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Fractals
• "Fractal" = some shape that's "made up of scaled copies of itself"



Iterated function systems
• A natural way of defining a large class of fractal objects


‣ Let    be contraction mappings in  


‣ Theorem: there exists a unique compact set    such that  



‣   is called the attractor of the iterated function system (IFS)


‣ "Made up of scaled copies of itself"
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• Remarks/definitions:


‣ If the union in    is disjoint, the IFS satisfies the strong 

separation condition (SSC) 

‣ If all of the    are affine, the attractor    is a self-affine set.  If all of 
the    are similarity maps (scaling + isometry),    is a self-similar 
set.  


• Without these conditions, very hard to analyze

K = ⋃
1≤i≤n

ϕi(K)

ϕi K
ϕi K



Dimension
• A natural quantity associated to a fractal set is its Hausdorff dimension 

• Nice properties:


‣  etc.


‣ 


‣   (under some conditions on    
and  )


‣   if    is bi-Lipschitz

dimH( ⋅ ) = 0, dimH( − ) = 1, dimH(◼) = 2,

dimH (⋃
i∈ℕ

Ai) = sup
i∈ℕ

dimH(Ai)

dimH(A × B) = dimH(A) + dimH(B) A
B

dimH( f(A)) = dimH(A) f



Slices of fractals
• Theorem (Marstrand, 1950s):  Let  .  Then for a.e. line  , 

. 


‣ More generally, if , then    
for a.e. affine subspace  .


• Marstrand's theorem holds for any set (doesn't even have to be 
measurable!).  If    has nice fractal structure maybe Marstrand's theorem 
is true for every line  .


‣ Conjectured in various forms by Furstenberg

A ⊆ ℝ2 L
dim(A ∩ L) ≤ max(0, dim(A) − 1)

A ⊆ ℝd dim(A ∩ W) ≤ max(0, dim(A) − codim(W))
W

A
L



Obvious obstructions
dim(A ∩ L) = 1

dim(A) − 1 =
log(3)
log(2)

− 1 ≈ 0.58

dim(A ∩ L) =
log(2)
log(3)

≈ 0.63

dim(A) − 1 =
log(4)
log(3)

− 1 ≈ 0.26



• From now, make the following assumptions:


‣ Each    is a similarity 

‣ The attractor    satisfies the SSC


‣ Each    has the same rotation part  


• For example:

ϕi

K

ϕi θ ∉ 2πℚ











Attractor system
• The attractor    can be turned into a dynamical system


• Define    to be the local inverse to the   , i.e.    
for    (well-defined by SSC)
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An observation
• Suppose there exists    with  .


‣   points in the direction of  


‣   is a union of several slices, each in the direction  , 
and at least one of them also has dimension   

L dim(K ∩ L) > dim(K) − 1

L e2πit0

S(K ∩ L) e2πi(t0−θ)

> dim(K) − 1



An observation
• Iterate this procedure: for every    there is a line    in the direction  

  such that  


‣ One bad slice  a lot of bad slices whose slopes are dense in  


• Furstenberg (1960s) was able to push this observation much further with 
two key insights:


‣ Introduce randomness into the picture


‣ Work with dimensions of measures rather than dimensions of sets

n ≥ 0 Ln
e2πi(t0−nθ) dim(K ∩ Ln) > dim(K) − 1

⟶ S1



Dimension of measures
• Say a probability measure    on    is  -regular  if    as  

  for all  .


‣ Example:  -dimensional Lebesgue measure is  -regular


‣ Example:  a point mass is  -regular (and not  -regular for any larger  )

μ ℝd α μ(Br(x)) ≲ rα

r ↘ 0 x

d d

0 α α



Dimension of measures
• Strong relationship between regularity of measures and dimensions of sets 

they can "see"


‣ If    is  -regular and  , then  .


‣ "Frostman's lemma":  If  , then there exists an  -regular    
supported on  .


• Morally, there is a rough correspondence                                             
" " -regular  " "  

μ α dim(A) < α μ(A) = 0

dim(A) ≥ α α μ
A

dim(μ) := sup{α : μ is α } = inf{dim(A) : μ(A) > 0}



Magnification dynamics
• Idea: run the attractor system, but keep track of more data


• "Zooming in" dynamics on  :


‣ ,  where   conditioned on the 
piece    that contains the point  

K × 𝕋 × Prob(K)

M : (z, t, ν) ↦ (Sz, t − θ, S*(νz)) νz := ν
ϕi(K) z



Furstenberg's construction
• Suppose there is a slice    in the direction    with  




‣ Frostman's lemma    let    be an  -regular measure supported on 


• Let    ("introduce randomness")


• Let    be a weak-* limit point of the sequence      (Krylov-

Bogolyubov machine)


‣   is an  -invariant measure on    supported on  
  is  -dimensional and  

L e2πit0

dim(K ∩ L) =: α > dim(K) − 1

⟶ ν0 α K ∩ L

μ0 = ν0 × δt0 × δν0
∈ Prob(K × 𝕋 × Prob(K))

μ μn :=
1
n

n−1

∑
j=0

Mj
* μ0

μ M K × 𝕋 × Prob(K)
{(z, t, ν) : ν α ν(Lz,t) = 1}

The line through the point    in the direction  z e2πit



Furstenberg's construction
• The projection of    onto the    coordinate is invariant for the irrational 

circle rotation  


‣ Must be Lebesgue measure


• Conclusion:


‣ Theorem (Furstenberg):  Suppose there exists a line    with  
.  Then for Lebesgue-a.e.    there exists some 

line    in the direction    such that    also.

μ 𝕋
t ↦ t − θ

L
dim(K ∩ L) > α t ∈ 𝕋

Lt e2πit dim(K ∩ Lt) > α



• The conclusion of Furstenberg's theorem should translate to an upper 
bound on    in terms of    (think Kakeya problem)


‣ Turned out to be hard to get the "correct" value


• Theorem (2019):  Let    be a similarity IFS in    satisfying 
the SSC and such that each    has common rotation part  .  
Let    be the attractor.  Then    for 
every line  .


‣ Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu 
(appeared in back-to-back Annals issues)

α dim(K)

{ϕ1, …, ϕn} ℝ2

ϕi θ ∉ 2πℚ
K dim(K ∩ L) ≤ max(0, dim(K) − 1)

L



Generalizations/extensions
• For what other sets    does Marstrand's theorem hold for every line/affine 

subspace?


• ,  where    are  -invariant respectively (not 
including lines parallel to axes)


‣ Also proven by Shmerkin/Wu


• attractor of IFS with different irrational rotation parts


‣ ????


• attractor of IFS in higher dimensions


‣ ????

K

K = A × B A, B ⊆ 𝕋 (×2), (×3)

K =

K =



Generalizations/extensions
• Projections:


‣ Theorem (Marstrand): Let  .  Then for a.e. line  ,  
, where    is orthogonal projection 

onto the line  .


• Can also apply magnification dynamics to this problem


• Hochman & Shmerkin (2012) used similar ideas to prove the above holds 
for every line  , for many nice fractals  .

A ⊆ ℝ2 L
dim(ΠLA) = max(1, dim(A)) ΠL

L

L A


