How to write good code(s)

Adam Lott 23 April 2020

Outline

1. What is information?

2. Data compression

3. Data transmission

What is information? 1 2 3 4 5 6 7 8

• One case contains a prize

• How to find with the fewest yes/no questions?

What is information? 1 2 3 4 5 6 7 8

• One case contains a prize

• How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "?

• One case contains a prize

• How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "? No

• One case contains a prize

• How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "?

-"Is it in number ≤ 6 "?

• One case contains a prize

• How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "?

-"Is it in number ≤ 6 "? Yes

• One case contains a prize

• How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "? No

-"Is it in number ≤ 6 "? Yes

-"Is it in number ≤ 5 "?

• One case contains a prize

• How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "? No

-"Is it in number ≤ 6 "? Yes

-"Is it in number ≤ 5 "? Yes

• One case contains a prize

How to find with the fewest yes/no questions?

-"Is it in number ≤ 4 "? No

-"Is it in number ≤ 6 "? Yes

-"Is it in number ≤ 5 "? Yes

• 3 questions +>> 3 units of "information"?

 2 questions is always sufficient, but how many questions on average?

- 2 questions is always sufficient, but how many questions on average?
- 1 question 1/3 of the time, 2 questions 2/3 of the time
- (1/3)(1) + (2/3)(2) = 5/3 questions "on average"

• Better strategy: do N trials simultaneously

- Better strategy: do N trials simultaneously
- Possible configurations = $\{1,2,3\}^N$

- Better strategy: do N trials simultaneously
- Possible configurations = $\{1,2,3\}^N$
- Use bisection strategy to find correct configuration in $\lceil \log_2(3^N) \rceil = N \log 3 + O(1)$ many questions
- $\cdot \log_2 3 \approx 1.58$ questions "on average"

Definition, attempt #1: The amount of information contained in an experiment is the minimum number of yes/no questions required (on average) to determine the outcome

"Theorem": We gain $\log_2 k$ bits of information when we observe one of k equally likely outcomes

• What if each outcome is not equally likely?

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy:

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy: -"Is it in number ≤ 1 "?

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy: -"Is it in number ≤ 1 "? No

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy:

-"Is it in number ≤ 1 "? No

-"Is it in number ≤ 2 "?

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy:
 - -"Is it in number ≤ 1 "? No

-"Is it in number ≤ 2 "? No

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy:
 - -"Is it in number ≤ 1 "? No
 - -"Is it in number ≤ 2 "? No
 - -"Is it in number ≤ 3 "?

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy:
 - -"Is it in number ≤ 1 "? No
 - -"Is it in number ≤ 2 "? No
 - -"Is it in number ≤ 3 "? Yes

- What if each outcome is not equally likely?
- We can do better than the naive bisection strategy:
 - -"Is it in number ≤ 1 "? No
 - -"Is it in number ≤ 2 "? No
 - -"Is it in number ≤ 3 "? Yes
- # questions on average = (1/2)(1) + (1/4)(2) + (1/4)(3) = 1.75
 - Worst case scenario is worse, but better on average!

• Let's apply the "N simultaneous trials" strategy:

- Let's apply the "N simultaneous trials" strategy:
- Possible configurations = strings in {1,2,3,4}^N
 with the correct distribution of values
 - Viable configuration must have 1/2 1s, 1/4 2s, 1/8 3s, 1/8 4s

- Let's apply the "N simultaneous trials" strategy:
- Possible configurations = strings in {1,2,3,4}^N
 with the correct distribution of values

• Viable configuration must have 1/2 1s, 1/4 2s, 1/8 3s, 1/8 4s

Average # of questions = $\frac{1}{N}\log_2(\text{# viable configurations}) = \frac{1}{N}\log_2\frac{N!}{(N/2)!(N/4)!(N/8)!(N/8)!}$

- Let's apply the "N simultaneous trials" strategy:
- Possible configurations = strings in {1,2,3,4}^N
 with the correct distribution of values
 - Viable configuration must have 1/2 1s, 1/4 2s, 1/8 3s, 1/8 4s

Average # of questions = $\frac{1}{N} \log_2(\text{# viable configurations}) = \frac{1}{N} \log_2 \frac{N!}{(N/2)!(N/4)!(N/8)!(N/8)!}$

(Stirling's formula)
$$\approx -\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{4}\log_2\left(\frac{1}{4}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right)$$

= 1.75

• Now apply this strategy in the most general case

• Now apply this strategy in the most general case

• Possible configurations = strings in $\{1,2,...,k\}^N$ with the correct distribution -- 1 appears p_1 of the time, 2 appears p_2 of the time, etc.

Now apply this strategy in the most general case

• Possible configurations = strings in $\{1,2,...,k\}^N$ with the correct distribution -- 1 appears p_1 of the time, 2 appears p_2 of the time, etc.

Average # of questions =
$$\frac{1}{N} \log_2 \frac{N!}{(Np_1)! \cdots (Np_k)!} \approx \sum_{i=1}^k -p_i \log_2(p_i)$$

Now apply this strategy in the most general case

• Possible configurations = strings in $\{1,2,...,k\}^N$ with the correct distribution -- 1 appears p_1 of the time, 2 appears p_2 of the time, etc.

Average # of questions =
$$\frac{1}{N} \log_2 \frac{N!}{(Np_1)! \cdots (Np_k)!} \approx \sum_{i=1}^k -p_i \log_2(p_i)$$

H(p) = Shannon entropy of probability distribution p
What's going on?

What's going on?

 To maximize efficiency: with each question, we don't need to reduce the **number** of possibilities by 1/2, but rather we need to distinguish between two **equally probable** outcomes

What's going on?

 To maximize efficiency: with each question, we don't need to reduce the **number** of possibilities by 1/2, but rather we need to distinguish between two **equally probable** outcomes

Definition, attempt #2: We gain one bit of information each time we distinguish between two equally likely events.

What's going on?

 To maximize efficiency: with each question, we don't need to reduce the **number** of possibilities by 1/2, but rather we need to distinguish between two **equally probable** outcomes

Definition, attempt #2: We gain one bit of information each time we distinguish between two equally likely events.

- The amount of information contained in an experiment is the number of "probability bisections" required (on average) to determine the outcome
- H(p) = amount of information contained in an experiment with outcome probabilities p_1, \ldots, p_k

Alternate perspective:

Alternate perspective:

• Say the "information gained" from observing an event of probability a is $f(a) := -\log_2 a$

Alternate perspective:

• Say the "information gained" from observing an event of probability a is $f(a) := -\log_2 a$

•
$$H(p) = \sum_{i=1}^{k} p_i(-\log_2 p_i)$$
 is the average (expected)
information gained from observing an experiment with
outcome probabilities p_1, \dots, p_k

Alternate perspective #2 (axiomatic approach):

Alternate perspective #2 (axiomatic approach):

• Information function f should have some desirable properties:

Alternate perspective #2 (axiomatic approach):

- Information function f should have some desirable properties:
 - Independent events add information: f(xy) = f(x) + f(y)
 - Rarer events give more information: f is decreasing
 - Normalization: f(1/2) = 1

Alternate perspective #2 (axiomatic approach):

- Information function f should have some desirable properties:
 - Independent events add information: f(xy) = f(x) + f(y)
 - Rarer events give more information: f is decreasing
 - Normalization: f(1/2) = 1

 $f(x) = -\log_2(x)$ is the only such function!

Outline

1. What is information?

2. Data compression

3. Data transmission

Data compression

- Also known as **source coding**
- Encode data into 0s and 1s in an injective way (lossless compression)
- Goal: minimize number of bits needed to encode

Data compression, formally

- A =alphabet that you want to encode (e.g. $A = \{a, b, c, ..., z\}$)
- Encoder = injective map $f: A \to \{0,1\}^* = \bigcup_{n=1}^{\infty} \{0,1\}^n =$ all

finite strings of 0s and 1s

Example

- Fixed-length code
 - $A = \{a, b, c, d\}$
 - f(a) = 00, f(b) = 01, f(c) = 10, f(d) = 11
- Not very efficient, in fact no compression at all

• Idea: gain efficiency by considering relative frequencies of letters in ${\cal A}$

- Idea: gain efficiency by considering relative frequencies of letters in A
 - Equip A with probability distribution $p = (p(a))_{a \in A}$ that indicates relative frequencies

- Idea: gain efficiency by considering relative frequencies of letters in A
 - Equip A with probability distribution $p = (p(a))_{a \in A}$ that indicates relative frequencies
- Goal: define f to minimize $\mathbb{E}_p |f(a)| = \sum_{a \in A} p(a) |f(a)|$

- Idea: gain efficiency by considering relative frequencies of letters in A
 - Equip A with probability distribution $p = (p(a))_{a \in A}$ that indicates relative frequencies
- Goal: define f to minimize $\mathbb{E}_p |f(a)| = \sum_{a \in A} p(a) |f(a)|$
- We can save time on average by reserving shorter code words for more common letters

• One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

0

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

01

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

01 b

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

011 b

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

0111 b

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

0111 b d

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

01110 b d

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

011100 b d

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

011100 b d a

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

0111001 b d a
Prefix codes

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

01110011 b d a

Prefix codes

- One more desirable property for encoder f: require that for all distinct $a, b \in A, f(a)$ is not a **prefix** of f(b)
- Allows decoding in real time

01110011 b d a d

- Variable-length code
 - $A = \{a, b, c, d\}$
 - p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8
 - f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111

• Variable-length code

•
$$A = \{a, b, c, d\}$$

•
$$p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8$$

•
$$f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111$$

•
$$\mathbb{E}_p[f(a)] = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

 More efficient (on average) than fixed-length code (2 bits/ letter)

- Variable-length code
 - $A = \{a, b, c, d\}$
 - p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8

•
$$f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111$$

•
$$\mathbb{E}_p[f(a)] = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

- More efficient (on average) than fixed-length code (2 bits/ letter)
- Does this look familiar?

• Variable-length code

•
$$A = \{a, b, c, d\}$$

•
$$p(a) = 1/2, p(b) = 1/4, p(c) = p(d) = 1/8$$

•
$$f(a) = 0, f(b) = 10, f(c) = 110, f(d) = 111$$

•
$$\mathbb{E}_p[f(a)] = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

- More efficient (on average) than fixed-length code (2 bits/ letter)
- Does this look familiar?

The return of entropy

The return of entropy

• It seems that the entropy of the frequency distribution is related to the efficiency of prefix codes

The return of entropy

- It seems that the entropy of the frequency distribution is related to the efficiency of prefix codes
- (a version of) Shannon's source coding theorem: Let A be an alphabet equipped with a probability (frequency) distribution $p = (p(a))_{a \in A}$. Then any prefix code $f: A \to \{0,1\}^*$ satisfies $\mathbb{E}_p |f(a)| \ge H(p)$. Moreover, there always exists a code f with $\mathbb{E}_p |f(a)| \approx H(p)$.

• A prefix code is like a section of a binary tree

 $2^{-|f(a)|}$

 $a \in A$

 ≤ 1

• This controls the length profile of the code:

• Compare $\mathbb{E}_p | f(a) |$ to $H(p) = \mathbb{E}_p (-\log_2 p(a))$

• Compare
$$\mathbb{E}_p | f(a) |$$
 to $H(p) = \mathbb{E}_p (-\log_2 p(a))$

•
$$\mathbb{E}_{p}|f(a)| - \mathbb{E}_{p}\left(-\log_{2} p(a)\right) = \mathbb{E}_{p}\left[-\log_{2}\left(2^{-|f(a)|}/p(a)\right)\right]$$

 $\geq -\log_{2}\left(\mathbb{E}_{p}\left[2^{-|f(a)|}/p(a)\right]\right)$ (Jensen)
 $= -\log_{2}\left(\sum_{a\in A} 2^{-|f(a)|}\right)$
 ≥ 0 (previous slide)

• Compare
$$\mathbb{E}_p | f(a) |$$
 to $H(p) = \mathbb{E}_p (-\log_2 p(a))$

•
$$\mathbb{E}_{p}|f(a)| - \mathbb{E}_{p}\left(-\log_{2} p(a)\right) = \mathbb{E}_{p}\left[-\log_{2}\left(2^{-|f(a)|}/p(a)\right)\right]$$

 $\geq -\log_{2}\left(\mathbb{E}_{p}\left[2^{-|f(a)|}/p(a)\right]\right)$ (Jensen)
 $= -\log_{2}\left(\sum_{a\in A} 2^{-|f(a)|}\right)$
 ≥ 0 (previous slide)

• Equality in Jensen when $2^{-|f(a)|}/p(a)$ is constant in a, i.e. $|f(a)| = -\log_2 p(a)$

• Compare
$$\mathbb{E}_p | f(a) |$$
 to $H(p) = \mathbb{E}_p (-\log_2 p(a))$

•
$$\mathbb{E}_{p}|f(a)| - \mathbb{E}_{p}\left(-\log_{2} p(a)\right) = \mathbb{E}_{p}\left[-\log_{2}\left(2^{-|f(a)|}/p(a)\right)\right]$$

 $\geq -\log_{2}\left(\mathbb{E}_{p}\left[2^{-|f(a)|}/p(a)\right]\right)$ (Jensen)
 $= -\log_{2}\left(\sum_{a\in A} 2^{-|f(a)|}\right)$
 ≥ 0 (previous slide)

- Equality in Jensen when $2^{-|f(a)|}/p(a)$ is constant in a, i.e. $|f(a)| = -\log_2 p(a)$
 - This length profile satisfies $\sum_{a \in A} 2^{-|f(a)|} = 1$, so by a greedy algorithm one can define a corresponding prefix code

• The maximum efficiency prefix code has length profile

$$|f(a)| = -\log_2 p(a), \quad a \in A$$

The maximum efficiency prefix code has length profile

$$|f(a)| = -\log_2 p(a), \quad a \in A$$

 The moral of the story: to achieve maximum efficiency, each letter gets coded with exactly the number of bits of information that its occurrence conveys

The maximum efficiency prefix code has length profile

$$|f(a)| = -\log_2 p(a), \quad a \in A$$

- The moral of the story: to achieve maximum efficiency, each letter gets coded with exactly the number of bits of information that its occurrence conveys
- Afterthought: \approx appears when the p(a) aren't perfect powers of 1/2

Outline

1. What is information?

2. Data compression

3. Data transmission

Data transmission

- Also known as **channel coding**
- Send data through a noisy channel, some distortion happens
- Goal: find a way to transmit to maximize accuracy

- B = alphabet of transmitted message, B' = alphabet of received message
 - Different alphabets allow for possibility of corruption

- B = alphabet of transmitted message, B' = alphabet of received message
 - Different alphabets allow for possibility of corruption

•
$$\theta = (\theta_{bb'})_{b \in B, b' \in B'} = (\theta(b' | b))_{b \in B, b' \in B'}$$
 is a channel (or probability kernel or stochastic matrix):

- B = alphabet of transmitted message, B' = alphabet of received message
 - Different alphabets allow for possibility of corruption
- $\theta = (\theta_{bb'})_{b \in B, b' \in B'} = (\theta(b'|b))_{b \in B, b' \in B'}$ is a channel (or probability kernel or stochastic matrix):

 $\theta(b'|b) = \text{ probability that } b' \text{ is received, given that } b \text{ is sent}$

- B = alphabet of transmitted message, B' = alphabet of received message
 - Different alphabets allow for possibility of corruption
- $\theta = (\theta_{bb'})_{b \in B, b' \in B'} = (\theta(b'|b))_{b \in B, b' \in B'}$ is a channel (or probability kernel or stochastic matrix):

 $\theta(b'|b) = \text{ probability that } b' \text{ is received, given that } b \text{ is sent}$

• Example:
$$B = \{0,1\}, B' = \{0,1,e\}, \theta = \begin{pmatrix} .95 & .01 & .04 \\ .01 & .95 & .04 \end{pmatrix}$$

• A **decoder** is a function $g: B' \to B$

- A **decoder** is a function $g: B' \to B$
- Goal: make the worst-case probability of error $p_e = \max_{b \in B} \theta(\{b' : g(b') \neq b\} | b)$ as small as possible

- A **decoder** is a function $g: B' \to B$
- Goal: make the worst-case probability of error $p_e = \max_{b \in B} \theta(\{b' : g(b') \neq b\} | b)$ as small as possible
- Naive strategy: Send each letter 3 times $(B' = B^3)$ and define g by majority rule
- A **decoder** is a function $g: B' \to B$
- Goal: make the worst-case probability of error $p_e = \max_{b \in B} \theta(\{b' : g(b') \neq b\} | b)$ as small as possible
- Naive strategy: Send each letter 3 times $(B' = B^3)$ and define g by majority rule
- Slightly better strategy: set

$$g(b') = \operatorname{argmax} \mathbb{P}(b \operatorname{sent} | b' \operatorname{received})$$

 $b \in B$
(Bayesian maximum likelihood estimator)

• New idea: transmit letters from *B* in blocks of length $N \gg 1$ $(B \mapsto B^N, B' \mapsto (B')^N, \theta \mapsto \theta^N)$

- New idea: transmit letters from B in blocks of length $N \gg 1$ $(B \mapsto B^N, B' \mapsto (B')^N, \theta \mapsto \theta^N)$
 - Idea: try to pick a special subset $\mathscr{A}_N \subseteq B^N$ of "acceptable words" that are very unlikely to be confused with each other, and only transmit those

- New idea: transmit letters from B in blocks of length $N \gg 1$ $(B \mapsto B^N, B' \mapsto (B')^N, \theta \mapsto \theta^N)$
 - Idea: try to pick a special subset $\mathscr{A}_N \subseteq B^N$ of "acceptable words" that are very unlikely to be confused with each other, and only transmit those
- New goal: make $|\mathscr{A}_N|~$ as large as possible while keeping $~p_e~$ as small as possible

- New idea: transmit letters from B in blocks of length $N \gg 1$ $(B \mapsto B^N, B' \mapsto (B')^N, \theta \mapsto \theta^N)$
 - Idea: try to pick a special subset $\mathscr{A}_N \subseteq B^N$ of "acceptable words" that are very unlikely to be confused with each other, and only transmit those
- New goal: make $|\mathscr{A}_N|~$ as large as possible while keeping $~p_e~$ as small as possible

• Toy example:
$$B = B' = \{0,1\}, \ \theta = \begin{pmatrix} .99 & .01 \\ .01 & .99 \end{pmatrix}$$

• Let \mathscr{A}_N be a subset of B^N with the property that any two strings in \mathscr{A}_N differ in at least .03N letters. When N is huge it is virtually impossible for any of these to get confused for any other.

Channel capacity

Channel capacity

- Say a number R is an **achievable rate** if it is possible to choose acceptable words \mathscr{A}_N and decoder g such that $|\mathscr{A}_N| \geq 2^{RN}$ and p_e is arbitrarily small
 - Maximum possible rate = $\log_2 |B|$

Channel capacity

- Say a number R is an **achievable rate** if it is possible to choose acceptable words \mathscr{A}_N and decoder g such that $|\mathscr{A}_N| \ge 2^{RN}$ and p_e is arbitrarily small
 - Maximum possible rate = $\log_2 |B|$
- The **channel capacity** of a channel θ is $C(\theta) :=$ the sup of all achievable rates
 - Most information that can be transmitted per unit time, subject to the constraint of high accuracy

Mutual information

Mutual information

- Given an **input** frequency distribution q on B, the channel θ induces an **output** frequency distribution q'_{θ} on B' and a **joint input-output** distribution $q \ltimes \theta$ on $B \times B'$
 - $(q \ltimes \theta)(b, b') = q(b)\theta(b'|b) =$ prob. that b is sent and b' is received

•
$$q'_{\theta}(b') = \sum_{b \in B} q(b)\theta(b'|b) =$$
 total prob. that b' is received

Mutual information

- Given an **input** frequency distribution q on B, the channel θ induces an **output** frequency distribution q'_{θ} on B' and a **joint input-output** distribution $q \ltimes \theta$ on $B \times B'$
 - $(q \ltimes \theta)(b, b') = q(b)\theta(b'|b) =$ prob. that b is sent and b' is received

•
$$q'_{\theta}(b') = \sum_{b \in B} q(b)\theta(b'|b) = \text{ total prob. that } b' \text{ is received}$$

- The mutual information between q and θ is $I(q, \theta) := H(q) + H(q'_{\theta}) H(q \ltimes \theta)$
 - Measures how much information is faithfully transmitted by $\,\theta$

•
$$\theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (perfect transmission) $\longrightarrow I(q, \theta) = H(q)$
• $\theta = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ (total corruption) $\longrightarrow I(q, \theta) = 0$

Channel coding theorem

Channel coding theorem

Shannon's channel coding theorem:

$$C(\theta) = \sup_{q \in \operatorname{Prob}(B)} I(q, \theta)$$

Channel coding theorem

Shannon's channel coding theorem:

$$C(\theta) = \sup_{q \in \operatorname{Prob}(B)} I(q, \theta)$$

• Maximum rate of information that can be passed accurately through θ is determined by how much entropy θ can transport from B to B'

• Noiseless channel

$$0 \xrightarrow{1} 0$$
$$1 \xrightarrow{1} 1$$

Noiseless channel

$$0 \xrightarrow{1} 0$$
$$1 \xrightarrow{1} 1$$

- $I(q, \theta) = H(q)$ for any input distribution q, maximized when q = (1/2, 1/2)
- $C(\theta) = 1$

• Binary erasure channel

• Binary erasure channel

• Might expect to maximize efficiency by being biased towards 0

• Binary erasure channel

- Might expect to maximize efficiency by being biased towards 0
- But recall: goal is to maximize accurate decodability, not error-free transmission

Binary erasure channel

- Might expect to maximize efficiency by being biased towards 0
- But recall: goal is to maximize accurate decodability, not error-free transmission
 - If e is received, it probably came from 1
 - Actually more efficient to bias a bit towards 1: $C(\theta) = 0.976$, achieved by $\mathbb{P}(0) = 0.496$

• Noisy typewriter

• Noisy typewriter

• Notice that A,C,E,G,... can't be confused for each other

Noisy typewriter

- Notice that A,C,E,G,... can't be confused for each other
- It turns out that the best input distribution is the choose uniformly from the uniquely decodable subset
- $C(\theta) = \log_2 13$

