Slicing theorems for planar self-similar sets

Adam Lott UCLA

Penn State Dynamical Systems Seminar 13 September 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Classical slicing theorem

Theorem (Marstrand, 1950s)

Let $E \subseteq \mathbb{R}^2$ be Borel. Then

 $\dim(E \cap \ell) \leq \max(0, \dim(E) - 1).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for almost every line ℓ .

Here and throughout, $dim(\cdot)$ is **Hausdorff dimension**

Classical slicing theorem

Question

What conditions on *E* imply that $\dim(E \cap \ell) \leq \max(0, \dim(E) - 1)$ for **every** line ℓ ?

Conjectures by Furstenberg: when *E* has nice fractal structure

- Connections to intersections of Cantor sets, (×2), (×3) conjecture, etc.
- What is "nice fractal structure"?

Let $\Phi = {\varphi_1, \ldots, \varphi_n}$ be a finite set of contraction mappings in \mathbb{R}^2 . Then there exists a **unique** compact set $K \subseteq \mathbb{R}^2$ such that

$$\mathcal{K} = \bigcup_{1 \leq i \leq n} \varphi_i(\mathcal{K}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Φ is an iterated function system (IFS).
- *K* is the **attractor** of the IFS.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(ロ)、(型)、(E)、(E)、 E) の(()

A contracting similarity in \mathbb{R}^2 is a map $\mathbb{R}^2 \to \mathbb{R}^2$ of the form

$$\varphi(z) = \rho \cdot Az + q$$

where

- 0 < *ρ* < 1
- A is a 2 × 2 orthogonal matrix (for simplicity, assume A ∈ SO₂(ℝ))
 q ∈ ℝ²

If Φ consists only of contracting similarities, then the attractor K is a **self-similar set**.

Write $\varphi_i(z) = \rho_i \cdot R_{\theta_i} + q_i$ where R_{θ} denotes rotation by angle $2\pi\theta$, $\theta \in \mathbb{T}$.

Terminology

- Strong separation condition (SSC): the union in $K = \bigcup_{1 \le i \le n} \varphi_i(K)$ is disjoint.
- Open set condition (OSC): there exists an open set G such that $G \supseteq \bigcup_{1 \le i \le n} \varphi_i(G)$ and this union is disjoint.

- If all $\rho_i = \rho$, Φ is homogeneous.
- If all $\theta_i = \theta$, say Φ is uniformly rotating.

Recent result

Theorem (Shmerkin/Wu, 2019)

Let Φ be a self-similar IFS in \mathbb{R}^2 such that

- **1** Φ satisfies the **OSC**
- **2** Φ is **uniformly rotating** with angle $\theta \notin \mathbb{Q}$.
- **3** Φ is homogeneous

Then the attractor K satisfies $\dim(K \cap \ell) \leq \max(0, \dim(K) - 1)$ for every line ℓ .

- Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu
- Tim Austin (2020) found a simpler version of Wu's proof
- Homogeneity assumption can be removed without much extra work

Recent result

Shmerkin's proof:

- Quantitative, uses additive combinatorics methods
- Roughly based on Hochman's work on the exact overlaps conjecture

Wu's proof:

- Builds on Furstenberg's theory of magnification dynamics and CP distributions
- Clever application of Sinai's factor theorem
- Austin's proof also follows Furstenberg, main innovation is to avoid using Sinai's theorem

Related work

- Shmerkin/Wu: products of (×2)-, (×3)-invariant sets
- Algom, Algom-Wu: Bedford-McMullen carpets
- Bárány-Käenmäki-Yu: more general self-affine sets
- Yu: Quantitative/uniform versions
- Yu, Shmerkin, L.: Higher dimensional versions of $(\times 2), (\times 3)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dynamical approach

• The attractor K can be turned into a dynamical system

•
$$S: K o K$$
 defined by $S|_{\varphi_i(K)} = \varphi_i^{-1}$

Called the attractor system

Suppose $K \cap \ell$ is high-dimensional. Say the direction of ℓ is $e^{2\pi i t_0}$.

Observation

• $S(K \cap \ell)$ is a union of slices, each in the direction $e^{2\pi i(t_0 - \theta)}$, and at least one of them is also high-dimensional

We can iterate

Furstenberg's great idea: attractor system + keeping track of "slice data"

- $X := K \times \mathbb{T} \times \operatorname{Prob}(K)$
- Define $M: X \to X$ by $(z, t, \nu) \mapsto (Sz, t \theta \mod 1, S_*(\nu_z))$, where ν_z is defined to be ν conditioned on the piece $\varphi_i(K)$ that contains z
- Simulates "zooming in" to the point $z \in K$

Theorem (Furstenberg, 1960s)

Suppose there is some line ℓ with dim $(K \cap \ell) = \alpha > 0$. Then there is an ergodic *M*-invariant distribution $P \in \text{Prob}(X)$ (called a **CP distribution**) supported on

$$\{(z,t,\nu)\in X:\nu(\ell_{z,t})=1 \text{ and } \dim(\nu)\geq \alpha\},\$$

where $\ell_{z,t}$ is the line through z in direction $e^{2\pi i t}$.

Important fact: formula of the form

(

$$\dim(
u) \;=\; rac{``average'' \; entropy}{\mathsf{Lyapunov \; exponent}}$$

for *P*-typical measure ν

The marginal of P on \mathbb{T} is invariant for $t \mapsto t - \theta$, so it must be Lebesgue measure.

Corollary

Same assumption. Then for Lebesgue-a.e. t there is some line ℓ_t with direction $e^{2\pi i t}$ with dim $(K \cap \ell_t) \ge \alpha$ also.

- Content of Wu/Austin proofs: how to upgrade Furstenberg's result to the full theorem
- Heuristic: K contains α-dimensional slices in a 1-dimensional set of directions "⇒" dim(K) ≥ α + 1

New results

Theorem (L.)

Let Φ be a self-similar IFS in \mathbb{R}^2 such that

- Φ satisfies the asymptotically weak separation condition (AWSC)
- **2** The rotation parts $\{\theta_1, \ldots, \theta_n\}$ are "quasi-uniform" and at most one θ_i is rational

Then the attractor K satisfies $\dim(K \cap \ell) \leq \max(0, \dim(K) - 1)$ for every line ℓ .

 AWSC was introduced by Feng & Hu (2009), other similar conditions studied by Lau & Ngai, etc.

Provably weaker than OSC

• "Quasi-uniform" roughly means that $\{1, \theta_1, \dots, \theta_n\}$ spans a 2-dimensional vector space over \mathbb{Q}

New results

Theorem (L.)

Let $\Phi = \{\varphi_1, \dots, \varphi_n\}$ be a self-similar IFS in \mathbb{R}^2 satisfying the AWSC with rotation parts $\{\theta_1, \dots, \theta_n\}$. Then for **Lebesgue-generic** $(\theta_1, \dots, \theta_n)$, the attractor K satisfies $\dim(K \cap \ell) \leq \max(0, \dim(K) - 1/n)$ for every line ℓ .

- Can apply similar ideas for products of 1D attractors
- Likely to yield analogous result with "rotation parts" replaced by "log(contraction ratios)"

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

■ Wu (2021): similar result, more deterministic

Weak separation

Symbolic representation:

- Symbolic space $\Omega = [n]^{\mathbb{N}}$
- Coding map $\pi: \Omega \to K$ defined by

$$\pi(x) = \lim_{N \to \infty} (\varphi_{x_1} \circ \cdots \circ \varphi_{x_N}) (0)$$

- Homeomorphism under SSC
- Left shift $\sigma:\Omega\to\Omega$
 - $(\Omega, \sigma) \simeq (K, S)$ under SSC

Symbolic version of magnification dynamics (still assuming uniform rotations for now):

$$(x, t, \nu) \mapsto (\sigma x, t - \theta \mod 1, \sigma_* \nu(\cdot | x_1))$$

Revised important fact: for symbolic ergodic CP distributions *P*, formula of form

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for *P*-typical ν

Let $\{\varphi_1, \ldots, \varphi_n\}$ be an IFS with rotation parts $\theta_1, \ldots, \theta_n \in \mathbb{T}$.

Adjust magnification dynamics accordingly:

$$(x, t, \nu) \mapsto (\sigma x, t - \theta_{x_1} \mod 1, \sigma_* \nu(\cdot | x_1))$$

Non-uniform rotations

- Furstenberg's method still works \longrightarrow ergodic CP distribution P supported on high-dimensional slices
- T-marginal of P is a priori not an invariant measure for any system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• How to tell how smooth (high-dimensional) it is?

Ergodic theorem says the \mathbb{T} -marginal of P is obtained as the limiting distribution of "multi-rotation orbits":

Definition

Let $\theta_1, \ldots, \theta_n \in \mathbb{T}$ and fix $x \in [n]^{\mathbb{N}}$. The **multi-rotation orbit** generated by x is the sequence $\{t_n\}_{n \ge 1} \subseteq \mathbb{T}$ defined by $t_n = \theta_{x_1} + \cdots + \theta_{x_n}$.

The limiting empirical distribution associated to x is $\mu_x := \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \delta_{t_n}$.

- Study goes back to 1960s (Engelking)
- Goal: estimate smoothness of μ_x

Non-uniform rotations

Proposition

Suppose $\{\theta_1, \ldots, \theta_n\}$ is "quasi-uniform" and at most one θ_i is rational. Let P_1 be a non-atomic ergodic shift-invariant measure on $[n]^{\mathbb{N}}$. Then $\overline{\dim}(\mu_x) = 1$ for P_1 -a.e. x.

Proposition

For Lebesgue-a.e. $(\theta_1, \ldots, \theta_n)$ and any $x \in [n]^{\mathbb{N}}$, $\overline{\dim}(\mu_x) \geq \frac{1}{n}$.

Similar results (for sets rather than measures) due to Feng-Xiong, Yu, Baker

Possible applications

Self-similar sets in $\mathbb{R}^d, d \geq 3$

- Multi-rotation orbits on S^{d-1}
- Fixed rotation orbits don't equidistribute
- Non-commutative
- Limit sets of Kleinian groups
 - Möbius transformations preserve circles → can define a form of magnification dynamics for "circular slices"

Analogue of multi-rotation orbits?