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Fractals

 "Fractal" = some shape that's "made up of scaled copies of itself*




Iterated function systems

* A natural way of defining a large class of fractal objects

> Let ¢y, ..., ¢, be contraction mappings in | 2
> Theorem: there exists a unique compact set K such that
K = U le(K)
1<i<n

» K is called the attractor of the iterated function system (IFS)

» "Made up of scaled copies of itself"
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Example

(0,1)
e Sierpinski triangle

> P1(x,y) = %(x, y)

1
> Pr(x,y) = 5(3@ y) + (1/2,0)

1
< ¢3(X,y) = E(XLY) + (1/491/2)
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Example

(0,1)

o Sierpinski triangle

> P1(x,y) = %(x, y)

1
> Pr(x,y) = 5(3@ y) + (1/2,0)
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e Remarks/definitions:

» If the unionin K = U ¢.(K) is disjoint, the IFS satisfies the strong

1<i<n
separation condition (SSC)

~ If all of the ¢; are affine, the attractor K is a self-affine set. If all of

the ¢, are similarity maps (scaling + isometry), K is a self-similar
set.

 Without these conditions, very hard to analyze



Dimension

e A natural quantity associated to a fractal set is its Hausdorff dimension

* Nice properties:
» dimy(-) =0, dimy(—) =1, dimy(Hl) = 2, etc.
ieN 1EN

» dimy(A X B) = dimy(A) 4+ dimy(B) (under some conditions on A
and B)

» dimy(f(A)) = dimy(A) if f is bi-Lipschitz



Slices of fractals

« Theorem (Marstrand, 1950s): Let A C | ’. Then for a.e. line L,
dim(A N L) < max(0, dim(A) — 1).

> More generally, if A € R% then dim(A N W) < max(0, dim(A) — codim(W))
for a.e. affine subspace W.

 Marstrand's theorem holds for any set (doesn't even have to be

measurable!). If A has nice fractal structure maybe Marstrand's theorem
is true for every line L.

» Conjectured in various forms by Furstenberg



Obvious obstructions

dimANn/’) =1
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 From now, make the following assumptions:
> Each ¢, is a similarity
» The attractor K satisfies the SSC

> Each ¢); has the same rotation part 6 & 270

* For example:















Attractor system

» The attractor K can be turned into a dynamical system

 Define § : K — K to be the local inverse to the ¢, ,i.e. S(z) = qbl-_l(z)
for z € ¢(K) (well-defined by SSC)
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Attractor system

» The attractor K can be turned into a dynamical system

 Define § : K — K to be the local inverse to the ¢, ,i.e. S(z) = qbl-_l(z)
for z € ¢(K) (well-defined by SSC)
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An observation

» Suppose there exists L with dim(K N L) > dim(K) — 1.
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» [, points in the direction of ¢~*"0
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» Suppose there exists L with dim(K N L) > dim(K) — 1.
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An observation

» Suppose there exists L with dim(K N L) > dim(K) — 1.
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» S(K N L) is aunion of several slices, each in the direction e¢?™=9)

and at least one of them also has dimension > dim(K) — 1



An observation

» Iterate this procedure: for every n > 0 thereis aline L, in the direction
e*™=19) gych that dim(KNL,) > dim(K) — 1
> One bad slice — a lot of bad slices whose slopes are dense in S|

* Furstenberg (1960s) was able to push this observation much further with
two key insights:

> |Introduce randomness into the picture

» Work with dimensions of measures rather than dimensions of sets



Dimension of measures

d

» Say a probability measure 4 on R is a-regular if u(B,(x)) S r® as

r \, O forall x.
» Example: d-dimensional Lebesgue measure is d-regular

» Example: a point mass is 0-regular (and not a-regular for any larger )



Dimension of measures

e Strong relationship between regularity of measures and dimensions of sets
they can "see’

» If u is a-regular and dim(A) < a, then u(A) = 0.

> "Frostman's lemma": If dim(A) > a, then there exists an a-regular u
supported on A.

 Morally, there Is a rough correspondence
"dim(u)" := sup{a : uis a-regular} "=" int{dim(A) : u(A) > 0}



Magnification dynamics

e |dea: run the attractor system, but keep track of more data

e "Zooming in" dynamics on K X T X Prob(K):

- M : (z,t,v) = (8z,t — 0,54(v,)), where v, := v conditioned on the
piece ¢.(K) that contains the point z
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Furstenberg's construction

. Suppose there is a slice L in the direction e?™ with
dim(KNL)=:a>dm(K)—1

> Frostman's lemma — let 1, be an a-regular measure supported on K N L

. Let fip = vy X 9, X 0, € Prob(K X T X Prob(K)) ("introduce randomness")
1 n—1

* Let i1 be a weak-* limit point of the sequence 1, :=— ) M. p, (Krylov-

Bogolyubov machine) g

» it is an M-invariant measure on K X [ X Prob(K) supported on
{(z,t,v) : v is a-dimensionaland v(L,,) = 1}

The line through the point z in the direction e*™ —/



Furstenberg's construction

« The projection of 7 onto the [ coordinate is invariant for the irrational
circle rotation t— t— 0

> Must be Lebesgue measure

e Conclusion:

» Theorem (Furstenberg): Suppose there exists a line L with
dim(K N L) > a. Then for Lebesgue-a.e. t € [ there exists some
ine L, in the direction e“™ such that dim(K N L) > a also.



 The conclusion of Furstenberg's theorem should translate to an upper
bound on a interms of dim(K) (think Kakeya problem)

> Turned out to be hard to get the "correct” value

. Theorem (2019): Let {¢,,...,¢,} be asimilarity IFSin R* satisfying
the SSC and such that each ¢. has common rotation part 6 & 2zQ).

Let K be the attractor. Then dim(K N L) < max(0,dim(K) — 1) for
every line L.

» Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu
(appeared in back-to-back Annals issues)



Generalizations/extensions

For what other sets K does Marstrand's theorem hold for every line/affine
subspace?

K=AXB, where A,B C T are (X2), (X3)-invariant respectively (not
iIncluding lines parallel to axes)

> Also proven by Shmerkin/Wu
K = attractor of IFS with different irrational rotation parts

au o

K = attractor of IFS in higher dimensions

< o



Generalizations/extensions

* Projections:

» Theorem (Marstrand): Let A C | 2. Then for a.e. line I
dim(Il; A) = max(1,dim(A)), where 11; is orthogonal projection
onto the line L.

e Can also apply magnification dynamics to this problem

e Hochman & Shmerkin (2012) used similar ideas to prove the above holds
for every line L, for many nice fractals A.



