Dynamical methods in fractal geometry

Adam Lott
UCLA
8 December 2020
Fractals

• "Fractal" = some shape that's "made up of scaled copies of itself"
Iterated function systems

• A natural way of defining a large class of fractal objects
 ▶ Let ϕ_1, \ldots, ϕ_n be contraction mappings in \mathbb{R}^d
 ▶ **Theorem:** there exists a unique compact set K such that $K = \bigcup_{1 \leq i \leq n} \phi_i(K)$
 ▶ K is called the **attractor** of the **iterated function system (IFS)**
 ▶ "Made up of scaled copies of itself"
Iterated function systems

• Example:
Iterated function systems

- Example:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Iterated function systems

• One method for constructing the attractor:
Example

- Sierpinski triangle
 - $\phi_1(x, y) = \frac{1}{2}(x, y)$
 - $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
 - $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$
Example

- Sierpiński triangle

 - $\phi_1(x, y) = \frac{1}{2}(x, y)$

 - $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$

 - $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$
Example

• Sierpiński triangle

\[
\begin{align*}
\phi_1(x, y) &= \frac{1}{2}(x, y) \\
\phi_2(x, y) &= \frac{1}{2}(x, y) + (1/2, 0) \\
\phi_3(x, y) &= \frac{1}{2}(x, y) + (1/4, 1/2)
\end{align*}
\]
Example

• Sierpiński triangle

 - $\phi_1(x, y) = \frac{1}{2}(x, y)$
 - $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
 - $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$
Example

- Sierpiński triangle
 - \(\phi_1(x, y) = \frac{1}{2}(x, y) \)
 - \(\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0) \)
 - \(\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2) \)
• Remarks/definitions:
 ▶ If the union in $K = \bigcup_{1 \leq i \leq n} \phi_i(K)$ is disjoint, the IFS satisfies the strong separation condition (SSC)
 ▶ If all of the ϕ_i are affine, the attractor K is a self-affine set. If all of the ϕ_i are similarity maps (scaling + isometry), K is a self-similar set.
• Without these conditions, very hard to analyze
A natural quantity associated to a fractal set is its **Hausdorff dimension**

- Nice properties:
 - \(\dim_H(\cdot) = 0, \ \dim_H(-) = 1, \ \dim_H(\square) = 2, \) etc.
 - \(\dim_H \left(\bigcup_{i \in \mathbb{N}} A_i \right) = \sup_{i \in \mathbb{N}} \dim_H(A_i) \)
 - \(\dim_H(A \times B) = \dim_H(A) + \dim_H(B) \) (under some conditions on \(A \) and \(B \))
 - \(\dim_H(f(A)) = \dim_H(A) \) if \(f \) is bi-Lipschitz
Slices of fractals

- **Theorem (Marstrand, 1950s):** Let $A \subseteq \mathbb{R}^2$. Then for a.e. line L, $\dim(A \cap L) \leq \max(0, \dim(A) - 1)$.

 - More generally, if $A \subseteq \mathbb{R}^d$, then $\dim(A \cap W) \leq \max(0, \dim(A) - \text{codim}(W))$ for a.e. affine subspace W.

- Marstrand's theorem holds for any set (doesn't even have to be measurable!). If A has nice fractal structure maybe Marstrand's theorem is true for **every** line L.

 - Conjectured in various forms by Furstenberg
Obvious obstructions

\[\dim(A \cap L) = 1 \]

\[\dim(A) - 1 = \frac{\log(3)}{\log(2)} - 1 \approx 0.58 \]

\[\dim(A \cap L) = \frac{\log(2)}{\log(3)} \approx 0.63 \]

\[\dim(A) - 1 = \frac{\log(4)}{\log(3)} - 1 \approx 0.26 \]
• From now, make the following assumptions:
 ‣ Each ϕ_i is a **similarity**
 ‣ The attractor K satisfies the **SSC**
 ‣ Each ϕ_i has the **same rotation part** $\theta \notin 2\pi\mathbb{Q}$

• For example:
Attractor system

- The attractor K can be turned into a dynamical system

- Define $S : K \rightarrow K$ to be the local inverse to the ϕ_i, i.e. $S(z) = \phi_i^{-1}(z)$ for $z \in \phi_i(K)$ (well-defined by SSC)
Attractor system

- The attractor K can be turned into a dynamical system
- Define $S : K \to K$ to be the local inverse to the ϕ_i, i.e. $S(z) = \phi_i^{-1}(z)$ for $z \in \phi_i(K)$ (well-defined by SSC)
An observation

• Suppose there exists L with $\dim(K \cap L) > \dim(K) - 1$.

 ▪ L points in the direction of $e^{2\pi it_0}$
An observation

• Suppose there exists L with $\dim(K \cap L) > \dim(K) - 1$.

 ‣ L points in the direction of $e^{2\pi i t_0}$
An observation

- Suppose there exists L with $\dim(K \cap L) > \dim(K) - 1$.
 - L points in the direction of $e^{2\pi it_0}$
 - $S(K \cap L)$ is a union of several slices, each in the direction $e^{2\pi i(t_0 - \theta)}$, and at least one of them also has dimension $> \dim(K) - 1$
An observation

• Iterate this procedure: for every $n \geq 0$ there is a line L_n in the direction $e^{2\pi i(t_0 - n\theta)}$ such that $\dim(K \cap L_n) > \dim(K) - 1$

 ▶ One bad slice \longrightarrow a lot of bad slices whose slopes are dense in S^1

• Furstenberg (1960s) was able to push this observation much further with two key insights:

 ▶ Introduce randomness into the picture

 ▶ Work with dimensions of measures rather than dimensions of sets
Dimension of measures

• Say a probability measure μ on \mathbb{R}^d is α-regular if $\mu(B_r(x)) \lesssim r^\alpha$ as $r \downarrow 0$ for all x.

 ‣ Example: d-dimensional Lebesgue measure is d-regular
 ‣ Example: a point mass is 0-regular (and not α-regular for any larger α)
Dimension of measures

- Strong relationship between regularity of measures and dimensions of sets they can "see"
 - If μ is α-regular and $\dim(A) < \alpha$, then $\mu(A) = 0$.
 - "Frostman's lemma": If $\dim(A) \geq \alpha$, then there exists an α-regular μ supported on A.

- Morally, there is a rough correspondence
 $\dim(\mu) := \sup\{\alpha : \mu \text{ is } \alpha\text{-regular}\} = \inf\{\dim(A) : \mu(A) > 0\}$
Magnification dynamics

- Idea: run the attractor system, but keep track of more data
- "Zooming in" dynamics on $K \times \mathbb{T} \times \text{Prob}(K)$:
 - $M : (z, t, \nu) \mapsto (S_z, t - \theta, S_*(\nu_z))$, where $\nu_z := \nu$ conditioned on the piece $\phi_i(K)$ that contains the point z
Furstenberg's construction

- Suppose there is a slice \(L \) in the direction \(e^{2\pi it_0} \) with \(\dim(K \cap L) =: \alpha > \dim(K) - 1 \)
 - Frostman's lemma \(\mapsto \) let \(\nu_0 \) be an \(\alpha \)-regular measure supported on \(K \cap L \)

- Let \(\bar{\mu}_0 = \nu_0 \times \delta_{t_0} \times \delta_{\nu_0} \in \text{Prob}(K \times \mathbb{T} \times \text{Prob}(K)) \) ("introduce randomness")

- Let \(\bar{\mu} \) be a weak-* limit point of the sequence \(\bar{\mu}_n := \frac{1}{n} \sum_{j=0}^{n-1} M^j_\ast \bar{\mu}_0 \) (Krylov-Bogolyubov machine)
 - \(\bar{\mu} \) is an \(M \)-invariant measure on \(K \times \mathbb{T} \times \text{Prob}(K) \) supported on \(\{(z, t, \nu) : \nu \text{ is } \alpha \text{-dimensional and } \nu(L_{z,t}) = 1\} \)

The line through the point \(z \) in the direction \(e^{2\pi it} \)
Furstenberg's construction

- The projection of μ onto the \mathbb{T} coordinate is invariant for the irrational circle rotation $t \mapsto t - \theta$
 - Must be Lebesgue measure
- Conclusion:
 - **Theorem (Furstenberg):** Suppose there exists a line L with $\dim(K \cap L) > \alpha$. Then for Lebesgue-a.e. $t \in \mathbb{T}$ there exists some line L_t in the direction $e^{2\pi it}$ such that $\dim(K \cap L_t) > \alpha$ also.
• The conclusion of Furstenberg's theorem should translate to an upper bound on α in terms of $\dim(K)$ (think Kakeya problem)
 ▶ Turned out to be hard to get the "correct" value

• **Theorem (2019):** Let $\{\phi_1, \ldots, \phi_n\}$ be a similarity IFS in \mathbb{R}^2 satisfying the **SSC** and such that each ϕ_i has **common rotation part** $\theta \notin 2\pi\mathbb{Q}$. Let K be the attractor. Then $\dim(K \cap L) \leq \max(0, \dim(K) - 1)$ for **every** line L.
 ▶ Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu (appeared in back-to-back Annals issues)
Generalizations/extensions

• For what other sets K does Marstrand's theorem hold for every line/affine subspace?

• $K = A \times B$, where $A, B \subseteq \mathbb{T}$ are $(\times 2), (\times 3)$-invariant respectively (not including lines parallel to axes)
 ‣ Also proven by Shmerkin/Wu

• $K =$ attractor of IFS with different irrational rotation parts
 ‣ ????

• $K =$ attractor of IFS in higher dimensions
 ‣ ????
Generalizations/extensions

• Projections:
 - **Theorem (Marstrand):** Let $A \subseteq \mathbb{R}^2$. Then for a.e. line L,
 $$\dim(\Pi_L A) = \max(1, \dim(A)),$$
 where Π_L is orthogonal projection onto the line L.

• Can also apply magnification dynamics to this problem

• Hochman & Shmerkin (2012) used similar ideas to prove the above holds for **every** line L, for many nice fractals A.