Dynamical methods in fractal geometry

Adam Lott UCLA

8 December 2020

• "Fractal" = some shape that's "made up of scaled copies of itself"

Fractals

A natural way of defining a large class of fractal objects

• Let ϕ_1, \ldots, ϕ_n be contraction mappings in \mathbb{R}^d

- Theorem: there exists a unique compact set K such that $K = \bigcup \phi_i(K)$ $1 \leq i \leq n$
- K is called the attractor of the iterated function system (IFS) "Made up of scaled copies of itself"

• Example:

• Example:

• Example:

 ϕ_2

• Example:

 ϕ_1

• Example:

 ϕ_1

• Example:

 ϕ_1

Example (0,1)

Sierpiński triangle

•
$$\phi_1(x, y) = \frac{1}{2}(x, y)$$

• $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
• $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$

(0,0)

(1,0)

Example (0,1)(0,0)(1,0)

Sierpiński triangle

•
$$\phi_1(x, y) = \frac{1}{2}(x, y)$$

• $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
• $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$

Sierpiński triangle

•
$$\phi_1(x, y) = \frac{1}{2}(x, y)$$

• $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
• $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$

Example (0,1)(0,0)(1,0)

Sierpiński triangle

•
$$\phi_1(x, y) = \frac{1}{2}(x, y)$$

• $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
• $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$

• Sierpiński triangle

•
$$\phi_1(x, y) = \frac{1}{2}(x, y)$$

• $\phi_2(x, y) = \frac{1}{2}(x, y) + (1/2, 0)$
• $\phi_3(x, y) = \frac{1}{2}(x, y) + (1/4, 1/2)$

Example (0,1)19.95 15 1935 aver-

(0,0)

(1,0)

- Remarks/definitions:
 - $1 \leq i \leq n$ separation condition (SSC)
 - set.
- Without these conditions, very hard to analyze

• If the union in $K = \bigcup \phi_i(K)$ is disjoint, the IFS satisfies the strong

• If all of the ϕ_i are affine, the attractor K is a self-affine set. If all of the ϕ_i are similarity maps (scaling + isometry), K is a self-similar

Dimension

- Nice properties:
 - $\dim_{H}(\cdot) = 0$, $\dim_{H}(-) = 1$, $\dim_{H}(\square) = 2$, etc.
 - $\dim_H\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \sup_{i\in\mathbb{N}}\dim_H(A_i)$
 - and B)
 - $\dim_H(f(A)) = \dim_H(A)$ if f is bi-Lipschitz

A natural quantity associated to a fractal set is its Hausdorff dimension

• $\dim_H(A \times B) = \dim_H(A) + \dim_H(B)$ (under some conditions on A

Slices of fractals

- Theorem (Marstrand, 1950s): Let $A \subseteq \mathbb{R}^2$. Then for a.e. line L, $\dim(A \cap L) \leq \max(0, \dim(A) 1)$.
 - More generally, if A ⊆ ℝ^d, then dim(A ∩ W) ≤ max(0, dim(A) codim(W))
 for a.e. affine subspace W.
- Marstrand's theorem holds for any set (doesn't even have to be measurable!). If A has nice fractal structure maybe Marstrand's theorem is true for **every** line L.
 - Conjectured in various forms by Furstenberg

Obvious obstructions

di di

$$m(A \cap L) = 1$$

m(A) - 1 = $\frac{\log(3)}{\log(2)} - 1 \approx 0.58$

$$\lim(A \cap L) = \frac{\log(2)}{\log(3)} \approx 0.63$$
$$\lim(A) - 1 = \frac{\log(4)}{\log(3)} - 1 \approx 0.26$$

- From now, make the following assumptions:
 - Each ϕ_i is a similarity
 - The attractor K satisfies the SSC
 - Each ϕ_i has the same rotation part $\theta \notin 2\pi \mathbb{Q}$
- For example:

Attractor system

- The attractor K can be turned into a dynamical system
- Define $S: K \to K$ to be the local inverse to the ϕ_i , i.e. $S(z) = \phi_i^{-1}(z)$ for $z \in \phi_i(K)$ (well-defined by SSC)

Attractor system

- The attractor K can be turned into a dynamical system
- Define $S: K \to K$ to be the local inverse to the ϕ_i , i.e. $S(z) = \phi_i^{-1}(z)$ for $z \in \phi_i(K)$ (well-defined by SSC)

- Suppose there exists L with $\dim(K \cap L) > \dim(K) 1$.
 - L points in the direction of $e^{2\pi i t_0}$

- Suppose there exists L with $\dim(K \cap L) > \dim(K) 1$.
 - L points in the direction of $e^{2\pi i t_0}$

- Suppose there exists L with $\dim(K \cap L) > \dim(K) 1$.
 - L points in the direction of $e^{2\pi i t_0}$

- Iterate this procedure: for every $n \ge 0$ there is a line L_n in the direction $e^{2\pi i (t_0 n\theta)}$ such that $\dim(K \cap L_n) > \dim(K) 1$
 - One bad slice \longrightarrow a lot of bad slices whose slopes are dense in S^1
- Furstenberg (1960s) was able to push this observation much further with two key insights:
 - Introduce randomness into the picture
 - Work with dimensions of measures rather than dimensions of sets

- $r \searrow 0$ for all x.
 - Example: d-dimensional Lebesgue measure is d-regular

Dimension of measures

• Say a probability measure μ on \mathbb{R}^d is α -regular if $\mu(B_r(x)) \leq r^{\alpha}$ as

• Example: a point mass is 0-regular (and not α -regular for any larger α)

- they can "see"
 - If μ is α -regular and dim(A)
 - supported on A.
- Morally, there is a rough correspondence

Dimension of measures

Strong relationship between regularity of measures and dimensions of sets

) <
$$\alpha$$
, then $\mu(A) = 0$.

• "Frostman's lemma": If $\dim(A) \ge \alpha$, then there exists an α -regular μ

"dim(μ)" := sup{ $\alpha : \mu$ is α -regular} "=" inf{dim(A) : $\mu(A) > 0$ }

Magnification dynamics

- Idea: run the attractor system, but keep track of more data
- "Zooming in" dynamics on $K \times \mathbb{T} \times \operatorname{Prob}(K)$:
 - $M: (z, t, \nu) \mapsto (Sz, t \theta, S_*(\nu_z))$, where $\nu_z := \nu$ conditioned on the piece $\phi_i(K)$ that contains the point z

Furstenberg's construction

- Suppose there is a slice L in the direction $e^{2\pi i t_0}$ with $\dim(K \cap L) =: \alpha > \dim(K) - 1$
- **Bogolyubov** machine)
 - $\overline{\mu}$ is an *M*-invariant measure on $K \times \mathbb{T} \times \operatorname{Prob}(K)$ supported on $\{(z, t, \nu) : \nu \text{ is } \alpha \text{-dimensional and } \nu(L_{z,t}) = 1\}$

The line through the point z in the direction $e^{2\pi it}$

• Frostman's lemma \longrightarrow let ν_0 be an α -regular measure supported on $K \cap L$ • Let $\overline{\mu}_0 = \nu_0 \times \delta_{t_0} \times \delta_{\nu_0} \in \operatorname{Prob}(K \times \mathbb{T} \times \operatorname{Prob}(K))$ ("introduce randomness") • Let $\overline{\mu}$ be a weak-* limit point of the sequence $\overline{\mu}_n := \frac{1}{n} \sum_{i=0}^{n-1} M_*^j \overline{\mu}_0$ (Krylov-

Furstenberg's construction

- circle rotation $t \mapsto t \theta$
 - Must be Lebesgue measure
- Conclusion:
 - Theorem (Furstenberg): Suppose there exists a line L with

• The projection of $\overline{\mu}$ onto the T coordinate is invariant for the irrational

 $\dim(K \cap L) > \alpha$. Then for Lebesgue-a.e. $t \in \mathbb{T}$ there exists some line L_t in the direction $e^{2\pi i t}$ such that $\dim(K \cap L_t) > \alpha$ also.

- The conclusion of Furstenberg's theorem should translate to an upper bound on α in terms of dim(K) (think Kakeya problem)
 - Turned out to be hard to get the "correct" value
- every line L.
 - Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu (appeared in back-to-back Annals issues)

• Theorem (2019): Let $\{\phi_1, \dots, \phi_n\}$ be a similarity IFS in \mathbb{R}^2 satisfying the SSC and such that each ϕ_i has common rotation part $\theta \notin 2\pi \mathbb{Q}$. Let K be the attractor. Then $\dim(K \cap L) \leq \max(0, \dim(K) - 1)$ for

Generalizations/extensions

- subspace?
- including lines parallel to axes)
 - Also proven by Shmerkin/Wu
- K = attractor of IFS with different irrational rotation parts
 - ▶ ????
- K = attractor of IFS in higher dimensions
 - ▶ ????

• For what other sets K does Marstrand's theorem hold for every line/affine

• $K = A \times B$, where $A, B \subseteq \mathbb{T}$ are $(\times 2), (\times 3)$ -invariant respectively (not

Generalizations/extensions

- Projections:
 - ► Theorem (Marstrand): Let $A \subseteq \mathbb{R}^2$. Then for a.e. line L, dim($\Pi_L A$) = max(1, dim(A)), where Π_L is orthogonal projection onto the line L.
- Can also apply magnification dynamics to this problem
- Hochman & Shmerkin (2012) used similar ideas to prove the above holds for **every** line *L*, for many nice fractals *A*.