How to write good code(s)

Adam Lott
23 April 2020

Outline

1. What is information?
2. Data compression
3. Data transmission

What is information?

What is information?

- One case contains a prize
- How to find with the fewest yes/no questions?

What is information?

- One case contains a prize
-How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?

What is information?

- One case contains a prize
-How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?

No

What is information?

- One case contains a prize
-How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?

No

- "Is it in number ≤ 6 "?

What is information?

- One case contains a prize
-How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?

No

- "Is it in number ≤ 6 "?

Yes

What is information?

- One case contains a prize
-How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?

No

- "Is it in number ≤ 6 "?

Yes
-"Is it in number ≤ 5 "?

What is information?

- One case contains a prize
-How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?

No

- "Is it in number ≤ 6 "?

Yes

- "Is it in number ≤ 5 "?

Yes

What is information?

- One case contains a prize
- How to find with the fewest yes/no questions?
- "Is it in number ≤ 4 "?
- "Is it in number ≤ 6 "? Yes
- "Is it in number ≤ 5 "?

Yes

- 3 questions $\leadsto \rightarrow 3$ units of "information"?

What is information?

What is information?

$1 \quad 2 \sqrt{3}$

- 2 questions is always sufficient, but how many questions on average?

What is information?

123

- 2 questions is always sufficient, but how many questions on average?
- 1 question $1 / 3$ of the time, 2 questions $2 / 3$ of the time
-(1/3)(1) $+(2 / 3)(2)=5 / 3$ questions "on average"

What is information?

$1 \quad \overline{3}$

- Better strategy: do N trials simultaneously

What is information?

$1 \quad 23$

- Better strategy: do N trials simultaneously
- Possible configurations $=\{1,2,3\}^{N}$

What is information?

$1 \quad 2$

- Better strategy: do N trials simultaneously
- Possible configurations $=\{1,2,3\}^{N}$
- Use bisection strategy to find correct configuration in $\left\lceil\log _{2}\left(3^{N}\right)\right\rceil=N \log 3+O(1)$ many questions
$\cdot \log _{2} 3 \approx 1.58$ questions "on average"

What is information?

Definition, attempt \#1: The amount of information contained in an experiment is the minimum number of yes/no questions required (on average) to determine the outcome
"Theorem": We gain $\log _{2} k$ bits of information when we observe one of k equally likely outcomes

What is information?

-What if each outcome is not equally likely?

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:

- "Is it in number ≤ 1 "?

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:
-"Is it in number ≤ 1 "? No

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:
-"Is it in number ≤ 1 "? No

- "Is it in number ≤ 2 "?

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:
-"Is it in number ≤ 1 "? No
-"Is it in number ≤ 2 "? No

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:
-"Is it in number ≤ 1 "? No
-"Is it in number ≤ 2 "? No
-"Is it in number ≤ 3 "?

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:
-"Is it in number ≤ 1 "? No
-"Is it in number ≤ 2 "? \quad No

- "Is it in number ≤ 3 "? Yes

What is information?

-What if each outcome is not equally likely?
-We can do better than the naive bisection strategy:

- "Is it in number ≤ 1 "? No
-"Is it in number ≤ 2 "? No
- "Is it in number ≤ 3 "? YeS
- \# questions on average $=(1 / 2)(1)+(1 / 4)(2)+(1 / 4)(3)=1.75$
-Worst case scenario is worse, but better on average!

What is information?

- Let's apply the " N simultaneous trials" strategy:

What is information?

- Let's apply the " N simultaneous trials" strategy:
- Possible configurations $=$ strings in $\{1,2,3,4\}^{N}$ with the correct distribution of values
- Viable configuration must have $1 / 2$ 1s, $1 / 42 s, 1 / 83 s, 1 / 84 s$

What is information?

- Let's apply the " N simultaneous trials" strategy:
- Possible configurations $=$ strings in $\{1,2,3,4\}^{N}$ with the correct distribution of values
-Viable configuration must have $1 / 2$ 1s, $1 / 42 \mathrm{~s}, 1 / 83 \mathrm{~s}, 1 / 84 \mathrm{~s}$
Average \# of questions $=\frac{1}{N} \log _{2}$ (\# viable configurations $)=\frac{1}{N} \log _{2} \frac{N!}{(N / 2)!(N / 4)!(N / 8)!(N / 8)!}$

What is information?

- Let's apply the " N simultaneous trials" strategy:
- Possible configurations $=$ strings in $\{1,2,3,4\}^{N}$ with the correct distribution of values
-Viable configuration must have $1 / 2$ 1s, $1 / 42 \mathrm{~s}, 1 / 83 \mathrm{~s}, 1 / 84 \mathrm{~s}$
Average \# of questions $=\frac{1}{N} \log _{2}$ (\# viable configurations $)=\frac{1}{N} \log _{2} \frac{N!}{(N / 2)!(N / 4)!(N / 8)!(N / 8)!}$
(Stirling's formula) $\approx-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)-\frac{1}{8} \log _{2}\left(\frac{1}{8}\right)-\frac{1}{8} \log _{2}\left(\frac{1}{8}\right)$
$=1.75$

What is information?

1

... $\stackrel{\rightharpoonup}{k}$

What is information?

- Now apply this strategy in the most general case

What is information?

- Now apply this strategy in the most general case
- Possible configurations $=$ strings in $\{1,2, \ldots, k\}^{N}$ with the correct distribution -- 1 appears p_{1} of the time, 2 appears p_{2} of the time, etc.

What is information?

- Now apply this strategy in the most general case
- Possible configurations $=$ strings in $\{1,2, \ldots, k\}^{N}$ with the correct distribution -- 1 appears p_{1} of the time, 2 appears p_{2} of the time, etc.

Average \# of questions $=\frac{1}{N} \log _{2} \frac{N!}{\left(N p_{1}\right)!\cdots\left(N p_{k}\right)!} \approx \sum_{i=1}^{k}-p_{i} \log _{2}\left(p_{i}\right)$

What is information?

- Now apply this strategy in the most general case
- Possible configurations $=$ strings in $\{1,2, \ldots, k\}^{N}$ with the correct distribution -- 1 appears p_{1} of the time, 2 appears p_{2} of the time, etc.

Average \# of questions $=\frac{1}{N} \log _{2} \frac{N!}{\left(N p_{1}\right)!\cdots\left(N p_{k}\right)!} \approx \sum_{i=1}^{k}-p_{i} \log _{2}\left(p_{i}\right)$
$H(p)=$ Shannon entropy of probability distribution p

What is information?

What is information?

What's going on?

What is information?

What's going on?

- To maximize efficiency: with each question, we don't need to reduce the number of possibilities by $1 / 2$, but rather we need to distinguish between two equally probable outcomes

What is information?

What's going on?

- To maximize efficiency: with each question, we don't need to reduce the number of possibilities by $1 / 2$, but rather we need to distinguish between two equally probable outcomes

Definition, attempt \#2: We gain one bit of information each time we distinguish between two equally likely events.

What is information?

What's going on?

- To maximize efficiency: with each question, we don't need to reduce the number of possibilities by $1 / 2$, but rather we need to distinguish between two equally probable outcomes

Definition, attempt \#2: We gain one bit of information each time we distinguish between two equally likely events.

- The amount of information contained in an experiment is the number of "probability bisections" required (on average) to determine the outcome
- $H(p)=$ amount of information contained in an experiment with outcome probabilities p_{1}, \ldots, p_{k}

What is information?

What is information?

Alternate perspective:

What is information?

Alternate perspective:

- Say the "information gained" from observing an event of probability a is $f(a):=-\log _{2} a$

What is information?

Alternate perspective:

- Say the "information gained" from observing an event of probability a is $f(a):=-\log _{2} a$
- $H(p)=\sum_{i=1}^{k} p_{i}\left(-\log _{2} p_{i}\right)$ is the average (expected) information gained from observing an experiment with outcome probabilities p_{1}, \ldots, p_{k}

What is information?

What is information?

Alternate perspective \#2 (axiomatic approach):

What is information?

Alternate perspective \#2 (axiomatic approach):

- Information function f should have some desirable properties:

What is information?

Alternate perspective \#2 (axiomatic approach):

- Information function f should have some desirable properties:
- Independent events add information: $f(x y)=f(x)+f(y)$
- Rarer events give more information: f is decreasing
- Normalization: $f(1 / 2)=1$

What is information?

Alternate perspective \#2 (axiomatic approach):

- Information function f should have some desirable properties:
- Independent events add information: $f(x y)=f(x)+f(y)$
- Rarer events give more information: f is decreasing
- Normalization: $f(1 / 2)=1$

$$
f(x)=-\log _{2}(x) \text { is the only such function! }
$$

Outline

1. What is information?
2. Data compression
3. Data transmission

Data compression

- Also known as source coding
- Encode data into 0s and 1s in an injective way (lossless compression)
- Goal: minimize number of bits needed to encode

Data compression, formally

- $A=$ alphabet that you want to encode (e.g. $A=\{a, b, c, \ldots, z\})$
- Encoder $=$ injective map $f: A \rightarrow\{0,1\}^{*}=\bigcup_{n=1}^{\infty}\{0,1\}^{n}=$ all finite strings of 0 s and 1 s

Example

- Fixed-length code
- $A=\{a, b, c, d\}$
- $f(a)=00, f(b)=01, f(c)=10, f(d)=11$
- Not very efficient, in fact no compression at all

More data compression

More data compression

- Idea: gain efficiency by considering relative frequencies of letters in A

More data compression

- Idea: gain efficiency by considering relative frequencies of letters in A
- Equip A with probability distribution $p=(p(a))_{a \in A}$ that indicates relative frequencies

More data compression

- Idea: gain efficiency by considering relative frequencies of letters in A
- Equip A with probability distribution $p=(p(a))_{a \in A}$ that indicates relative frequencies
- Goal: define f to minimize $\mathbb{E}_{p}|f(a)|=\sum_{a \in A} p(a)|f(a)|$

More data compression

- Idea: gain efficiency by considering relative frequencies of letters in A
- Equip A with probability distribution $p=(p(a))_{a \in A}$ that indicates relative frequencies
- Goal: define f to minimize $\mathbb{E}_{p}|f(a)|=\sum_{a \in A} p(a)|f(a)|$
- We can save time on average by reserving shorter code words for more common letters

Prefix codes

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

0

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

$$
01
$$

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

011 b

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

0111 b

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

01110
 b d

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

011100
 b d

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

011100 b d a

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

0111001 b d a

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

01110011 b d a

Prefix codes

- One more desirable property for encoder f : require that for all distinct $a, b \in A, f(a)$ is not a prefix of $f(b)$
- Allows decoding in real time

01110011 b d a d

Example

Example

- Variable-length code
- $A=\{a, b, c, d\}$
- $p(a)=1 / 2, p(b)=1 / 4, p(c)=p(d)=1 / 8$
- $f(a)=0, f(b)=10, f(c)=110, f(d)=111$

Example

- Variable-length code

> - $A=\{a, b, c, d\}$
> - $p(a)=1 / 2, p(b)=1 / 4, p(c)=p(d)=1 / 8$
> - $f(a)=0, f(b)=10, f(c)=110, f(d)=111$
> - $\mathbb{E}_{p}|f(a)|=\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3=1.75$
> - More efficient (on average) than fixed-length code (2 bits/ letter)

Example

- Variable-length code
- $A=\{a, b, c, d\}$
- $p(a)=1 / 2, p(b)=1 / 4, p(c)=p(d)=1 / 8$
- $f(a)=0, f(b)=10, f(c)=110, f(d)=111$
- $\mathbb{E}_{p}|f(a)|=\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3=1.75$
- More efficient (on average) than fixed-length code (2 bits/ letter)
- Does this look familiar?

Example

- Variable-length code
- $A=\{a, b, c, d\}$
- $p(a)=1 / 2, p(b)=1 / 4, p(c)=p(d)=1 / 8$
- $f(a)=0, f(b)=10, f(c)=110, f(d)=111$
- $\mathbb{E}_{p}|f(a)|=\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3=1.75$
- More efficient (on average) than fixed-length code (2 bits/ letter)
- Does this look familiar?

The return of entropy

The return of entropy

- It seems that the entropy of the frequency distribution is related to the efficiency of prefix codes

The return of entropy

- It seems that the entropy of the frequency distribution is related to the efficiency of prefix codes
- (a version of) Shannon's source coding theorem: Let A be an alphabet equipped with a probability (frequency) distribution $p=(p(a))_{a \in A}$. Then any prefix code $f: A \rightarrow\{0,1\}^{*}$ satisfies $\mathbb{E}_{p}|f(a)| \geq H(p)$. Moreover, there always exists a code f with $\mathbb{E}_{p}|f(a)| \approx H(p)$.

Proof of source coding theorem

- A prefix code is like a section of a binary tree

Proof of source coding theorem

- A prefix code is like a section of a binary tree

Proof of source coding theorem

- A prefix code is like a section of a binary tree

Proof of source coding theorem

- A prefix code is like a section of a binary tree

Proof of source coding theorem

- A prefix code is like a section of a binary tree

Proof of source coding theorem

- A prefix code is like a section of a binary tree

- This controls the length profile of the code:

$$
\sum_{a \in A} 2^{-|f(a)|} \leq 1
$$

Proof of source coding theorem

Proof of source coding theorem

- Compare $\mathbb{E}_{p}|f(a)|$ to $H(p)=\mathbb{E}_{p}\left(-\log _{2} p(a)\right)$

Proof of source coding theorem

- Compare $\mathbb{E}_{p}|f(a)|$ to $H(p)=\mathbb{E}_{p}\left(-\log _{2} p(a)\right)$
- $\mathbb{E}_{p}|f(a)|-\mathbb{E}_{p}\left(-\log _{2} p(a)\right)=\mathbb{E}_{p}\left[-\log _{2}\left(2^{-|f(a)|} / p(a)\right)\right]$

$$
\begin{aligned}
& \geq-\log _{2}\left(\mathbb{E}_{p}\left[2^{-|f(a)|} / p(a)\right]\right) \quad \text { (Jensen) } \\
& =-\log _{2}\left(\sum_{a \in A} 2^{-|f(a)|}\right) \quad \text { (previous } \\
& \geq 0
\end{aligned}
$$

Proof of source coding theorem

- Compare $\mathbb{E}_{p}|f(a)|$ to $H(p)=\mathbb{E}_{p}\left(-\log _{2} p(a)\right)$
- $\mathbb{E}_{p}|f(a)|-\mathbb{E}_{p}\left(-\log _{2} p(a)\right)=\mathbb{E}_{p}\left[-\log _{2}\left(2^{-|f(a)|} / p(a)\right)\right]$

$$
\begin{aligned}
& \geq-\log _{2}\left(\mathbb{E}_{p}\left[2^{-|f(a)|} / p(a)\right]\right) \quad \text { (Jensen) } \\
& =-\log _{2}\left(\sum_{a \in A} 2^{-|f(a)|}\right) \quad \text { (previous slide) } \\
& \geq 0
\end{aligned}
$$

- Equality in Jensen when $2^{-|f(a)|} / p(a)$ is constant in a, i.e. $|f(a)|=-\log _{2} p(a)$

Proof of source coding theorem

- Compare $\mathbb{E}_{p}|f(a)|$ to $H(p)=\mathbb{E}_{p}\left(-\log _{2} p(a)\right)$
- $\mathbb{E}_{p}|f(a)|-\mathbb{E}_{p}\left(-\log _{2} p(a)\right)=\mathbb{E}_{p}\left[-\log _{2}\left(2^{-|f(a)|} / p(a)\right)\right]$

$$
\begin{aligned}
& \geq-\log _{2}\left(\mathbb{E}_{p}\left[2^{-|f(a)|} / p(a)\right]\right) \quad \text { (Jensen) } \\
& =-\log _{2}\left(\sum_{a \in A} 2^{-|f(a)|}\right) \quad \text { (previous } \\
& \geq 0
\end{aligned}
$$

- Equality in Jensen when $2^{-|f(a)|} / p(a)$ is constant in a, i.e. $|f(a)|=-\log _{2} p(a)$
- This length profile satisfies $\sum_{a \in A} 2^{-|f(a)|}=1$, so by a greedy algorithm one can define a corresponding prefix code

Interpretation

Interpretation

- The maximum efficiency prefix code has length profile

$$
|f(a)|=-\log _{2} p(a), \quad a \in A
$$

Interpretation

- The maximum efficiency prefix code has length profile

$$
|f(a)|=-\log _{2} p(a), \quad a \in A
$$

- The moral of the story: to achieve maximum efficiency, each letter gets coded with exactly the number of bits of information that its occurrence conveys

Interpretation

- The maximum efficiency prefix code has length profile

$$
|f(a)|=-\log _{2} p(a), \quad a \in A
$$

- The moral of the story: to achieve maximum efficiency, each letter gets coded with exactly the number of bits of information that its occurrence conveys
- Afterthought: \approx appears when the $p(a)$ aren't perfect powers of $1 / 2$

Outline

1. What is information?
2. Data compression
3. Data transmission

Data transmission

- Also known as channel coding
- Send data through a noisy channel, some distortion happens
- Goal: find a way to transmit to maximize accuracy

Decoded received message
Noisy channel

Formalism (attempt \#1)

Formalism (attempt \#1)

- $B=$ alphabet of transmitted message, $B^{\prime}=$ alphabet of received message
- Different alphabets allow for possibility of corruption

Formalism (attempt \#1)

- $B=$ alphabet of transmitted message, $B^{\prime}=$ alphabet of received message
- Different alphabets allow for possibility of corruption
- $\theta=\left(\theta_{b b^{\prime}}\right)_{b \in B, b^{\prime} \in B^{\prime}}=\left(\theta\left(b^{\prime} \mid b\right)\right)_{b \in B, b^{\prime} \in B^{\prime}}$ is a channel (or probability kernel or stochastic matrix):

Formalism (attempt \#1)

- $B=$ alphabet of transmitted message, $B^{\prime}=$ alphabet of received message
- Different alphabets allow for possibility of corruption
- $\theta=\left(\theta_{b b^{\prime}}\right)_{b \in B, b^{\prime} \in B^{\prime}}=\left(\theta\left(b^{\prime} \mid b\right)\right)_{b \in B, b^{\prime} \in B^{\prime}}$ is a channel (or probability kernel or stochastic matrix):
$\theta\left(b^{\prime} \mid b\right)=$ probability that b^{\prime} is received, given that b is sent

Formalism (attempt \#1)

- $B=$ alphabet of transmitted message, $B^{\prime}=$ alphabet of received message
- Different alphabets allow for possibility of corruption
- $\theta=\left(\theta_{b b^{\prime}}\right)_{b \in B, b^{\prime} \in B^{\prime}}=\left(\theta\left(b^{\prime} \mid b\right)\right)_{b \in B, b^{\prime} \in B^{\prime}}$ is a channel (or probability kernel or stochastic matrix):
$\theta\left(b^{\prime} \mid b\right)=$ probability that b^{\prime} is received, given that b is sent
- Example: $B=\{0,1\}, B^{\prime}=\{0,1, e\}, \theta=\left(\begin{array}{ccc}.95 & .01 & .04 \\ .01 & .95 & .04\end{array}\right)$

Formalism (attempt \#1)

Formalism (attempt \#1)

- A decoder is a function $g: B^{\prime} \rightarrow B$

Formalism (attempt \#1)

- A decoder is a function $g: B^{\prime} \rightarrow B$
- Goal: make the worst-case probability of error $p_{e}=\max _{b \in B} \theta\left(\left\{b^{\prime}: g\left(b^{\prime}\right) \neq b\right\} \mid b\right)$ as small as possible

Formalism (attempt \#1)

- A decoder is a function $g: B^{\prime} \rightarrow B$
- Goal: make the worst-case probability of error $p_{e}=\max _{b \in B} \theta\left(\left\{b^{\prime}: g\left(b^{\prime}\right) \neq b\right\} \mid b\right)$ as small as possible
- Naive strategy: Send each letter 3 times $\left(B^{\prime}=B^{3}\right)$ and define g by majority rule

Formalism (attempt \#1)

- A decoder is a function $g: B^{\prime} \rightarrow B$
- Goal: make the worst-case probability of error $p_{e}=\max _{b \in B} \theta\left(\left\{b^{\prime}: g\left(b^{\prime}\right) \neq b\right\} \mid b\right)$ as small as possible
- Naive strategy: Send each letter 3 times $\left(B^{\prime}=B^{3}\right)$ and define g by majority rule
- Slightly better strategy: set

$$
g\left(b^{\prime}\right)=\underset{b \in B}{\operatorname{argmax}} \mathbb{P}\left(b \text { sent } \mid b^{\prime} \text { received }\right)
$$

(Bayesian maximum likelihood estimator)

Formalism (attempt \#2)

Formalism (attempt \#2)

- New idea: transmit letters from B in blocks of length $N \gg 1$ $\left(B \mapsto B^{N}, B^{\prime} \mapsto\left(B^{\prime}\right)^{N}, \theta \mapsto \theta^{N}\right)$

Formalism (attempt \#2)

- New idea: transmit letters from B in blocks of length $N \gg 1$ $\left(B \mapsto B^{N}, B^{\prime} \mapsto\left(B^{\prime}\right)^{N}, \theta \mapsto \theta^{N}\right)$
- Idea: try to pick a special subset $\mathscr{A}_{N} \subseteq B^{N}$ of "acceptable words" that are very unlikely to be confused with each other, and only transmit those

Formalism (attempt \#2)

- New idea: transmit letters from B in blocks of length $N \gg 1$ $\left(B \mapsto B^{N}, B^{\prime} \mapsto\left(B^{\prime}\right)^{N}, \theta \mapsto \theta^{N}\right)$
- Idea: try to pick a special subset $\mathscr{A}_{N} \subseteq B^{N}$ of "acceptable words" that are very unlikely to be confused with each other, and only transmit those
- New goal: make $\left|\mathscr{A}_{N}\right|$ as large as possible while keeping p_{e} as small as possible

Formalism (attempt \#2)

- New idea: transmit letters from B in blocks of length $N \gg 1$ $\left(B \mapsto B^{N}, B^{\prime} \mapsto\left(B^{\prime}\right)^{N}, \theta \mapsto \theta^{N}\right)$
- Idea: try to pick a special subset $\mathscr{A}_{N} \subseteq B^{N}$ of "acceptable words" that are very unlikely to be confused with each other, and only transmit those
- New goal: make $\left|\mathscr{A}_{N}\right|$ as large as possible while keeping p_{e} as small as possible
- Toy example: $B=B^{\prime}=\{0,1\}, \theta=\left(\begin{array}{ll}.99 & .01 \\ .01 & .99\end{array}\right)$
- Let \mathscr{A}_{N} be a subset of B^{N} with the property that any two strings in \mathscr{A}_{N} differ in at least $.03 N$ letters. When N is huge it is virtually impossible for any of these to get confused for any other.

Channel capacity

Channel capacity

- Say a number R is an achievable rate if it is possible to choose acceptable words \mathscr{A}_{N} and decoder g such that $\left|\mathscr{A}_{N}\right| \geq 2^{R N}$ and p_{e} is arbitrarily small
- Maximum possible rate $=\log _{2}|B|$

Channel capacity

- Say a number R is an achievable rate if it is possible to choose acceptable words \mathscr{A}_{N} and decoder g such that $\left|\mathscr{A}_{N}\right| \geq 2^{R N}$ and p_{e} is arbitrarily small
- Maximum possible rate $=\log _{2}|B|$
- The channel capacity of a channel θ is $C(\theta):=$ the sup of all achievable rates
- Most information that can be transmitted per unit time, subject to the constraint of high accuracy

Mutual information

Mutual information

- Given an input frequency distribution q on B, the channel θ induces an output frequency distribution q_{θ}^{\prime} on B^{\prime} and a joint input-output distribution $q \ltimes \theta$ on $B \times B^{\prime}$
- $(q \ltimes \theta)\left(b, b^{\prime}\right)=q(b) \theta\left(b^{\prime} \mid b\right)=$ prob. that b is sent and b^{\prime} is received
- $q_{\theta}^{\prime}\left(b^{\prime}\right)=\sum_{b \in B} q(b) \theta\left(b^{\prime} \mid b\right)=$ total prob. that b^{\prime} is received

Mutual information

- Given an input frequency distribution q on B, the channel θ induces an output frequency distribution q_{θ}^{\prime} on B^{\prime} and a joint input-output distribution $q \ltimes \theta$ on $B \times B^{\prime}$
- $(q \ltimes \theta)\left(b, b^{\prime}\right)=q(b) \theta\left(b^{\prime} \mid b\right)=$ prob. that b is sent and b^{\prime} is received
- $q_{\theta}^{\prime}\left(b^{\prime}\right)=\sum_{b \in B} q(b) \theta\left(b^{\prime} \mid b\right)=$ total prob. that b^{\prime} is received
- The mutual information between q and θ is $I(q, \theta):=H(q)+H\left(q_{\theta}^{\prime}\right)-H(q \ltimes \theta)$
- Measures how much information is faithfully transmitted by θ
- $\theta=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ (perfect transmission) $\longrightarrow I(q, \theta)=H(q)$
- $\theta=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ (total corruption) $\longrightarrow I(q, \theta)=0$

Channel coding theorem

Channel coding theorem

- Shannon's channel coding theorem:

$$
C(\theta)=\sup _{q \in \operatorname{Prob}(B)} I(q, \theta)
$$

Channel coding theorem

- Shannon's channel coding theorem:

$$
C(\theta)=\sup _{q \in \operatorname{Prob}(B)} I(q, \theta)
$$

- Maximum rate of information that can be passed accurately through θ is determined by how much entropy θ can transport from B to B^{\prime}

Examples

$$
\begin{aligned}
& \mathbf{0} \xrightarrow{1} \mathbf{0} \\
& \mathbf{1} \xrightarrow{1} \mathbf{1}
\end{aligned}
$$

Examples

- Noiseless channel

$$
\begin{aligned}
& \mathbf{0} \xrightarrow{1} \mathbf{0} \\
& \mathbf{1} \xrightarrow{1} \mathbf{1}
\end{aligned}
$$

Examples

- Noiseless channel

$$
\begin{aligned}
& \mathbf{0} \xrightarrow{1} \mathbf{0} \\
& \mathbf{1} \xrightarrow{1} \mathbf{1}
\end{aligned}
$$

- $I(q, \theta)=H(q)$ for any input distribution q, maximized when $q=(1 / 2,1 / 2)$
- $C(\theta)=1$

Examples

Examples

- Binary erasure channel

Examples

- Binary erasure channel

- Might expect to maximize efficiency by being biased towards 0

Examples

- Binary erasure channel

- Might expect to maximize efficiency by being biased towards 0
- But recall: goal is to maximize accurate decodability, not error-free transmission

Examples

- Binary erasure channel

- Might expect to maximize efficiency by being biased towards 0
- But recall: goal is to maximize accurate decodability, not error-free transmission
- If e is received, it probably came from 1
- Actually more efficient to bias a bit towards 1: $C(\theta)=0.976$, achieved by $\mathbb{P}(0)=0.496$

Examples

Examples

- Noisy typewriter

Examples

- Noisy typewriter
- Notice that A,C,E,G,... can't be confused for each other

Examples

- Noisy typewriter
- Notice that A,C,E,G,... can't be confused for each other
- It turns out that the best input distribution is the choose uniformly from the uniquely decodable subset
- $C(\theta)=\log _{2} 13$

