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Classical slicing theorem

Theorem (Marstrand, 1950s)
Let E C R? be Borel. Then

dim(EN¢) < max(0,dim(E) —1).
for almost every line /.

Here and throughout, dim(-) is Hausdorff dimension



Classical slicing theorem

What conditions on E imply that
dim(E N ¢) < max(0,dim(E) — 1) for every line £?

m Conjectures by Furstenberg: when E has nice fractal structure

m Connections to intersections of Cantor sets, (x2), (x3)
conjecture, etc.

m What is “nice fractal structure”?



Iterated function systems

Let ® = {p1,...,¢n} be a finite set of contraction mappings in
R?. Then there exists a unique compact set K C R? such that

K= J @K

1<i<n

m O is an iterated function system (IFS).
m K is the attractor of the IFS.



Iterated function systems




Iterated function systems

W
| 2\



Iterated function systems

o® o®
. oo

“

oo o°



wn)
£
(D)
=
(7]
>
(7]
c
.2
)
O
=
>
G
e
(D)
-
(]
—
(D]
=

00“ 00“

-
3
* X

00“ 00“

00“ 00“
00“ 00“
oow oow
00“ 00“



Self-similar sets

A contracting similarity in R? is a map R? — R? of the form

p(z) = p-Az+gq

where
EO0<p<l1

m Ais a 2 x 2 orthogonal matrix (for simplicity, assume
A€ SO»(R))

mgcR?

If ® consists only of contracting similarities, then the attractor K
is a self-similar set.



Self-similar sets

Write i(z) = pi - Ro, + qi where Ry denotes rotation by angle
270, 0 € T.

Terminology
m Strong separation condition (SSC): the union in
K = Ui<i<n wi(K) is disjoint.
m Open set condition (OSC): there exists an open set G such
that G 2 J;<;<, ¢i(G) and this union is disjoint.

m If all p; = p, ® is homogeneous.

m If all §; = 0, say ® is uniformly rotating.



Recent result

Theorem (Shmerkin/Wu, 2019)

Let ® be a self-similar IFS in R? such that
® satisfies the OSC
® is uniformly rotating with angle 6 £ Q.
® is homogeneous

Then the attractor K satisfies dim(K N ¢) < max(0,dim(K) — 1)
for every line ¢.

m Independent & simultaneous proofs by Pablo Shmerkin and
Meng Wu

m Tim Austin (2020) found a simpler version of Wu's proof

m Homogeneity assumption can be removed without much extra
work



Recent result

Shmerkin's proof:
m Quantitative, uses additive combinatorics methods
m Roughly based on Hochman's work on the exact overlaps
conjecture
Wu's proof:
m Builds on Furstenberg's theory of magnification dynamics and
CP distributions
m Clever application of Sinai's factor theorem

m Austin’s proof also follows Furstenberg, main innovation is to
avoid using Sinai's theorem



Related work

m Shmerkin/Wu: products of (x2)—, (x3)—invariant sets
m Algom, Algom-Wu: Bedford-McMullen carpets

m Barany-Kdaenmaki-Yu: more general self-affine sets

m Yu: Quantitative/uniform versions

m Yu, Shmerkin, L.: Higher dimensional versions of (x2),(x3)



Dynamical approach

m The attractor K can be turned into a dynamical system
m S: K — K defined by S|, (k) = goi_l
m Called the attractor system
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Dynamical approach

Suppose K N £ is high-dimensional. Say the direction of ¢ is €27,

Observation
m S(KNY)is a union of slices, each in the direction e27(to=0),

and at least one of them is also high-dimensional

m We can iterate



Magnification dynamics

Furstenberg's great idea: attractor system + keeping track of
“slice data”

m X = K x T x Prob(K)

m Define M: X — X by (z,t,v) — (Sz,t — 0 mod 1, S.(v;)),
where v, is defined to be v conditioned on the piece p;(K)
that contains z

m Simulates “zooming in” to the point z € K




Magnification dynamics

Theorem (Furstenberg, 1960s)

Suppose there is some line ¢ with dim(K N¢) = a > 0. Then there
is an ergodic M-invariant distribution P € Prob(X) (called a CP
distribution) supported on

{(z,t,v) € X :v({;+) =1 and dim(v) > a},

where /, ; is the line through z in direction pETE

Important fact: formula of the form

dim(v) = “average” entropy

Lyapunov exponent

for P-typical measure v



Magnification dynamics

The marginal of P on T is invariant for t — t — 6, so it must be
Lebesgue measure.

Corollary

Same assumption. Then for Lebesgue-a.e. t there is some line /;
with direction €™t with dim(K N ¢;) > « also.

m Content of Wu/Austin proofs: how to upgrade Furstenberg's
result to the full theorem

m Heuristic: K contains a-dimensional slices in a 1-dimensional
set of directions "= "dim(K) > a+1



New results

Theorem (L.)
Let ® be a self-similar IFS in R? such that

® satisfies the asymptotically weak separation condition
(AWSC)

The rotation parts {61,...,0,} are “quasi-uniform” and at
most one 6; is rational

Then the attractor K satisfies dim(K N ¢) < max(0,dim(K) — 1)
for every line ¢.

m AWSC was introduced by Feng & Hu (2009), other similar
conditions studied by Lau & Ngai, etc.

m Provably weaker than OSC
m “Quasi-uniform” roughly means that {1,61,...,6,} spans a
2-dimensional vector space over QQ



New results

Theorem (L.)

Let ® = {¢1,..., 0} be a self-similar IFS in R? satisfying the
AWSC with rotation parts {61,...,60,}. Then for
Lebesgue-generic (01, ...,0,), the attractor K satisfies
dim(K N ¢) < max(0,dim(K) — 1/n) for every line Z.

m Can apply similar ideas for products of 1D attractors

m Likely to yield analogous result with “rotation parts” replaced
by “log(contraction ratios)”

m Wu (2021): similar result, more deterministic



Weak separation

Symbolic representation:
m Symbolic space Q = [n]"

m Codingmap7:Q — K
defined by

m(x) = 1lim (px 00 px)(0)

N—o0

m Homeomorphism under

Ssc 3] [4]

m Left shift o0 : Q — Q
m (Q,0)~(K,S) under
SsC



Weak separation

Symbolic version of magnification dynamics (still assuming uniform
rotations for now):

(x,t,v) — (ox, t—0 mod 1, o.v(-|x1))

Revised important fact: for symbolic ergodic CP distributions P,
formula of form

average conditional entropy over w

dim(m,v) =
(m.v) Lyapunov exponent

for P-typical v



Non-uniform rotations

Let {¢1,...,n} be an IFS with rotation parts 0y,...,0, € T.

Adjust magnification dynamics accordingly:

(x,t,v) — (ox, t —0x mod 1, o.v(-|x1))




Non-uniform rotations

m Furstenberg's method still works — ergodic CP distribution
P supported on high-dimensional slices

m T-marginal of P is a priori not an invariant measure for any
system

m How to tell how smooth (high-dimensional) it is?



Non-uniform rotations

Ergodic theorem says the T-marginal of P is obtained as the
limiting distribution of “multi-rotation orbits":

Definition

Let 01,...,0, € T and fix x € [n]N. The multi-rotation orbit
generated by x is the sequence {t,},>1 C T defined by

tn =0y + -+ O, .

The limiting empirical distribution associated to x is

fix = iMoo & Sohg O

m Study goes back to 1960s (Engelking)

m Goal: estimate smoothness of px



Non-uniform rotations

Proposition

Suppose {01,...,0,} is “quasi-uniform” and at most one 6; is
rational. Let P; be a non-atomic ergodic shift-invariant measure
on [n]N. Then dim(ux) = 1 for Pi-a.e. x.

Proposition

For Lebesgue-a.e. (61,...,0,) and any x € [n]N, dim(uy) > %

Similar results (for sets rather than measures) due to Feng-Xiong,
Yu, Baker



Possible applications

Self-similar sets in R, d > 3
m Multi-rotation orbits on S9~1
m Fixed rotation orbits don't equidistribute
m Non-commutative

Limit sets of Kleinian groups

m Mobius transformations preserve circles — can define a form
of magnification dynamics for “circular slices”

m Analogue of multi-rotation orbits?



