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Classical slicing theorem

Theorem (Marstrand, 1950s)

Let E ⊆ R2 be Borel. Then

dim(E ∩ `) ≤ max(0, dim(E )− 1).

for almost every line `.

Here and throughout, dim(·) is Hausdorff dimension



Classical slicing theorem

Question

What conditions on E imply that
dim(E ∩ `) ≤ max(0, dim(E )− 1) for every line `?

Conjectures by Furstenberg: when E has nice fractal structure

Connections to intersections of Cantor sets, (×2), (×3)
conjecture, etc.

What is “nice fractal structure”?



Iterated function systems

Let Φ = {ϕ1, . . . , ϕn} be a finite set of contraction mappings in
R2. Then there exists a unique compact set K ⊆ R2 such that

K =
⋃

1≤i≤n
ϕi (K ).

Φ is an iterated function system (IFS).

K is the attractor of the IFS.



Iterated function systems
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Self-similar sets

A contracting similarity in R2 is a map R2 → R2 of the form

ϕ(z) = ρ · Az + q

where

0 < ρ < 1

A is a 2× 2 orthogonal matrix (for simplicity, assume
A ∈ SO2(R))

q ∈ R2

If Φ consists only of contracting similarities, then the attractor K
is a self-similar set.



Self-similar sets

Write ϕi (z) = ρi · Rθi + qi where Rθ denotes rotation by angle
2πθ, θ ∈ T.

Terminology

Strong separation condition (SSC): the union in
K =

⋃
1≤i≤n ϕi (K ) is disjoint.

Open set condition (OSC): there exists an open set G such
that G ⊇

⋃
1≤i≤n ϕi (G ) and this union is disjoint.

If all ρi = ρ, Φ is homogeneous.

If all θi = θ, say Φ is uniformly rotating.



Recent result

Theorem (Shmerkin/Wu, 2019)

Let Φ be a self-similar IFS in R2 such that

1 Φ satisfies the OSC

2 Φ is uniformly rotating with angle θ 6∈ Q.

3 Φ is homogeneous

Then the attractor K satisfies dim(K ∩ `) ≤ max(0, dim(K )− 1)
for every line `.

Independent & simultaneous proofs by Pablo Shmerkin and
Meng Wu

Tim Austin (2020) found a simpler version of Wu’s proof

Homogeneity assumption can be removed without much extra
work



Recent result

Shmerkin’s proof:

Quantitative, uses additive combinatorics methods

Roughly based on Hochman’s work on the exact overlaps
conjecture

Wu’s proof:

Builds on Furstenberg’s theory of magnification dynamics and
CP distributions

Clever application of Sinai’s factor theorem

Austin’s proof also follows Furstenberg, main innovation is to
avoid using Sinai’s theorem



Related work

Shmerkin/Wu: products of (×2)−, (×3)−invariant sets

Algom, Algom-Wu: Bedford-McMullen carpets

Bárány-Käenmäki-Yu: more general self-affine sets

Yu: Quantitative/uniform versions

Yu, Shmerkin, L.: Higher dimensional versions of (×2), (×3)



Dynamical approach

The attractor K can be turned into a dynamical system

S : K → K defined by S |ϕi (K) = ϕ−1i

Called the attractor system



Dynamical approach

Suppose K ∩ ` is high-dimensional. Say the direction of ` is e2πit0 .

Observation

S(K ∩ `) is a union of slices, each in the direction e2πi(t0−θ),
and at least one of them is also high-dimensional

We can iterate



Magnification dynamics

Furstenberg’s great idea: attractor system + keeping track of
“slice data”

X := K × T× Prob(K )

Define M : X → X by (z , t, ν) 7→ (Sz , t − θ mod 1, S∗(νz)),
where νz is defined to be ν conditioned on the piece ϕi (K )
that contains z

Simulates “zooming in” to the point z ∈ K



Magnification dynamics

Theorem (Furstenberg, 1960s)

Suppose there is some line ` with dim(K ∩ `) = α > 0. Then there
is an ergodic M-invariant distribution P ∈ Prob(X ) (called a CP
distribution) supported on

{(z , t, ν) ∈ X : ν(`z,t) = 1 and dim(ν) ≥ α},

where `z,t is the line through z in direction e2πit .

Important fact: formula of the form

dim(ν) =
“average” entropy

Lyapunov exponent

for P-typical measure ν



Magnification dynamics

The marginal of P on T is invariant for t 7→ t − θ, so it must be
Lebesgue measure.

Corollary

Same assumption. Then for Lebesgue-a.e. t there is some line `t
with direction e2πit with dim(K ∩ `t) ≥ α also.

Content of Wu/Austin proofs: how to upgrade Furstenberg’s
result to the full theorem

Heuristic: K contains α-dimensional slices in a 1-dimensional
set of directions “ =⇒ ” dim(K ) ≥ α + 1



New results

Theorem (L.)

Let Φ be a self-similar IFS in R2 such that

1’ Φ satisfies the asymptotically weak separation condition
(AWSC)

2’ The rotation parts {θ1, . . . , θn} are “quasi-uniform” and at
most one θi is rational

Then the attractor K satisfies dim(K ∩ `) ≤ max(0, dim(K )− 1)
for every line `.

AWSC was introduced by Feng & Hu (2009), other similar
conditions studied by Lau & Ngai, etc.

Provably weaker than OSC

“Quasi-uniform” roughly means that {1, θ1, . . . , θn} spans a
2-dimensional vector space over Q



New results

Theorem (L.)

Let Φ = {ϕ1, . . . , ϕn} be a self-similar IFS in R2 satisfying the
AWSC with rotation parts {θ1, . . . , θn}. Then for
Lebesgue-generic (θ1, . . . , θn), the attractor K satisfies
dim(K ∩ `) ≤ max(0, dim(K )− 1/n) for every line `.

Can apply similar ideas for products of 1D attractors

Likely to yield analogous result with “rotation parts” replaced
by “log(contraction ratios)”

Wu (2021): similar result, more deterministic



Weak separation

Symbolic representation:

Symbolic space Ω = [n]N

Coding map π : Ω→ K
defined by

π(x) = lim
N→∞

(ϕx1 ◦ · · · ◦ ϕxN ) (0)

Homeomorphism under
SSC

Left shift σ : Ω→ Ω

(Ω, σ) ' (K ,S) under
SSC



Weak separation

Symbolic version of magnification dynamics (still assuming uniform
rotations for now):

(x , t, ν) 7→ (σx , t − θ mod 1, σ∗ν(· | x1))

Revised important fact: for symbolic ergodic CP distributions P,
formula of form

dim(π∗ν) =
average conditional entropy over π

Lyapunov exponent

for P-typical ν



Non-uniform rotations

Let {ϕ1, . . . , ϕn} be an IFS with rotation parts θ1, . . . , θn ∈ T.

Adjust magnification dynamics accordingly:

(x , t, ν) 7→ (σx , t − θx1 mod 1, σ∗ν(· | x1))



Non-uniform rotations

Furstenberg’s method still works −→ ergodic CP distribution
P supported on high-dimensional slices

T-marginal of P is a priori not an invariant measure for any
system

How to tell how smooth (high-dimensional) it is?



Non-uniform rotations

Ergodic theorem says the T-marginal of P is obtained as the
limiting distribution of “multi-rotation orbits”:

Definition

Let θ1, . . . , θn ∈ T and fix x ∈ [n]N. The multi-rotation orbit
generated by x is the sequence {tn}n≥1 ⊆ T defined by
tn = θx1 + · · ·+ θxn .

The limiting empirical distribution associated to x is
µx := limN→∞

1
N

∑N−1
n=0 δtn .

Study goes back to 1960s (Engelking)

Goal: estimate smoothness of µx



Non-uniform rotations

Proposition

Suppose {θ1, . . . , θn} is “quasi-uniform” and at most one θi is
rational. Let P1 be a non-atomic ergodic shift-invariant measure
on [n]N. Then dim(µx) = 1 for P1-a.e. x .

Proposition

For Lebesgue-a.e. (θ1, . . . , θn) and any x ∈ [n]N, dim(µx) ≥ 1
n .

Similar results (for sets rather than measures) due to Feng-Xiong,
Yu, Baker



Possible applications

Self-similar sets in Rd , d ≥ 3

Multi-rotation orbits on Sd−1

Fixed rotation orbits don’t equidistribute

Non-commutative

Limit sets of Kleinian groups

Möbius transformations preserve circles −→ can define a form
of magnification dynamics for “circular slices”

Analogue of multi-rotation orbits?


