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What is information?
1 2 3 4 5 6 7 8

•One case contains a prize


•How to find with the fewest yes/no questions?

-"Is it in number "?≤ 4

-"Is it in number "?≤ 6

-"Is it in number "?≤ 5

Yes

Yes

No

•3 questions  3 units of "information"? ↭
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What is information?

1 2 3
•2 questions is always sufficient, but how many  
questions on average?

•1 question 1/3 of the time, 2 questions 2/3 of the time

• (1/3)(1) + (2/3)(2) = 5/3 questions "on average"
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What is information?

1 2 3
•Better strategy: do  trials simultaneouslyN

•Possible configurations = {1,2,3}N

•Use bisection strategy to find correct configuration in 
 many questions⌈log2(3N)⌉ = N log 3 + O(1)

•  questions "on average"log2 3 ≈ 1.58



What is information?

Definition, attempt #1: The amount of information contained 
in an experiment is the minimum number of yes/no  
questions required (on average) to determine the outcome


"Theorem": We gain    bits of information 
when we observe one of    equally likely outcomes

log2 k
k
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What is information?

•What if each outcome is not equally likely?

•We can do better than the naive bisection strategy:
-"Is it in number "?≤ 1

-"Is it in number "?≤ 2

-"Is it in number "?≤ 3

•# questions on average = (1/2)(1) + (1/4)(2) + (1/4)(3) = 1.75

•Worst case scenario is worse, but better on average! 
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What is information?
1 2 3 4
1
2

1
4
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8
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•Let's apply the "   simultaneous trials" strategy:N
•Possible configurations = strings in   
with the correct distribution of values

{1,2,3,4}N

•Viable configuration must have 1/2 1s, 1/4 2s, 1/8 3s, 1/8 4s

Average # of questions = 1
N

log2(# viable configurations) =
1
N

log2
N!

(N/2)!(N/4)!(N/8)!(N/8)!

≈ −
1
2

log2 ( 1
2 ) −

1
4

log2 ( 1
4 ) −

1
8

log2 ( 1
8 ) −

1
8

log2 ( 1
8 )(Stirling's formula)

= 1.75
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What is information?
1 2 k
p1 p2 pk⋯

⋯
•Now apply this strategy in the most general case

•Possible configurations = strings in    with the 
correct distribution -- 1 appears  of the time, 2 appears 

 of the time, etc.

{1,2,…, k}N

p1
p2

Average # of questions = 1
N

log2
N!

(Np1)!⋯(Npk)!
≈

k

∑
i=1

− pi log2(pi)

Shannon entropy of probability distribution  H(p) = p
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time we distinguish between two equally likely events.
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need to distinguish between two equally probable 
outcomes



What is information?

Definition, attempt #2: We gain one bit of information each 
time we distinguish between two equally likely events.

• The amount of information contained in an experiment is 
the number of "probability bisections" required  
(on average) to determine the outcome


• amount of information contained in an experiment  
              with outcome probabilities  
        

H(p) =
p1, …, pk

What's going on?
• To maximize efficiency: with each question, we don't need 

to reduce the number of possibilities by 1/2, but rather we 
need to distinguish between two equally probable 
outcomes
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What is information?

Alternate perspective: 

• Say the "information gained" from  
observing an event of probability    is  a f(a) := − log2 a

•  is the average (expected) 

information gained from observing an experiment with 
outcome probabilities   
        

H(p) =
k

∑
i=1

pi(−log2 pi)

p1, …, pk
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What is information?

Alternate perspective #2 (axiomatic approach): 

• Information function    should have some desirable properties:f

• Independent events add information:  f(xy) = f(x) + f(y)

• Rarer events give more information:    is decreasingf

• Normalization:  f(1/2) = 1

   is the only such function! 
        

f(x) = − log2(x)
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Data compression

• Also known as source coding 

• Encode data into 0s and 1s in an injective way (lossless 
compression)


• Goal: minimize number of bits needed to encode



Data compression, formally

•  = alphabet that you want to encode (e.g. )


• Encoder = injective map  all 

finite strings of 0s and 1s

A A = {a, b, c, …, z}

f : A → {0,1}* =
∞

⋃
n=1

{0,1}n =



Example

• Fixed-length code


• 


• 


• Not very efficient, in fact no compression at all

A = {a, b, c, d}

f(a) = 00, f(b) = 01, f(c) = 10, f(d) = 11
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More data compression

• Idea: gain efficiency by considering relative frequencies of 
letters in  A

• Equip    with probability distribution    that 
indicates relative frequencies

A p = (p(a))a∈A

• Goal: define    to minimize  f 𝔼p | f(a) | = ∑
a∈A

p(a) | f(a) |

• We can save time on average by reserving shorter code words 
for more common letters
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Prefix codes

• One more desirable property for encoder   : require that 
for all distinct ,  is not a prefix of 

f
a, b ∈ A f(a) f(b)

• Allows decoding in real time

011100 
 b  d  a



Prefix codes

• One more desirable property for encoder   : require that 
for all distinct ,  is not a prefix of 

f
a, b ∈ A f(a) f(b)

• Allows decoding in real time

0111001 
 b  d  a



Prefix codes

• One more desirable property for encoder   : require that 
for all distinct ,  is not a prefix of 

f
a, b ∈ A f(a) f(b)

• Allows decoding in real time

01110011 
 b  d  a



Prefix codes

• One more desirable property for encoder   : require that 
for all distinct ,  is not a prefix of 

f
a, b ∈ A f(a) f(b)

• Allows decoding in real time

01110011 
 b  d  a  d



Example



Example

• Variable-length code

• A = {a, b, c, d}

• p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8

• f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111



Example

• Variable-length code

• A = {a, b, c, d}

• p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8

• f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111

• 𝔼p | f(a) | =
1
2

⋅ 1 +
1
4

⋅ 2 +
1
8

⋅ 3 +
1
8

⋅ 3 = 1.75

• More efficient (on average) than fixed-length code (2 bits/
letter)



Example

• Variable-length code

• A = {a, b, c, d}

• p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8

• f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111

• 𝔼p | f(a) | =
1
2

⋅ 1 +
1
4

⋅ 2 +
1
8

⋅ 3 +
1
8

⋅ 3 = 1.75

• More efficient (on average) than fixed-length code (2 bits/
letter)

• Does this look familiar?



Example

• Variable-length code

• A = {a, b, c, d}

• p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8

• f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111

• 𝔼p | f(a) | =
1
2

⋅ 1 +
1
4

⋅ 2 +
1
8

⋅ 3 +
1
8

⋅ 3 = 1.75

• More efficient (on average) than fixed-length code (2 bits/
letter)

• Does this look familiar? 1 2 3 4
1
2

1
4

1
8

1
8
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The return of entropy

• It seems that the entropy of the frequency distribution is 
related to the efficiency of prefix codes

• (a version of) Shannon's source coding theorem: Let  
 be an alphabet equipped with a probability (frequency) 

distribution  .  Then any prefix code 
  satisfies  .  Moreover, 

there always exists a code    with  .

A
p = (p(a))a∈A

f : A → {0,1}* 𝔼p | f(a) | ≥ H(p)
f 𝔼p | f(a) | ≈ H(p)
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Proof of source coding theorem
• A prefix code is like a section of a binary tree 

1

11

0 ( )a

00 01

000 001 010 011

10 ( ) b

100 101 111 ( )d110 ( )c

• This controls the length profile of the code:    ∑
a∈A

2−|f(a)| ≤ 1
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• Compare    to  𝔼p | f(a) | H(p) = 𝔼p (−log2 p(a))
• 𝔼p | f(a) | − 𝔼p (−log2 p(a)) = 𝔼p [−log2 (2−|f(a)|/p(a))]
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• Compare    to  𝔼p | f(a) | H(p) = 𝔼p (−log2 p(a))
• 𝔼p | f(a) | − 𝔼p (−log2 p(a)) = 𝔼p [−log2 (2−|f(a)|/p(a))]

≥ − log2 (𝔼p [2−|f(a)|/p(a)])
= − log2 (∑a∈A

2−|f(a)|)
≥ 0

• Equality in Jensen when    is constant in  ,  i.e.  2−|f(a)|/p(a) a
| f(a) | = − log2 p(a)

• This length profile satisfies  ,  so by a greedy algorithm 

one can define a corresponding prefix code
∑a∈A

2−|f(a)| = 1

(Jensen)

(previous slide)

Proof of source coding theorem
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information that its occurrence conveys



Interpretation

• The maximum efficiency prefix code has length profile

 | f(a) | = − log2 p(a), a ∈ A

• The moral of the story: to achieve maximum efficiency, 
each letter gets coded with exactly the number of bits of 
information that its occurrence conveys

• Afterthought:    appears when the    aren't perfect 
powers of  

≈ p(a)
1/2
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Data transmission

• Also known as channel coding 

• Send data through a noisy channel, some distortion 
happens


• Goal: find a way to transmit to maximize accuracy

Original data

Compressed data Received compressed message

Decoded received message

Noisy channelSource coding
Decode source code

Channel coding
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Formalism (attempt #1)

• alphabet of transmitted message, alphabet of 
received message
B = B′ � =

• Different alphabets allow for possibility of corruption

•   is a channel (or 

probability kernel or stochastic matrix):  

θ = (θbb′ �)b∈B,b′ �∈B′ �
= (θ(b′�|b))b∈B,b′�∈B′�

 probability that    is received, given that    is sentθ(b′ �|b) = b′� b

• Example:  B = {0,1}, B′� = {0,1,e}, θ = (.95 .01 .04
.01 .95 .04)
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• A decoder is a function  g : B′� → B

• Goal: make the worst-case probability of error 
  as small as possiblepe = max

b∈B
θ({b′ � : g(b′�) ≠ b} |b)

• Naive strategy: Send each letter 3 times    and define    
by majority rule

(B′� = B3) g

• Slightly better strategy: set   
                           

(Bayesian maximum likelihood estimator)

g(b′�) = argmax
b∈B

ℙ(b sent |b′� received)

Formalism (attempt #1)
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Formalism (attempt #2)

• New idea: transmit letters from    in blocks of length    B N ≫ 1
(B ↦ BN, B′� ↦ (B′ �)N, θ ↦ θN)

• Idea: try to pick a special subset    of "acceptable words" that 
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Formalism (attempt #2)

• New idea: transmit letters from    in blocks of length    B N ≫ 1
(B ↦ BN, B′� ↦ (B′ �)N, θ ↦ θN)

• Idea: try to pick a special subset    of "acceptable words" that 
are very unlikely to be confused with each other, and only transmit those

𝒜N ⊆ BN

• New goal: make   as large as possible while keeping    as small as 
possible

|𝒜N | pe

• Toy example: B = B′� = {0,1}, θ = (.99 .01
.01 .99)

• Let    be a subset of    with the property that any two strings 
in    differ in at least    letters.  When    is huge it is 
virtually impossible for any of these to get confused for any other.

𝒜N BN

𝒜N .03N N
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Channel capacity

• Say a number    is an achievable rate if it is possible to 
choose acceptable words    and decoder    such that  

  and    is arbitrarily small

R
𝒜N g

|𝒜N | ≥ 2RN pe

• Maximum possible rate =  log2 |B |

• The channel capacity of a channel    is the sup 
of all achievable rates

θ C(θ) :=

• Most information that can be transmitted per unit 
time, subject to the constraint of high accuracy
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• Given an input frequency distribution    on , the channel    induces an output 
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Mutual information
• Given an input frequency distribution    on , the channel    induces an output 

frequency distribution    on    and a joint input-output distribution    on 
q B θ

q′�θ B′ � q ⋉ θ B × B′�

•  prob. that    is sent and    is received  (q ⋉ θ)(b, b′�) = q(b)θ(b′�|b) = b b′�

•  total prob. that    is receivedq′�θ(b′�) = ∑
b∈B

q(b)θ(b′ �|b) = b′�

• The mutual information between    and    is                                               q θ
I(q, θ) := H(q) + H(q′�θ) − H(q ⋉ θ)

• Measures how much information is faithfully transmitted by  θ

•   (perfect transmission)    θ = (1 0
0 1) ⟶ I(q, θ) = H(q)

•   (total corruption)    θ = (1 0
1 0) ⟶ I(q, θ) = 0
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 C(θ) = sup
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Channel coding theorem

• Shannon's channel coding theorem: 

 C(θ) = sup
q∈Prob(B)

I(q, θ)

• Maximum rate of information that can be passed 
accurately through    is determined by how much 
entropy    can transport from    to        

θ
θ B B′ �
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• Noiseless channel

•   for any input distribution  , 
maximized when    
I(q, θ) = H(q) q

q = (1/2,1/2)

•   C(θ) = 1

Examples
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Examples

• Binary erasure channel

• Might expect to maximize efficiency by being biased towards 0

• But recall: goal is to maximize accurate decodability, not error-free 
transmission

• If e is received, it probably came from 1

• Actually more efficient to bias a bit towards 1:  , 
achieved by  

C(θ) = 0.976
ℙ(0) = 0.496

0
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Examples
• Noisy typewriter

• Notice that A,C,E,G,... can't be 
confused for each other

• It turns out that the best input 
distribution is the choose uniformly 
from the uniquely decodable 
subset

• C(θ) = log2 13


