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•   (the full shift)
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•

X = Aℤ

X = {x ∈ {0,1}ℤ : x does not contain the pattern 11}

X = {x ∈ {0,1,2}ℤ : xn − xn−1 = 0 or 1 mod 3}



Symbolic dynamics: studying properties of the 
dynamical system  (X, σ)
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Endow    with the discrete topology and    with the product topologyA Aℤ

The topology is generated by the family of cylinder sets

[a0 a1 … an−1] := {x ∈ Aℤ : x0x1…xn−1 = a0a1…an−1}

• Cylinder sets are clopen

•   is continuousσ

It's also generated by a natural metric on   Aℤ

d(x, y) := 2− min{|n|:xn≠yn}

• This makes    a compact metric space and open balls are cylinder 
sets

Aℤ
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Motivation
Many "real-world" dynamical systems of interest can be modeled by 
symbolic systems

(M, f )
x

fx f 2x

f3x

f −1x

x ⟷ (…,4,5,2,3,4,…)
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Topological entropy
Given a subshift  , let  X

  ℒn := {a1…an ∈ An : xi…xi+n−1 = a1…an for some x ∈ X, i ∈ ℤ}

be the family of all words of length    that appear in  n X

The topological entropy of    isX

htop(X) := lim
n→∞

1
n

log |ℒn | = inf
n

1
n

log |ℒn |

• Measures the "size" or "complexity" of  X

• |ℒn | = exp(htopn) ⋅ (sub-exponential factor)



Examples



• 





• binary strings of length    avoiding  


• nth  Fibonacci number 


•

X = {0,1}ℤ

|ℒn | = 2n ⟹ htop(X) = log 2

X = {x ∈ {0,1}ℤ : x does not contain the patttern 11}

ℒn = n 11

|ℒn | = Fn = ∼ φn

htop(X) ≈ log(1.618)
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Measure entropy
Recall the Shannon entropy of a probability measure    on a finite set    is ν F

 H(ν) = ∑
x∈F

− ν(x)log ν(x)

• A measure of how uniform    isν

• Key features:  , with equality iff  H(ν) ≤ log |supp(ν) | ν = Unif

The entropy rate of a shift-invariant measure    on    isμ X

 h(μ) := lim
n→∞

1
n

H(μ[1,n]) = inf
n

1
n

H(μ[1,n])

where    is the marginal of    on coordinates    (or the joint law of   )μ[1,n] μ [1,n] α1, …, αn

•   is high if    gives roughly equal probabilities to all long words of the same lengthh(μ) μ

•   is low if a few long words are much more likely than all the resth(μ)

• "   counts words,    counts words weighted according to  "htop h(μ) μ
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The variational principle
Theorem:  For any subshift  , one has    where 
the sup is taken over all shift-invariant measures, and there is always at 
least one    that achieves the sup.

X htop(X) = supμ h(μ)

μ

Proof (sketch): 

• For any  ,  note    is supported on    (permitted words 
of length   ), so  

μ μ[1,n] ℒn
n H(μ[1,n]) ≤ log |ℒn | ⟹ h(μ) ≤ htop(X)

• For the other direction, construct an optimal    directly using 
the principle that uniform measures maximize entropy

μ
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The variational principle, cont.
• Let    be any measure that gives mass    to each 

cylinder set  ,   (   is not shift-invariant)
νn |ℒn |−1

[w] w ∈ ℒn νn

• Let    and let    be any weak-* limit point of 

the    (now    is shift-invariant)

ν′�n =
1
n

n−1

∑
i=0

σi
*νn μ

ν′�n μ

• With some entropy calculations one can show that  
h(μ) = htop(X)

Measures achieving the sup in the variational principle are called 
measures of maximal entropy (MMEs)
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Question: what conditions on a subshift    
guarantee that it has a unique MME?


(assuming   )

X

htop(X) > 0



Easy example



• 


• Given the constraint  ,    is uniquely maximized by 
the product measure  , and  


•   is uniquely maximized by  


• So    is the unique MME

X = {0,1}ℤ

sup
μ

h(μ) = sup
p∈Prob{0,1}

sup
μ : μ1=p

h(μ)

μ1 = p h(μ)
p×ℤ h(μ) = H(p)

H(p) p = (1/2,1/2)

(1/2,1/2)×ℤ
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Markov shifts
We will focus on a certain class of subshift:

Given an alphabet  , let    be a directed graph with vertex set  .  Define a 
subshift    by the condition    iff    is an edge in    
for all 

A G A
XG ⊆ Aℤ x ∈ X xn → xn+1 G

n ∈ ℤ

0 1 {x ∈ {0,1}ℤ : x does not contain the pattern 11}

0 1
2 {x ∈ {0,1,2}ℤ : xn − xn−1 = 0 or 1 mod 3}

Such subshifts are called Markov shifts or subshifts of finite type 

Many "nice" dynamical systems can be modeled by Markov shifts (Y. Sinai, R. 
Bowen, D. Ruelle, 1960s-80s, "Markov partitions")
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A classical result
When will a Markov shift have a unique MME?  

There is one obvious obstruction:

Say a Markov shift    is irreducible if the graph generating it is 
(strongly) connected

X

Theorem (W. Parry, 1960s): Any irreducible Markov shift    has a 
unique MME   

X

0 1
2 3

  and    
are both MMEs 
μ1 = (1/2,1/2,0,0)×ℤ μ2 = (0,0,1/2,1/2)×ℤ
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Proof, step 1
By irreducibility, there is some gap bound    such that any two letters 
in    can be joined by a path of length 

g ∈ ℕ
A ≤ g

• Equivalently, if    and    are any two permitted words, they can be 
joined into a permitted word    with  

w w′�
wuw′� |u | ≤ g

This gives good control on the number of allowed words:

• w1, w2, …, wr ∈ ℒn ↦ w1u1w2…ur−1wrs ∈ ℒnr+g(r−1)

• So   |ℒn |r ≤ |ℒr(n+g)−g | ⟹ log |ℒn | ≤
1
r

log |ℒr(n+g)−g |

• Take :  r → ∞ |ℒn | ≤ exp((n + g)htop) = C exp(nhtop)

• From definition of  :  htop |ℒn | ≥ exp(nhtop)

To summarize:    for all            |ℒn | ≍ exp(nhtop) n
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Recall the general procedure for constructing MMEs:

• uniform over  ,  limit of running averages of the  νn = ℒn μ = νn

So we can estimate the  -mass of any fixed cylinder :μ [w], w ∈ ℒk

 μ[w] ≈
1
n (νn[w] + νnσ−1[w] + … + νnσn−1[w]) (consider n ≫ k)

By definition

 νnσ−i[w] = |ℒn |−1 ⋅ #{u ∈ ℒn : u[i,i+k) = w[i,i+k)}
Use the gap bound property again:

So this number is ≍ exp(htop(n − k))
0 ni i + k
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Proof, step 2
Recall the general procedure for constructing MMEs:

• uniform over  ,  limit of running averages of the  νn = ℒn μ = νn

So we can estimate the  -mass of any fixed cylinder :μ [w], w ∈ ℒk

 μ[w] ≈
1
n (νn[w] + νnσ−1[w] + … + νnσn−1[w]) (consider n ≫ k)

By definition

 νnσ−i[w] = |ℒn |−1 ⋅ #{u ∈ ℒn : u[i,i+k) = w[i,i+k)}
Use the gap bound property again:

So this number is ≍ exp(htop(n − k))

Combining this and the estimate on   yields|ℒn |

  for all  , any fixed         ("Gibbs property for  ")μ[w] ≍ exp(−khtop) w ∈ ℒk k μ

0 ni i + k
w
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Proof, step 3
Suppose    is a different MME.  After some reductions we can 
assume    and    are mutually singular.

ν
μ ν

Let    be large, and partition    into two disjoint families of  -
cylinders    and    such that  

n X n
M(n)

μ M(n)
ν μ(M(n)

ν ) ≈ ν(M(n)
μ ) ≈ 0

Now estimate

nhtop = nh(ν) ≤ H(ν[1,n]) ⪅ log #M(n)
ν

≤ log(Cenhtopμ(M(n)
ν )) (using the Gibbs property)

= O(1) + nhtop + log(μ(M(n)
ν ))

Contradiction.
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Specification
The key to the proof was the "gap bound" property

Definition:  A subshift    has the specification property if there exists  
  such that whenever    and    are permitted words, there is a 

joining word    such that    is permitted and  

X
g ∈ ℕ w w′�

u wuw′� |u | ≤ g

• Much larger class of systems than the irreducible Markov shifts

• Example:  X = {x ∈ {0,1,2}ℤ :
1
n

(xi + xi+1 + … + xi+n−1) ≤ 1 for all i, n}

Theorem (R. Bowen, 1970s):  Any subshift with the specification 
property has a unique MME

Theorems (R. Pavlov, V. Climenhaga, D. Thompson, 2010s): different 
"weak specification" properties also imply uniqueness of MME
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Stronger statistical properties
Once uniqueness of the MME is established, what other properties 
does it have?

• Mixing?

• Bernoulli?

• Exponential decay of correlations?

• Central limit theorem?

Theorem (R. Bowen, 1970s):  If    is an irreducible Markov shift, then 
its unique MME has all of the above

X

Theorem (V. Climenhaga, 2018):  If    is a subshift with the 
specification property, then its unique MME has all of the above.

X


