℵn’s
for a fixed uncountable cofinality is consistent with the failure of SCH; and whether
it is consistent with the tree property. In this paper we show the answer to both
questions is yes.

Theorem 1.2. Suppose that ⟨κn | n < ω⟩ are ν+-supercompact cardinals, where
ν = supn κn. Then for all 0 < l < ω, there is a forcing extension where for all
l ̸= k < ω, mutual stationarity holds for ⟨ℵn ∩ cof(ωk) | k < n < ω⟩ and the tree
property holds at ℵω+1.

Theorem 1.3. Suppose that κ < µ < λ are supercompact cardinals, and let 0 < l <
ω. Then there is a forcing extension where SCH fails at ℵω and mutual stationarity
holds for ⟨ℵn ∩ cof(ωk) | k < n < ω⟩ both for all k < l and for unboundedly many
k > l.

Remark 1.4. The unbounded set of k’s in the theorem above is ω\{l+3i | i < ω}.

The first theorem, together with Ben Neria’s model, shows that mutual station-
arity and the tree property are in a sense orthogonal.

The motivation for the second theorem is that the failure of SCH is an instance
of incompactness, since it requires small powerset below a singular κ and large
powerset at κ. In contrast, mutual stationarity can be viewed as a compactness
type principle, as it is similar in spirit to stationary reflection and follows from
large cardinals. In addition, a corollary of this theorem is that one can reduce the
large cardinal assumption of Ben-Neria’s result in [2] at the price of losing some
cofinalities.

The paper is organized as follows. In section 2 we go over some preliminaries
and facts which will be used to prove mutual stationarity. In section 3 we prove
Theorem 1.2. Then in section 4 we prove Theorem 1.3.

2. Obtaining Mutual Stationarity From Ideals

In this section we summarize techniques due to Ben Neria [2] we will use through-
out this paper to prove mutual stationarity. For a more detailed exposition of these
techniques, see [2, Section 2]. Note that [2] uses the Jerusalem forcing convention,
which this paper does not.
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Definition 2.1. Suppose M ≺ A. We call an extension N of M an end-extension
of M above λ if M ≺ N ≺ A and N ∩ λ = M ∩ λ.

To show that a sequence is mutually stationary, we will work inductively, starting
with Mn and producing an end-extension Mn+1. The following standard result
shows that it is enough to verify mutual stationarity on a tail, so we can start this
process at any finite stage n.

Fact 2.2. [7, Lemma 23] Let ν be a regular cardinal less than the least element of
a set of regular cardinals K. If {Sκ | κ ∈ K} is mutually stationary, and for all κ,
Sκ ⊆ cof(≤ ν), then for all λ1, . . . , λn greater than ν and not in K, and all sequences
of stationary sets Sλi ⊆ λi ∩ cof(≤ ν), the sequence {Sκ | κ ∈ K} ∪ {Sλi , . . . Sλn}
is mutually stationary.

End extensions will be constructed via ideals.

Definition 2.3. A nonprincipal κ-complete ideal I on κ is µ + 1-closed if I+ has
a ≤I -dense subset D such that the ≤I↾ D is closed under µ-sequences.

An ideal on κ is nonstationary if it extends the nonstationary ideal.

Definition 2.4. Suppose that P is a forcing with |P| ≤ µ, and G is generic for P
over V . A nonprincipal κ-complete ideal I ∈ V [G] is formerly µ + 1-closed if I is
the downwards closure of a µ+ 1-closed ideal I0 ∈ V .

Note that µ-closed ideals are formerly µ-closed, where P is the trivial forcing.

Definition 2.5. Let κ ∈ M be a regular cardinal and A ⊆ κ an unbounded set.
We say A is λ-homogeneous for M if f ↾ A is constant for every function f : κ → λ
in M . A is λ-homogeneous and approximated if for every function f : κ → λ in M
there is a set Af ∈ M so that A ⊆ Af ⊆ κ and f ↾ Af is constant.

To build these homogeneous and approximated subsets, we will make use of the
following fact.

Remark 2.6. [2] Let λ < κ. Suppose I is a κ-complete ideal on κ and f : κ → λ
is a function. Then if I, f ∈ M and B ∈ I+ ∩ M , there is ν∗ < λ such that
f−1(ν∗) ∩B ∈ I+.

We will also need the following lemma, a slight strengthening of [2, Lemma 2.6].

Lemma 2.7. Let P be a forcing with |P| ≤ ν, and let G be generic for P. In V [G],
let M ≺ A be a |M |-closed model, with |M | = ν and P ⊂ M , P, G ∈ M . Suppose
κ > ν is a regular cardinal. Suppose I ∈ M is a κ-complete formerly (ν +1)-closed
ideal on κ, generated by a κ-complete (ν + 1)-closed ideal I0 contained in V . Then
for every A ∈ I+ ∩M and λ ∈ M ∩ κ, there exists a subset B ⊆ A in I+ which is
λ-homogeneous and approximated in M .

Proof. By our assumptions, M is of the form M̄ [G], where M̄ = M ∩ V .
Let <θ be a definable well-order of A. Let D ∈ M̄ be a ≤I0-dense set of I+0

containing lower bounds to all ≤I -decreasing sequences of length ≤ ν. Enumerate
all functions from κ to λ in M by ⟨fi | i < ν⟩. While the full sequence may not
be in M , since M is ν-closed, every initial segment will be. In V , we obtain a
corresponding sequence ⟨ḟi | i < ν⟩ of names, forced by the empty condition to
enumerate all such functions.
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Working in V , we wish to build a ≤I0-decreasing sequence of sets Ai ∈ D ∩ M̄

such that 1P ⊩ ḟi ↾ Ai+1 has constant value for each i < ν. Choose A0 ⊂ A to be
some element of I+0 contained in D ∩ M̄ .

Suppose that we have defined Ai. First we show the following claim (in V ).

Claim 2.8. There is B ⊂ Ai, B ∈ I+0 ∩D, such that 1P ⊩ ḟi ↾ B is constant.

Proof. Enumerate the conditions in P by ⟨pα | α < |P|⟩. We will build a ≤I0 -
decreasing sequence of sets ⟨A′

α | α < |P|⟩ in I+0 ∩D, with A′
0 ⊂ Ai, so that for all

α, pα does not force that ḟi ↾ A′
α+1 is not constant. We do so inductively.

At successor stages α + 1, we note that by Remark 2.6, the empty condition
forces that ḟi must be constant on some subset of A′

α that is in İ+.

We claim that any set B ∈ I+ must have a subset A′ ⊆ B in I+0 . Let Ḃ be a

name for B. For each p ∈ P, let Bp = {α | p ⊩ α ∈ Ḃ}; then B =
⋃

p∈G Bp. Since I

is κ-complete and |P| < κ, if every Bp is in I, B itself would be in I. We conclude
that some Bp is in I+. Since this Bp is in V , it must also be in I+0 .

So in fact the empty condition forces that ḟi is constant on a subset of A′
α that

is in I+0 ∩D. It follows that pα cannot force that ḟi is nonconstant on every subset
of A′

α in I+0 ∩D, so we can find A′
α+1 as desired.

At limit stages γ, let A′
γ be a ≤I0-lower bound of ⟨A′

α | α < γ⟩ contained in D.
Now that we have built the sequence ⟨A′

α | α < |P|⟩, we let B be a ≤I0-lower
bound of ⟨A′

α | α < |P|⟩ in D. Then, by construction, B is as desired. □

By elementarity, M̄ also satisfies the statement of the claim, so we obtain a set
Ai+1 ∈ I+0 ∩D ∩ M̄ as desired.

When i is a limit ordinal, we let Ai be the <θ-least ≤I0 -lower bound of the
sequence ⟨Aj | j < i⟩.

Finally, let A′ ∈ D be the <θ-least ≤I+
0
-lower bound of the sequence ⟨Ai | i < ν⟩.

Let us pause to ensure that at each stage our construction is definable in M̄ . We
first verify that M̄ is ν-closed in V . Since M̄ = M ∩V and M is ν-closed, it follows
that M̄<ν ∩ V ⊆ M<ν ∩ V ⊆ M ∩ V = M̄ .

Since the full sequence of names ⟨ḟi | i < ν⟩ is in V , and M̄ is ν-closed in V , all

initial segments of ⟨ḟi | i < ν⟩ are in M̄ . The sets Ai are defined from the sequences

⟨ḟj , Aj | j < i⟩, the poset P, the dense set D, and the definable well-order <θ. It
follows that each Ai is contained in M̄ , and thus in M .

By construction, for each i < ν, there is some Bi ∈ I0 such that the empty
condition forces that A′ \Bi ⊆ Ai. In particular, this means that ḟi is forced to be
constant on A′\Bi. Let B

′ =
⋃

i<ν Bi; this is in I0 by κ-completeness. Then A′\B′

is in I+0 . Let A′′ = A′ \ B′. Since B′ ∈ I0 and A′ ≤I0 A, we see that A′′ ∈ I+0 and
thus in I+. Moreover, A′′ is forced by the empty condition to be λ-homogeneous
and approximated in V [G]. □

The following lemma follows [2, Proposition 2.12], weakening the closure assump-
tion to former closure.

Lemma 2.9. Suppose µ < κ are regular cardinals and A is an algebra extending
⟨Hθ,∈, <θ⟩ for some regular cardinal θ > 2κ. Let M ≺ A be a substructure of size
µ closed under sequences of size < µ, and let S ⊆ κ∩ cof(µ) be a stationary subset
of κ in M . Suppose also that at least one of the following holds:
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(1) S consists of approachable points 1 or
(2) either κ is inaccessible or κ = τ+ and τ<τ = τ .

If S is positive with respect to some nonstationary κ-complete formerly (µ+ 1)-
closed ideal on κ, then for every regular cardinal λ ∈ M ∩ κ, there is a µ-closed
substructure N ≺ A of size µ which is an end-extension of M above λ and satisfies
sup(N ∩ κ) ∈ S.

Proof. The proof is identical to the proof of [2, Lemma 2.12], using Lemma 2.7 in
place of [2, Lemma 2.6]. □

Remark 2.10. For the proof in the case of the approachability assumption, see [2,
Remark 2.9] for details.

To check that every sequence of stationary sets is mutually stationary, it suffices
to show that these hypotheses are satisfied at each stage of the induction. Next,
we define a principle that captures the key hypothesis of Lemma 2.9.

Definition 2.11. Let ν < θ be uncountable cardinals. We say †νθ holds if for all
stationary S ⊂ θ, there is a nonstationary θ-complete, (ν+1)-closed ideal, for which
S is a positive set. Given a poset Q, we say that †νθ,Q holds if 1Q forces that for

all stationary Ṡ ⊂ θ, there is a nonstationary θ-complete, (ν + 1)-closed ideal, for

which Ṡ is a positive set.

Lemma 2.12. Suppose that ν < κ are cardinals, and †νκ holds in V . Let P be
a poset in V , such that |P| ≤ ν and P preserves ν, and let G be generic for P.
Let S be a stationary subset of κ in V [G]. Then in V [G], there is a κ-complete
nonstationary formerly-(ν + 1)-closed ideal I such that S ∈ I+.

Proof. Since P has size less than κ, there is a generic condition p ∈ G, such that
Sp = {α | p ⊩V

P α ∈ Ṡ} is stationary.
Let I1 be the ideal given by †νκ in V applied to Sp. Now, going back to V [G], let

I be the ideal obtained from I1. More precisely, I = {X ⊂ κ | ∃X̄ ∈ I1, X ⊂ X̄}.
First we show that I is a κ-complete ideal. Suppose that for some τ < κ,

⟨Xi | i < τ⟩ ∈ V [G] is a sequence of sets in I. Working in V , let Di = {p ∈ P |
∃X̄ ∈ I1, p ⊩ Ẋi ⊂ X̄}. This is a dense subset of P. For each p ∈ Di, let X̄i,p ∈ I1
witness membership. By κ-completeness of I1, we have that X :=

⋃
i,p X̄i,p ∈ I1.

Since
⋃

i Xi ⊂ X, we get that
⋃

i Xi ∈ I.

Also, since Sp ∈ I+1 , and Sp ⊂ S, we have that S ∈ I+. Also if A ⊂ κ is a
nonstationary set in V [G], since |P| < κ, there is a nonstationary A1 ∈ V with
A ⊂ A1, and so A ∈ I. □

By the previous two lemmas, to ensure that mutual stationarity holds below ℵω

for sets of points of cofinality ℵk, it suffices to check that †ℵk

ℵn
holds for cofinitely

many n < ω (possibly in an inner model by a small forcing) and that all relevant
stationary sets are approachable. More precisely:

Lemma 2.13. Suppose that P is a forcing in V of size ≤ ν, such that for some
k < ω, 1P ⊩ ν = ℵ̇k, and let G be P-generic over V . Suppose that for all large n,
†ν
(ℵn)V [G] holds in V , and that in V [G], all stationary sets of ℵn are approachable or

GCH holds. Then in V [G], mutual stationarity holds for ⟨ℵn∩cof(ℵk) | k < n < ω⟩.
1For the definition of approachable points see for example [3, Section 8]
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Proof. Work in V [G]. Fix a stationary sequence Sn ⊂ ℵn ∩ cof(ℵk), for n >
k. Suppose that A is an algebra on ℵω. Construct a sequence of elementary
substructures of A, ⟨Mn | k < n < ω⟩ by induction on n, as follows. Let Mk+1 be
such that sup(Mk+1 ∩ ℵk+1) ∈ Sk+1. Now, suppose n > k + 1 and we have defined

Mn−1. Since †ℵk

ℵn
held in V , by Lemma 2.12 there is a nonstationary ℵn-complete

formerly (ℵk + 1)-closed ideal I on ℵn such that Sn ∈ I+. Then by Lemma 2.9,
there is an elementary substructure Mn of A, such that Mn is an end extension of
Mn−1 above ℵn−1 and sup(Mn ∩ ℵn) ∈ Sn. Finally, let M =

⋃
n Mn ≺ A. Then

for all n > k, sup(M ∩ ℵn) = sup(Mn ∩ ℵn) ∈ Sn. □

Ideals as above are obtained from large cardinal embeddings.

Lemma 2.14. [2, Fact 2.14] Let j : V → M be an elementary embedding with
crit(j) = κ and κM ⊆ M . Let P ∈ V be a poset and let G be generic for P. Suppose
that j(P) projects to P, so that every j(P)/G generic contains j”G. Working in
V [G], for every γ ∈ j(κ) \ κ and r ∈ j(P)/G, define an ideal Iγ,r by

Iγ,r = {ẊG | r ⊩j(P)/G γ /∈ j(Ẋ)}.

Then this ideal is well defined and has the following properties:

• Iγ,r is κ-complete and nonprincipal.

• Iγ,r is nonstationary iff r ⊩ γ ∈ j(Ċ) for every P-name Ċ for a club subset
of κ.

• If j(P)/G is (µ + 1)-closed for some µ < κ, then Iγ,r is a (µ + 1)-closed
ideal.

Proof. We only briefly outline the proof. More details can be found in Foreman’s
chapter in the handbook [6]; see the interlude to Section 7, “The Basic Idea”.

First, note that if ẊG = Ẋ ′
G, then some condition in j′′G will force that j(Ẋ) =

j(Ẋ ′). Since any generic extension by j(P)/G must contain j′′G, any condition in

j(P)/G will force that j(Ẋ) = j(Ẋ ′). It follows that the ideal is well-defined.
Iγ,r is κ-complete because κ is the critical point of the embedding, and it is

non-principal, because γ ≥ κ. The second assertion of the lemma is clear.
The last claim follows from the fact that j(P)/G induces a generic for the poset

(I+γ,r,≤Iγ,r ). For example, if j is derived from a κ-complete measure U , one can

consider the following projection π from j(P)/G below r, to the poset (I+γ,r,≤Iγ,r ).
Let γ = [fγ ]U ; for q = [fq]U ∈ j(P), q ≤ r, set π(q) = {fγ(x) | fq(x) ∈ G}. Clearly,
π(q) is a positive Iγ,r set, since q forces that it is in the dual filter. In particular,

q ⊩j(P)/G γ ∈ j( ˙π(q)) := j({fγ(x) | fq(x) ∈ Ġ}); since q ≤ r, r certainly can’t force

γ to not be in j( ˙π(q)), so π(q) /∈ Iγ,r. Also, if q′ ≤ q, then π(q′) ⊂ π(q), so the map
is order preserving.

Finally, we verify that π is indeed a projection. Suppose Y = ẎG ≤I+
γ,r

π(q). We

claim that (in V ), A := {x | fq(x) ̸⊩ fγ(x) /∈ j(Ẏ )} ∈ U . If A is not in U , then

its complement must be, so q ⊩j(P)/G γ /∈ j(Ẏ ). Note that the empty condition

of j(P)/G forces γ ∈ j( ˙π(q)) ⇔ q ∈ j(Ġ). It follows that the empty condition

forces γ ∈ j( ˙π(q)) =⇒ γ /∈ j(Ẏ ). We conclude that r ⊩ γ /∈ j(Ẏ ) ∩ j( ˙π(q)), so
Y ∩π(q) ∈ Iγ,r. But Y ≤I+

γ,r
π(q) by assumption, so Y ∩π(q) ∈ I+γ,r, a contradiction.

Since A ∈ U , we can define a condition q′ = [x → q′x]U ≤ q, such that for all x ∈ A,

q′x ⊩ fγ(x) ∈ j(Ẏ ) and if x /∈ A, q′x ⊥ qx. By density, one can find such a condition
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in j(P)/G. Then π(q′) = Y . We conclude that π is a projection from j(P)/G to
(I+γ,r,≤Iγ,r ), so a generic for j(P)/G will induce a generic for (I+γ,r,≤Iγ,r ). □

To verify †ℵk

ℵn
, we will need to use embeddings that give sufficiently closed quo-

tients, and we will need to check that the ideals we produce are nonstationary and
meet the requisite stationary set. To do so we will use the following lemma, which
is implicit in [2].

Lemma 2.15. Let λ ≥ 2κ, and let j : V → M be a λ-supercompactness embedding
with critical point κ. Suppose P is a λ-cc poset with (|P|<λ)κ = λ, such that P
and j meet the hypotheses of Lemma 2.14, and ⊩P j(P)/Ġ is (µ + 1)-closed. Let
G be generic for P over V . Let S ⊂ κ be a stationary set in V [G]. Then there
is a condition r and ordinal γ such that the ideal Iγ,r given by Lemma 2.14 is
(µ+ 1)-closed and nonstationary, and S ∈ I+γ,r.

Proof. Since P is λ-cc, we can enumerate (possibly with repetitions) all P-names

for clubs in κ by C⃗ = ⟨Ċi | i < λ⟩. Since j is a λ-supercompactness embedding,

this sequence is contained in M . The sequence j′′C⃗ = ⟨j(Ċi) | i < λ⟩ will also be
in M , and is a sequence of j(P)-names for clubs in j(κ). It follows that the empty

condition of j(P) forces that Ċ∗ =
⋂

i<λ j(Ċi) is a club in j(κ).

Let Ṡ be a P-name for S; Ṡ is forced to be stationary by some condition p ∈ G.
Then the empty condition of j(P)/G forces that j(Ṡ) is stationary in j(κ̌). Then

there is a condition r ∈ j(P)/G and an ordinal γ ≥ κ such that r ⊩ γ̌ ∈ j(Ṡ) ∩ Ċ∗.
Let I = Iγ,r. By Lemma 2.14, we conclude that I is κ-complete, nonprincipal,

nonstationary, and (µ+ 1)-closed. Since r ⊩ γ̌ ∈ j(Ṡ), by the definition of Iγ,r, we
have that S ∈ I+ (and actually in the dual filter). □

We end this section with a lemma about forcings that preserve †.

Lemma 2.16. Suppose that ν < κ are cardinals, and †νκ holds in V . Let Q be a
poset in V , such that |Q| < κ, and Q is ≤ ν-distributive (i.e. does not add sequences
of size ν). Then if H is Q-generic, †νκ still holds in V [H],

Proof. Suppose that S ⊂ κ is a stationary set in V [H]. Since Q has size less than κ,

there is a generic condition q ∈ H, such that Sq = {α | q ⊩V
Q α ∈ Ṡ} is stationary.

Let I1 be the ideal given by †νκ in V applied to Sq. Now, going back to V [H], let
I be the ideal obtained from I1. More precisely, I = {X ⊂ κ | ∃X̄ ∈ I1, X ⊂ X̄}.

First we show that I is a κ-complete ideal. Suppose that for some τ < κ,
⟨Xi | i < τ⟩ ∈ V [H] is a sequence of sets in I. Working in V , let Di = {q ∈ Q |
∃X̄ ∈ I1, q ⊩ Ẋi ⊂ X̄}. This is a dense subset of Q. For each q ∈ Di, let X̄i,q ∈ I1
witness membership. By κ-completeness of I1, we have that X :=

⋃
i,q X̄i,q ∈ I1.

Since
⋃

i Xi ⊂ X, we get that
⋃

i Xi ∈ I.

Also, since Sq ∈ I+1 , and Sq ⊂ S, we have that S ∈ I+. Also if A ⊂ κ is a
nonstationary set in V [H], since |Q| < κ, there is a nonstationary A1 ∈ V with
A ⊂ A1, and so A ∈ I.

It remains to show the existence of a closed dense set. Let D be the (ν + 1)-
closed dense subset of I+1 . For the density, we use that if X is an I-positive set
in V [H], by the κ-completeness of I1 and |Q| < κ, there is p ∈ H, such that

Xp := {α | p ⊩ α ∈ Ẋ} ∈ I+1 . Since D is dense there is A ∈ D with A ⊂ Xp ⊂ X.
For the closure, suppose that ⟨Yi | i < ν⟩ ∈ V [H] is a decreasing sequence of sets
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in D. Since Q is ≤ ν-distributive, this sequence is in V , and by closure of D,⋂
Yi ∈ D. □

3. Mutual Stationarity and the Tree Property

To obtain the tree property at ℵω+1 along with mutual stationarity below ℵω,
we use the arguments of [12, Section 3]. The main complication is that to use these
techniques, we cannot determine the cardinal that will become ℵ1 in advance.

We will use the following lemma to obtain the tree property. The proof is almost
identical to [12, Lemma 3.6], except that we allow a finite gap in the definition of
Lµ.

Lemma 3.1. ( [12, Lemma 3.6]) Let ⟨κn | n < ω⟩ be a strictly increasing sequence
of regular cardinals with supremum κω, and let 0 < l < ω. Suppose that the
following holds:

• κ0 is κ+
ω -supercompact.

• For each n > 0, there is a generic κ+
ω -supercompactness embedding with

domain V and critical point κn, added by a κn−1-closed forcing.

For each strong limit cardinal µ < κ0 with cf(µ) = ω, let Lµ be the poset Col(ω, µ)×
Col(µ+l, < κ0). Then there is µ < κ0 such that in the extension by Lµ, the tree
property holds at κ+

ω .

Theorem 3.2. Let ⟨κn | n < ω⟩ be an increasing sequence of κ+
ω -supercompact

cardinals, with supremum κω and 0 < l < ω. Then there is a forcing extension in
which the tree property holds at ℵω+1 and for all l ̸= k < ω, mutual stationarity
holds for ⟨ℵn ∩ cof(ωk) | k < n < ω⟩.

Proof. Let ⟨κn | n < ω⟩ be an increasing sequence of supercompact cardinals
with supremum κω. Assume also that κ0 is indestructibly supercompact. Let
H = ⟨Hn, Ḣ(n) | n < ω⟩ be the full support iteration where each Ḣ(n) is a Hn-
name of Col(κn, < κn+1). Let H be generic for H. Note that in V [H], κ0 remains
supercompact and κn+1 = κ+

n for all n < ω.
Fix n < ω and let j be a ν+ supercompact embedding in V with critical point

κn. Recall that H decomposes into H = Hn−1 ∗ Col(κn−1, < κn) ∗ (H/Hn); Hn−1

is below the critical point, while Col(κn−1, < κn) ∗ (H/Hn) is κn−1-closed. Note
that the poset j(H) projects to H; this projection is the identity on Hn−1, and
the induced quotient is κn−1-closed. It follows that for all n < ω, in V [H] there
is a generic κ+

ω -supercompactness embedding with critical point κn, added by a
κn−1-closed forcing.

Applying Lemma 3.1, we see that there exists some strong limit cardinal µ with
cofinality ω so that in the extension of V [H] by a generic L for Lµ := Col(ω, µ)×
Col(µ+l, < κ0), the tree property holds at κ+

ω . In V [H][L], ℵn+l+1 = κn and
ℵω = κω, so the tree property holds at ℵω+1. Note that GCH holds in this model
below ℵω.

Remark 3.3. It follows from work of the first author [1] that when l = 1 in the
model above, the strong tree property holds at κ+

ω = ℵω+1. Defining Lµ to be
Col(ω, µ)×Col(µ+l, < κ0) for l > 1, we could even obtain the super tree property.

Now we turn our attention to proving mutual stationarity. Let l > 0, and L be
generic for Lµ := Col(ω, µ)×Col(µ+l, < κ0) over V [H]. We claim that in V [H][L],
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for all k ̸= l we have mutual stationarity for ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩. Fix
0 < k < ω, k ̸= l, and denote ν = (ℵk)

V [H][L]. We divide into two cases.
Case 1. k > l. Then ν ≥ κ0 and since |Lµ| ≤ ν and κn = (ℵn+l+1)

V [H][L],
by Lemma 2.13, it is enough to show †νκn

in V [H] for all large n in order to get
mutual stationarity in V [H][L]. To that end, let n > k and in V [H], let S ⊆ κn be
stationary. In V , let j be a κn+1-supercompactness embedding with critical point
κn. As before, j(H) projects to H with a κn−1-closed quotient. In particular, we
meet the hypotheses of Lemma 2.14.

Now consider the decomposition H = Hn+1 ∗ H/Hn+1. Note that the quotient
H/Hn+1 is < κn+1-distributive, and so S is a stationary set in V [Hn+1]. Since
Hn+1 is κn+1-cc, we apply Lemma 2.15 in V [Hn+1] to conclude that there is some
condition r ∈ Hn+1 and ordinal γ such that in V [Hn+1], Iγ,r is nonstationary and
ν + 1-closed and S ∈ I+γ,r. Since the rest of the forcing is < κn+1-distributive,
Iγ,r still has the desired properties in the full extension. We have verified that †νκn

holds, as desired.
Case 2. k < l. Write L = L0 × L1, where L0 is Col(ω, µ)-generic and L1 is

Col(µ+l, < κ0)-generic. Note that the collapses are computed the same way in V

and in V [H]. Then (µ+)V = (µ+)V [H][L1] = ℵV [H][L]
1 ≤ ν < µ+l. Fix n > k. Since

|Col(ω, µ)| < ν, it is enough to show †νκn
in V [H][L1] for all n in order to get mutual

stationarity in V [H][L]. Again, we verify the hypotheses of Lemmas 2.14 and 2.15.
Let n > 0 and in V [H][L1], let S ⊆ κn be stationary. In V , let j be a κn+1-

supercompactness embedding with critical point κn. As before, j(H) projects to H
with a κn−1-closed quotient. Also, since n > 0, j(Col(µ+l, < κ0)) = Col(µ+l, < κ0).
So, j(H × Col(µ+l, < κ0)) projects to H × Col(µ+l, < κ0), and with a µ+l-closed
quotient. In particular, the quotient is (ν + 1)-closed, and we meet the hypotheses
of Lemma 2.14.

As before, since the quotient H/Hn+1 is < κn+1-distributive, S is a stationary
set in V [Col(µ+l, < κ0)×Hn+1]. Since Col(µ+l, < κ0)×Hn+1 is κn+1-cc, we apply
Lemma 2.15 in V [Col(µ+l, < κ0)×Hn+1] to conclude that there is some condition
r ∈ Col(µ+l, < κ0) × Hn+1 and ordinal γ such that in V [Col(µ+l, < κ0) × Hn+1],
Iγ,r is nonstationary and ν + 1-closed and S ∈ I+γ,r. Since the rest of the forcing is
< κn+1-distributive, Iγ,r still has the desired properties in the full extension. We
have verified that †νκn

holds, completing the proof.
□

4. Mutual Stationarity and the failure of SCH

Suppose that in V0, κ < µ < λ are all supercompact cardinals, with κ indestruc-
tibly supercompact. Let H be Col(κ,< µ) ∗ ˙Col(µ,< λ) ∗ ˙Add(κ, λ) -generic and
let V = V0[H]. Fix l < ω.

Lemma 4.1. 2 There is a normal measure U∗ ∈ V on Pκ(λ
+), such that if Uµ is

the projected measure to Pκ(µ), then for every γ < jUµ
(κ), γ = jU∗(f)(κ) for some

f : κ → κ.

Proof. Let jλ+ : V → M∗ be a λ+-supercompact embedding with critical point κ.
Let jµ : V → M be the projected ultrapower to a normal measure on Pκ(µ). Let
V = V̄ [E], where E is the Add(κ, λ)-generic. Let j̄µ : V̄ → M̄ be the restriction

2We do not need this lemma, if we assume a slightly stronger large cardinal hypothesis. See
Remark 4.13.
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of jµ to V̄ and j̄λ+ : V̄ → M̄∗ be the restriction of jλ+ to V̄ . Since |j̄µ(κ)|V =
|jµ(κ)|V = 2κ = λ, enumerate (in V ) the interval [κ, j̄µ(κ)) = ⟨uα | α < λ⟩. We
can view the Add(κ, λ)-generic E as a function from λ×κ → κ, and let Eα : κ → κ
be Eα(δ) = E(α, δ). Let E∗ = jλ+(E); a function from j̄λ+(λ)× j̄λ+(κ) → j̄λ+(κ).
Next we make small changes to E∗ to obtain a generic F ∗ for j̄λ+(Add(κ, λ)). Set
F ∗ to be such that for all α < λ, F ∗(j̄λ+(α), κ) = uα, otherwise F ∗ coincides
with E∗. Since the change is captured by a condition, F ∗ is still generic, and by
construction, j̄λ+”E ⊂ F ∗. So now we can lift j̄λ+ to j′λ+ : V = V̄ [E] → M̄∗[F ∗].

Claim 4.2. For every uα, there is a function f : κ → κ, such that j′λ+(f)(κ) = uα.

Proof. Take f = Eα. Then j′λ+(f)(κ) = F ∗
j′
λ+ (α)(κ) = F ∗(j′λ+(α), κ) = uα. □

We make the analogous change to jµ(E) to obtain a generic F for j̄µ(Add(κ, λ)),
such that for all α < λ, F (j̄µ(α), κ) = uα. Here although the change is not quite
captured by a condition, all of its initial segments are, so we still have that F is
generic. This argument is due to Gitik-Sharon ( [8], see Lemma 2.26).

Lift j̄µ to j′µ with respect to F . As in [5, Section 4.1], j′λ+ is obtained by a

normal measure Uλ+ on Pκ(λ
+), and j′µ is obtained from its projection to a normal

measure on Pκ(µ).
□

Let Uλ+ be the normal measure on Pκ(λ
+) from the above lemma, and let

Uλ be its projection to Pκ(λ). Also let Uµ be its projection to Pκ(µ) and let
U be its projection to a normal measure on κ. Set jλ+ := jUλ+ : V → Mλ+ ,
jλ := jUλ

: V → Mλ, jµ := jUµ
: V → Mµ, and j := jU : V → M .

Let k : M → Mµ be k([f ]U ) = jµ(f)(κ). Then jµ = k ◦ j, and by construction
each uα is in the range of k. It follows that crit(k) ≥ jµ(κ). And actually, since
jµ(κ) is also in the range of k, crit(k) > jµ(κ), and so j(κ) = jµ(κ).

Similarly, let k∗ : M → Mλ+ be k∗([f ]U ) = jλ+(f)(κ). Then jλ+ = k∗◦j, and by
construction each uα is in the range of k∗. It follows that crit(k∗) ≥ jµ(κ) = j(κ).
Since |j(κ)|V = λ < |jλ+(κ)|V = λ++, we must have crit(k∗) = j(κ).

Let P be the Prikry forcing with respect to U with interleaved collapses and
guiding generics to make κ = ℵω and preserve cardinals above κ, with the Prikry
sequence starting above ωl. More precisely, conditions in P are of the form p =
⟨d, α0, c0, ..., αn−1, cn−1, A,C⟩, where lh(p) = n and:

(1) ⟨αi | i < n⟩ is an increasing sequence in κ with α0 > ωl, and A ∈ U ;
(2) d ∈ Col(ωl, < α0) if n > 0; otherwise d ∈ Col(ωl, < κ).
(3) ci ∈ Col(α++

i , < αi+1) if i < n− 1, and cn−1 ∈ Col(α++
n−1, < κ);

(4) dom(C) = A, for each α ∈ A, C(α) ∈ Col(α++, < κ), [C] ∈ K, where K is
a guiding generic for Col(κ++, < j(κ))Ult(V,U).

Let us briefly describe how we get K. The number of antichains in C :=
Col(κ++, < j(κ))Ult(V,U) is κ++; enumerate them by ⟨Ai | i < κ++⟩. By the
high critical point of k, we have that k(C) = C and for each i, k(Ai) = k”Ai = Ai.
So working in Mµ, which is closed under sequences of length κ+, and satisfies that C
is < κ++-closed, build a decreasing sequence of conditions meeting these antichains.
Then use them to define K.

Let G be P-generic. We have the following standard properties about V [G]:

(1) κ is preserved by the Prikry lemma, and becomes ℵω.
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(2) P has the κ+ chain condition, so cardinals above κ are preserved, and
2ℵω = λ = ℵω+2.

(3) G adds a Prikry sequence ⟨κn | n < ω⟩, with limit κ, such that for all
A ∈ U , for all large n, κn ∈ A;

(4) G adds a sequence ⟨c∗n | n < ω⟩ and d∗, such that for each n, c∗n is generic
for ColV (κ++

n , < κn+1), and d∗ is generic for ColV (ωl, < κ0).

We will show that V [G] is the desired model for theorem 1.3. Note that when
showing mutual stationarity for the ℵi’s, as computed in V [G], we only have to
worry about cardinals of one of the following three types: κn, κ

+
n , and κ++

n for
n < ω.

More precisely, we will prove that for all k ∈ ω \ {l + 3i | i < ω}, mutual
stationarity for ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩ holds in V [G]. Note that the first
Prikry point becomes ℵl+1 in V [G], and for all k ≤ l, (ℵk)

V = (ℵk)
V [G]. Since the

arguments when k > l is a little different than when k < l, we will argue in parallel
for the two cases.

To address the former case, for the duration of this section, fix k̄ > l, k̄ ∈
ω \ {l + 3i | i < ω}. Then in V [G], ℵk̄ is either a Prikry point or its successor. Let

ν̄ < κ and n̄ < ω be such that some condition in G forces that ν̄ = ℵ̇k̄ ∈ {κn̄, κ
+
n̄ }.

Now, set Wk̄ := V [⟨κn | n < ω⟩, ⟨c∗n | n̄ ≤ n < ω⟩], i.e. the generic extension
obtained when we take P but omit collapses below the Prikry point κn̄ (and so all
the collapses used are ν̄+-closed). Then V [G] = Wk̄[⟨d∗, c∗n | n < n̄⟩], i.e. V [G] is
an extension of Wk̄ by a forcing of size κn̄ ≤ ν̄. So, by Lemma 2.13, to show the
desired mutual stationarity, it is enough to prove the following:

(1) In V [G], for all k < l, †ωk
κn

, †ωk

κ+
n
, and †ωk

κ++
n

hold for all large n;

(2) In Wk̄, the properties †ν̄κn
, †ν̄

κ+
n
, and †ν̄

κ++
n

hold for all large n;

(3) All relevant stationary sets consists of approachable points.

4.1. The Prikry points. Let ν ∈ {ωk | 0 < k < l} ∪ {ν̄}.

Lemma 4.3. In V , for all regular τ with ν < τ < κ, we have that †νκ,Col(τ++,<κ)

holds. Moreover, there is a measure one set Aτ ∈ U , such that for all α ∈ Aτ ,
†να,Col(τ++,<α) holds.

Proof. Note that †νκ,Col(τ++,<κ) asserts the existence of certain ideals on κ, which

are subsets of 2κ. We will construct these ideals from the supercompactness of κ,
using Lemma 2.14.

Fix τ . Recall that jλ : V → Mλ is the λ-supercompactness embedding with
critical point κ, projecting to U . I.e. U = {A | κ ∈ jλ(A)} is the normal measure
used in the definition of the Prikry forcing. We have that there exists a projection
from jλ(Col(τ++, < κ)) onto Col(τ++, < κ) with a τ++-closed quotient, so by
Lemma 2.14 every ideal Iγ,r will be (ν+1)-closed. It remains to verify that for any

name for a stationary set Ṡ, there is some choice of (γ, r) such that the ideal Iγ,r is

nonstationary and Ṡ is a positive set with respect to this ideal. This follows from
Lemma 2.15, noting that Col(τ++, < κ) is κ-cc. So, †νκ,Col(τ++,<κ) holds in V .

Since Mλ
λ = M2κ

λ ⊆ Mλ, in Mλ, †νκ,Col(τ++,<κ) also holds. It follows that for

U -many α, †να,Col(τ++,<α) holds in V . □

Now, let Aτ be given by the above lemma for each τ > ν and set A∗ = △τ<κAτ .
By forcing below A∗, we may assume that each Prikry point κn ∈ A∗.
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Lemma 4.4. For all large n, in V , †ν
κn,Col(κ++

n−1,<κn)
holds.

Proof. Fix n such that it is forced that ν < κn−1. By choice of A∗, we have that
for all τ , for all α ∈ A∗ \ (τ + 1), †να,Col(τ++,<α) holds in V . In particular, for all

α ∈ A∗ with α > κn−1, †να,Col(κ++
n−1,<α)

holds in V . Since κn ∈ A∗ with κn > κn−1,

we have that †ν
κn,Col(κ++

n−1,<κn)
holds in V . □

As a corollary, by definition of †, we have that:

Lemma 4.5. For all large n, †νκn
holds in V [c∗n−1].

Lemma 4.6. For all k < l, for all large n, †ωk
κn

holds in V [⟨d∗, c∗i | i < n⟩]. Also,
for all large n, †ν̄κn

holds in V [⟨c∗i | n̄ ≤ i < n⟩].

Proof. The first statement follows from Lemma 2.16, since the poset to get from
V [c∗n−1] to V [⟨d∗, c∗i | i < n⟩] has size < κn and is ωl-closed.

The second statement also follows from Lemma 2.16, since the poset to get from
V [c∗n−1] to V [⟨c∗i | n̄ ≤ i < n⟩] has size < κn and is κ++

n̄ -closed, and ν̄ < κ++
n̄ .

(Because recall that ν̄ ∈ {κn̄, κ
+
n̄ }.) So in particular, it is ν̄+ closed and we can

apply the lemma. □

Lemma 4.7. In V [G], for all k < l, for all large n, †ωk
κn

holds. And in Wk̄, for all
large n, †ν̄κn

holds.

Proof. First note that V [G] projects to V [⟨d∗, c∗i | i ≤ n⟩] by a quotient that does
not add subsets of κn+1 (this is [11, Theorem 3.2]), and †νκn

is a statement about
subsets of P(κn). So if †νκn

holds in V [⟨d∗, c∗i | i ≤ n⟩], then it also holds in V [G].
Similarly, each Wk̄ projects to V [⟨c∗i | n̄ ≤ i ≤ n⟩] by a quotient that does not add
subsets of κn+1, and so if †ν̄κn

holds in V [⟨c∗i | n̄ ≤ i ≤ n⟩], then it also holds in Wk̄.
It follows, by the preceding lemma, that in both cases it is enough to show that

c∗n preserves †νκn
.Recall that c∗n is generic for Col(κ++

n , < κn+1), and let W ′ denote
some ground model where †νκn

holds. We claim that †νκn
still holds in W ′[c∗n].

Suppose that S ⊂ κn is a stationary set in W ′[c∗n]. By closure of Col(κ++
n , <

κn+1), S ∈ W ′. Let I ∈ W ′ be the nonstationary κn-complete, ν + 1-closed ideal
on κn, with S ∈ I+, given by †νκn

in that model. Since Col(κ++
n , < κn+1) does

not add new subsets of κn, I is still a non stationary ideal in the bigger model
W ′[c∗n]. Moreover, since Col(κ++

n , < κn+1) is κ
++
n -closed, I is still κn-complete and

ν + 1-closed. So I is as desired. □

4.2. The first successors, κ+
n .

Lemma 4.8. In V [G], for all k < l, for all large n, †ωk

κ+
n
holds. And in Wk̄, for all

large n, †ν̄
κ+
n
holds.

Proof. As before, let ν ∈ {ωk | 0 < k < l} ∪ {ν̄}.

Claim 4.9. For all large n, †ν
κ+
n
holds in V .

Proof. Recall that V is the extension of V0 by the poset Col(κ,< µ) ∗ ˙Col(µ,<

λ) ∗ ˙Add(κ, λ). Let i : V0 → M0 be a 2µ = λ-supercompactness embedding with

critical point µ. Note that i(Col(κ,< µ)∗ ˙Col(µ,< λ)∗ ˙Add(κ, λ)) absorbs Col(κ,<

µ) ∗ ˙Col(µ,< λ) ∗ ˙Add(κ, λ) and the quotient is κ-closed.
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By Lemmas 2.14 and 2.15, noting that Col(κ,< µ) ∗ ˙Col(µ,< λ) ∗ ˙Add(κ, λ) is
λ-cc and κ-closed, we conclude that †νµ holds in V .

Now we use the λ-supercompactness embedding with critical point κ, jλ : V →
Mλ. Since 2µ = λ and Mλ

λ ⊂ Mλ, we also have that †νµ (i.e. †νκ+) holds in Mλ.
Then there is a measure one set A ∈ U such that for all α ∈ A, †να+ holds in V . It
follows that for all large n, κn ∈ A, and so †ν

κ+
n
holds in V . □

Claim 4.10. For all large n, †ν
κ+
n
holds in V [c∗n].

Proof. Let n be such that †ν
κ+
n
holds in V . Suppose that S ⊂ κ+

n is a stationary set

in V [c∗n]. Since Col(κ++
n , < κn+1) does not add any subsets of κ+

n , S is a stationary
set in V . Let I ∈ V be a nonstationary, κ+

n -complete, (ν + 1)-closed ideal on κ+
n

with S ∈ I+, given by †ν
κ+
n
in V . Since Col(κ++

n , < κn+1) is κ
++
n -closed, I remains

a nonstationary, κ+
n -complete, (ν + 1)-closed ideal in V [c∗n]. □

Next, by Lemma 2.16 and the above claim we get that for k < l, †ωk

κ+
n
holds in

V [⟨d∗, c∗i | i ≤ n⟩].
Note that 2κ

+
n = κ++

n . Since the quotient to get to V [G] from V [⟨d∗, c∗i | i ≤ n⟩]
does not add subsets of κn+1, we have that †ωk

κ+
n
holds in V [G] for k < l.

Similarly, by Lemma 2.16, we have †ν̄
κ+
n
in V [⟨c∗i | n̄ ≤ i ≤ n⟩]. And since the the

quotient to get to Wk̄ from V [⟨c∗i | n̄ ≤ i ≤ n⟩] does not add subsets of κn+1, we
get †ν̄

κ+
n
in Wk̄.

□

4.3. The second successors, κ++
n . Again, we set ν ∈ {ωk | 0 < k < l} ∪ {ν̄}.

Lemma 4.11. In V , †νλ,Col(λ,<τ) holds for all τ > λ.

Proof. Let τ > λ. Let V ′ be a generic extension of V0 by Col(κ,< µ), and let
j : V ′ → M be a τ -supercompact embedding with critical point λ. Since j(Col(µ,<

λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ)) projects to Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ),

we can lift j to j : V ′[Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ)] → M∗. Moreover,

P := Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ) is τ -c.c.

Let S be stationary in V ′[Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ)]. By Lemma
2.15 that there is some condition r ∈ j(P)/P and ordinal γ ∈ j(κ) \ κ so that the
ideal Iγ,r is nonstationary and S ∈ I+γ,r. Note also that the quotient j(Col(µ,<

λ)∗ ˙Add(κ, λ)∗ ˙Col(λ,< τ))/(Col(µ,< λ)∗ ˙Add(κ, λ)∗ ˙Col(λ,< τ)) is κ-closed. Since
ν < κ, from Lemma 2.14, we can conclude that Iγ,r is λ-complete, nonprincipal,
and (ν + 1)-closed.

Since V is the extension of V ′ by Col(µ,< λ) ∗ ˙Add(κ, λ), we conclude that in
V , †νλ,Col(λ,<τ) holds. □

Remark 4.12. By the same argument as above, we can get †νλ,Col(λ,<γ) in V even

if γ is not a cardinal. We just have to use a |γ|+-supercompact embedding with
critical point λ.

Remark 4.13. Next we will use Lemma 4.1. We note that we do not need it if we
assume a slightly stronger large cardinal hypothesis that there is a normal measure
on Pκ(λ), such that for measure one many τ < κ, τ is < j(κ)-supercompact in the
ultrapower.
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Lemma 4.14. In V [G], for all k < l, for all large n, †ωk

κ++
n

holds. And in Wk̄, †ν̄κ++
n

holds for all large n.

Proof. As before, it is enough to show that †ν
κ++
n

holds in V [c∗n].

Recall that we chose a λ+-supercompact embedding with critical point κ, jλ+ :
V → Mλ+ , so that the corresponding k∗ : M → Mλ+ has critical point j(κ). (Here
M = Ult(V,U) where U is the projected normal measure on κ, used in the definition
of the Prikry forcing).

Claim 4.15. There is a measure one set A ∈ U such that for all α ∈ A and all τ
with α++ < τ < κ we have †να++,Col(α++,<τ) holds in V .

Proof. Let λ < γ < j(κ), γ a cardinal in M . By Lemma 4.11 and the subsequent
remark, we have that †νλ,Col(λ,<γ) holds in V . Since |γ|V ≤ λ, 2λ = λ+, and

(Mλ+)λ
+ ⊂ Mλ+ , we also have that, †νλ,Col(λ,<γ) holds in Mλ+ .

By the high critical point of k∗, k∗(γ) = γ, so by the elementarity of k∗, M |=
†νλ,Col(λ,<γ).

We have shown that in M , for all τ with λ < τ < j(κ), †νλ,Col(λ,<τ) holds. So

there is A ∈ U , such that for all α ∈ A, and all τ with α++ < τ < κ we have
†να++,Col(α++,<τ) holds in V . □

It follows from the claim that for all large n, V |= †ν
κ++
n ,Col(κ++

n ,<κn+1)
. So for all

large n, †ν
κ++
n

holds in V [c∗n]. □

4.4. Mutual stationarity in the final model. We can finally prove the main
theorem of the section:

Theorem 4.16. In V [G], we have the failure of SCH at ℵω and mutual stationarity
for ⟨ℵn∩ cof(ℵk) | k < n < ω⟩ for every k < l and for all k > l with k ∈ ω \{l+3i |
i < ω}.

Proof. Clearly SCH at ℵω fails. Fix k < ω. It is a well-known fact due to Shelah [13]
that for all n > k + 1, ℵn ∩ cof(ℵk) is approachable. Mutual stationarity follows

since in V [G], for the specified values of k, we have †ℵk

ℵn
for all large n. □

We end with the following open questions:

Question. Do the analogues of our two main theorems hold for singular cardinals
of uncountable cofinality? In particular, for any countable ρ, can we obtain mutual
stationarity for ⟨ℵη ∩ cof(ℵρ+1) | ρ+ 1 < η < ω1⟩ together with the failure of SCH
at ℵω1

? What about together with the tree property at ℵω1+1?

Question. Can we obtain a model where mutual stationarity for ⟨ℵn ∩ cof(ℵk) |
k < n < ω⟩ holds together with reflection at ℵω+1 and the failure of SCH at ℵω?
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