Dynamical methods in fractal geometry

Adam Lott

UCLA
8 December 2020

Fractals

- "Fractal" = some shape that's "made up of scaled copies of itself"

Iterated function systems

- A natural way of defining a large class of fractal objects
- Let $\phi_{1}, \ldots, \phi_{n}$ be contraction mappings in \mathbb{R}^{d}
- Theorem: there exists a unique compact set K such that

$$
K=\bigcup_{1 \leq i \leq n} \phi_{i}(K)
$$

- K is called the attractor of the iterated function system (IFS)
- "Made up of scaled copies of itself"

Iterated function systems

- Example:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Iterated function systems

- One method for constructing the attractor:

Example

- Sierpiński triangle
- $\phi_{1}(x, y)=\frac{1}{2}(x, y)$
- $\phi_{2}(x, y)=\frac{1}{2}(x, y)+(1 / 2,0)$
- $\phi_{3}(x, y)=\frac{1}{2}(x, y)+(1 / 4,1 / 2)$

Example

- Sierpiński triangle
- $\phi_{1}(x, y)=\frac{1}{2}(x, y)$
- $\phi_{2}(x, y)=\frac{1}{2}(x, y)+(1 / 2,0)$
- $\phi_{3}(x, y)=\frac{1}{2}(x, y)+(1 / 4,1 / 2)$

Example

- Sierpiński triangle
$\begin{aligned} \phi_{1}(x, y) & =\frac{1}{2}(x, y) \\ -\phi_{2}(x, y) & =\frac{1}{2}(x, y)+(1 / 2,0) \\ -\phi_{3}(x, y) & =\frac{1}{2}(x, y)+(1 / 4,1 / 2)\end{aligned}$ $(0,1)$

Example

- Sierpiński triangle

$$
\begin{aligned}
& \phi_{1}(x, y)=\frac{1}{2}(x, y) \\
& \phi_{2}(x, y)=\frac{1}{2}(x, y)+(1 / 2,0) \\
& \phi_{3}(x, y)=\frac{1}{2}(x, y)+(1 / 4,1 / 2)
\end{aligned}
$$

Example

- Sierpiński triangle

$$
\begin{aligned}
& \phi_{1}(x, y)=\frac{1}{2}(x, y) \\
& \phi_{2}(x, y)=\frac{1}{2}(x, y)+(1 / 2,0) \\
& \phi_{3}(x, y)=\frac{1}{2}(x, y)+(1 / 4,1 / 2)
\end{aligned}
$$

- Remarks/definitions:
- If the union in $K=\bigcup_{1 \leq i \leq n} \phi_{i}(K)$ is disjoint, the IFS satisfies the strong separation condition (SSC)
- If all of the ϕ_{i} are affine, the attractor K is a self-affine set. If all of the ϕ_{i} are similarity maps (scaling + isometry), K is a self-similar set.
- Without these conditions, very hard to analyze

Dimension

- A natural quantity associated to a fractal set is its Hausdorff dimension
- Nice properties:
- $\operatorname{dim}_{H}(\cdot)=0, \operatorname{dim}_{H}(-)=1, \operatorname{dim}_{H}(\square)=2$, etc.
- $\operatorname{dim}_{H}\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sup _{i \in \mathbb{N}} \operatorname{dim}_{H}\left(A_{i}\right)$
- $\operatorname{dim}_{H}(A \times B)=\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B)$ (under some conditions on A and B)
- $\operatorname{dim}_{H}(f(A))=\operatorname{dim}_{H}(A)$ if f is bi-Lipschitz

Slices of fractals

- Theorem (Marstrand, 1950s): Let $A \subseteq \mathbb{R}^{2}$. Then for a.e. line L, $\operatorname{dim}(A \cap L) \leq \max (0, \operatorname{dim}(A)-1)$.
- More generally, if $A \subseteq \mathbb{R}^{d}$, then $\operatorname{dim}(A \cap W) \leq \max (0, \operatorname{dim}(A)-\operatorname{codim}(W))$ for a.e. affine subspace W.
- Marstrand's theorem holds for any set (doesn't even have to be measurable!). If A has nice fractal structure maybe Marstrand's theorem is true for every line L.
- Conjectured in various forms by Furstenberg

Obvious obstructions

$$
\begin{aligned}
& \operatorname{dim}(A \cap L)=1 \\
& \operatorname{dim}(A)-1=\frac{\log (3)}{\log (2)}-1 \approx 0.58
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dim}(A \cap L)=\frac{\log (2)}{\log (3)} \approx 0.63 \\
& \operatorname{dim}(A)-1=\frac{\log (4)}{\log (3)}-1 \approx 0.26
\end{aligned}
$$

- From now, make the following assumptions:
- Each ϕ_{i} is a similarity
- The attractor K satisfies the SSC
- Each ϕ_{i} has the same rotation part $\theta \notin 2 \pi \mathbb{Q}$
- For example:

$$
\square
$$

ii
 ii

ii"
ii

$$
\begin{aligned}
& \begin{array}{ll}
\because: \\
\vdots: & \vdots \\
\vdots: \\
i:
\end{array} \\
& \text { : : } \\
& \text { i: : } \\
& \text { : : : } \\
& \text { : : : }
\end{aligned}
$$

Attractor system

- The attractor K can be turned into a dynamical system
- Define $S: K \rightarrow K$ to be the local inverse to the ϕ_{i}, i.e. $S(z)=\phi_{i}^{-1}(z)$ for $z \in \phi_{i}(K)$ (well-defined by SSC)

Attractor system

- The attractor K can be turned into a dynamical system
- Define $S: K \rightarrow K$ to be the local inverse to the ϕ_{i}, i.e. $S(z)=\phi_{i}^{-1}(z)$ for $z \in \phi_{i}(K)$ (well-defined by SSC)

An observation

- Suppose there exists L with $\operatorname{dim}(K \cap L)>\operatorname{dim}(K)-1$.
- L points in the direction of $e^{2 \pi i i_{0}}$

An observation

- Suppose there exists L with $\operatorname{dim}(K \cap L)>\operatorname{dim}(K)-1$.
- L points in the direction of $e^{2 \pi i t_{0}}$

An observation

- Suppose there exists L with $\operatorname{dim}(K \cap L)>\operatorname{dim}(K)-1$.
- L points in the direction of $e^{2 \pi i t_{0}}$

- $S(K \cap L)$ is a union of several slices, each in the direction $e^{2 \pi i\left(t_{0}-\theta\right)}$, and at least one of them also has dimension $>\operatorname{dim}(K)-1$

An observation

- Iterate this procedure: for every $n \geq 0$ there is a line L_{n} in the direction $e^{2 \pi i\left(t_{0}-n \theta\right)}$ such that $\operatorname{dim}\left(K \cap L_{n}\right)>\operatorname{dim}(K)-1$
- One bad slice \longrightarrow a lot of bad slices whose slopes are dense in S^{1}
- Furstenberg (1960s) was able to push this observation much further with two key insights:
- Introduce randomness into the picture
- Work with dimensions of measures rather than dimensions of sets

Dimension of measures

- Say a probability measure μ on \mathbb{R}^{d} is α-regular if $\mu\left(B_{r}(x)\right) \lesssim r^{\alpha}$ as $r \searrow 0$ for all x.
- Example: d-dimensional Lebesgue measure is d-regular
- Example: a point mass is 0 -regular (and not α-regular for any larger α)

Dimension of measures

- Strong relationship between regularity of measures and dimensions of sets they can "see"
- If μ is α-regular and $\operatorname{dim}(A)<\alpha$, then $\mu(A)=0$.
- "Frostman's lemma": If $\operatorname{dim}(A) \geq \alpha$, then there exists an α-regular μ supported on A.
- Morally, there is a rough correspondence

$$
" \operatorname{dim}(\mu) ":=\sup \{\alpha: \mu \text { is } \alpha \text {-regular }\}=" \inf \{\operatorname{dim}(A): \mu(A)>0\}
$$

Magnification dynamics

- Idea: run the attractor system, but keep track of more data
- "Zooming in" dynamics on $K \times \mathbb{T} \times \operatorname{Prob}(K)$:
- $M:(z, t, \nu) \mapsto\left(S z, t-\theta, S_{*}\left(\nu_{z}\right)\right)$, where $\nu_{z}:=\nu$ conditioned on the piece $\phi_{i}(K)$ that contains the point z

Furstenberg's construction

- Suppose there is a slice L in the direction $e^{2 \pi i t_{0}}$ with $\operatorname{dim}(K \cap L)=: \alpha>\operatorname{dim}(K)-1$
- Frostman's lemma \longrightarrow let ν_{0} be an α-regular measure supported on $K \cap L$
- Let $\bar{\mu}_{0}=\nu_{0} \times \delta_{t_{0}} \times \delta_{\nu_{0}} \in \operatorname{Prob}(K \times \mathbb{T} \times \operatorname{Prob}(K))$ ("introduce randomness")
- Let $\bar{\mu}$ be a weak-* limit point of the sequence $\bar{\mu}_{n}:=\frac{1}{n} \sum_{j=0}^{n-1} M_{*}^{j} \bar{\mu}_{0} \quad$ (Krylov-
Bogolyubov machine)
- $\bar{\mu}$ is an M-invariant measure on $K \times \mathbb{T} \times \operatorname{Prob}(K)$ supported on $\left\{(z, t, \nu): \nu\right.$ is α-dimensional and $\left.\nu\left(L_{z, t}\right)=1\right\}$
The line through the point z in the direction $e^{2 \pi i t}$

Furstenberg's construction

- The projection of $\bar{\mu}$ onto the \mathbb{T} coordinate is invariant for the irrational circle rotation $t \mapsto t-\theta$
- Must be Lebesgue measure
- Conclusion:
- Theorem (Furstenberg): Suppose there exists a line L with $\operatorname{dim}(K \cap L)>\alpha$. Then for Lebesgue-a.e. $t \in \mathbb{T}$ there exists some line L_{t} in the direction $e^{2 \pi i t}$ such that $\operatorname{dim}\left(K \cap L_{t}\right)>\alpha$ also.
- The conclusion of Furstenberg's theorem should translate to an upper bound on α in terms of $\operatorname{dim}(K)$ (think Kakeya problem)
- Turned out to be hard to get the "correct" value
- Theorem (2019): Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a similarity IFS in \mathbb{R}^{2} satisfying the SSC and such that each ϕ_{i} has common rotation part $\theta \notin 2 \pi \mathbb{Q}$. Let K be the attractor. Then $\operatorname{dim}(K \cap L) \leq \max (0, \operatorname{dim}(K)-1)$ for every line L.
- Independent \& simultaneous proofs by Pablo Shmerkin and Meng Wu (appeared in back-to-back Annals issues)

Generalizations/extensions

- For what other sets K does Marstrand's theorem hold for every line/affine subspace?
- $K=A \times B$, where $A, B \subseteq \mathbb{T}$ are $(\times 2),(\times 3)$-invariant respectively (not including lines parallel to axes)
- Also proven by Shmerkin/Wu
- $K=$ attractor of IFS with different irrational rotation parts
- ????
- $K=$ attractor of IFS in higher dimensions
- ????

Generalizations/extensions

- Projections:
- Theorem (Marstrand): Let $A \subseteq \mathbb{R}^{2}$. Then for a.e. line L, $\operatorname{dim}\left(\Pi_{L} A\right)=\max (1, \operatorname{dim}(A))$, where Π_{L} is orthogonal projection onto the line L.
- Can also apply magnification dynamics to this problem
- Hochman \& Shmerkin (2012) used similar ideas to prove the above holds for every line L, for many nice fractals A.

