Slicing theorems for IFS attractors

Adam Lott UCLA

05 February 2021

Classical slicing theorems

Notation. For $z \in \mathbb{R}^{2}, t \in \mathbb{T}=\mathbb{R} / \mathbb{Z}$, let $L_{z, t}$ denote the line through the point z in the direction $e^{2 \pi i t}$.

Theorem (Marstrand, 1950s)

Let $A \subseteq \mathbb{R}^{2}$. Then for Lebesgue-a.e. (z, t),

$$
\operatorname{dim}\left(A \cap L_{z, t}\right) \leq \max (0, \operatorname{dim}(A)-1)
$$

■ Here and throughout, $\operatorname{dim}(\cdot)$ is Hausdorff dimension

Classical slicing theorems

Question

What conditions on A imply that $\operatorname{dim}\left(A \cap L_{z, t}\right) \leq \max (0, \operatorname{dim}(A)-1)$ for every z, t ?

Conjectures by Furstenberg: if A has nice fractal structure, then the above should be true.

Iterated function systems

Let $\phi_{1}, \ldots, \phi_{n}$ be contraction mappings in \mathbb{R}^{2}. Then there exists a unique compact set $K \subseteq \mathbb{R}^{2}$ such that

$$
K=\bigcup_{1 \leq i \leq n} \phi_{i}(K)
$$

- $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is an iterated function system (IFS).
- K is the attractor of the IFS.

Iterated function systems

Iterated function systems

Iterated function systems

::

Iterated function systems

Iterated function systems

Definitions

■ If the union in $K=\bigcup_{1 \leq i \leq n} \phi_{i}(K)$ is disjoint, the IFS satisfies the strong separation condition (SSC).

- If all of the ϕ_{i} are similarity maps, the attractor K is a self-similar set.

Iterated function systems

From now on, assume the IFS has the following properties.

- SSC
- Self-similarity
- Each ϕ_{i} has the same rotation part $\theta \notin 2 \pi \mathbb{Q}$

Attractor system

The attractor K can be turned into a dynamical system. Define $S: K \rightarrow K$ by $\left.S\right|_{\phi_{i}(K)}=\phi_{i}^{-1}$.

- Well defined by the SSC

Attractor system

Observation. Suppose there exists a line L such that $\operatorname{dim}(K \cap L)>\operatorname{dim}(K)-1$. Say the direction of L is $e^{2 \pi i t_{0}}$.

- $S(K \cap L)$ is a union of slices, each in the direction $e^{2 \pi i\left(t_{0}-\theta\right)}$, and at least one of them also has dimension $>\operatorname{dim}(K)-1$.
- Iterate this procedure: for each n there is a line L_{n} in the direction $e^{2 \pi i\left(t_{0}-n \theta\right)}$ such that $\operatorname{dim}\left(K \cap L_{n}\right)>\operatorname{dim}(K)-1$.

Dimension of measures

Let μ be a probability measure on \mathbb{R}^{d}.

- The local dimension of μ at x is

$$
\operatorname{dim}(\mu, x)=\liminf _{r \geq 0} \frac{\log \mu\left(B_{r}(x)\right)}{\log (1 / r)}
$$

■ If the limit exists and is μ-a.e. constant, the measure μ is exact dimensional and the common value is denoted $\operatorname{dim}(\mu)$.
Correspondence between measures and sets:
■ $\operatorname{dim}(\mu)=\inf \{\operatorname{dim}(A): \mu(A)>0\}$
■ "Frostman's lemma": If $\operatorname{dim}(A) \geq \alpha$, then there exists a measure μ such that $\operatorname{dim}(\mu)=\alpha$ and $\mu(A)=1$.

Magnification dynamics

Attractor system + keeping track of "slice data"

- Let $X=K \times \mathbb{T} \times \operatorname{Prob}(K)$

■ Define $M: X \rightarrow X$ by $(z, t, \nu) \mapsto\left(S z, t-\theta, S_{*}\left(\nu_{z}\right)\right)$, where ν_{z} is defined to be ν conditioned on the piece $\phi_{i}(K)$ that contains z

■ Simulates "zooming in" to the point $z \in K$

Magnification dynamics

Idea: Use the existence of one high-dimensional slice to construct a special invariant measure.

Let $L_{z_{0}, t_{0}}$ be any slice with $\alpha:=\operatorname{dim}\left(K \cap L_{z_{0}, t_{0}}\right)>0$.
■ Let $\nu_{0} \in \operatorname{Prob}(K)$ be supported on $L_{z_{0}, t_{0}}$ and satisfy $\operatorname{dim}\left(\nu_{0}\right)=\alpha$

■ Let $\bar{\mu}_{0}:=\nu_{0} \times \delta_{t_{0}} \times \delta_{\nu_{0}} \in \operatorname{Prob}(X)$

- Let $\bar{\mu}_{n}:=\frac{1}{n} \sum_{i=0}^{n-1} M_{*}^{i} \bar{\mu}_{0}$

■ $\bar{\mu}:=\lim _{n \rightarrow \infty} \bar{\mu}_{n}$ is an M-invariant probability measure on X supported on $\left\{(z, t, \nu): \nu\left(L_{z, t}\right)=1\right.$ and $\left.\operatorname{dim}(\nu) \geq \alpha\right\}$

Magnification dynamics

The marginal of $\bar{\mu}$ on the \mathbb{T} coordinate is invariant for the irrational circle rotation $t \mapsto t-\theta$, so it must be Lebesgue measure.

Theorem (Furstenberg, 1960s)

Suppose there is some line L with $\operatorname{dim}(K \cap L)=\alpha>0$. Then for Lebesgue-a.e. t there is a line L_{t} in the direction $e^{2 \pi i t}$ such that $\operatorname{dim}(K \cap L) \geq \alpha$ also.

Idea: if K has high-dimensional slices in many different directions, it forces $\operatorname{dim}(K)$ to be big (c.f. the Kakeya problem)

Magnification dynamics

Theorem (Shmerkin/Wu, 2019)

Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a self-similar IFS satisfying the SSC. Further assume that each ϕ_{i} has the same rotation part $\theta \notin 2 \pi \mathbb{Q}$. Then $\operatorname{dim}(K \cap L) \leq \max (0, \operatorname{dim}(K)-1)$ for every line L.

- Independent \& simultaneous proofs by Pablo Shmerkin and Meng Wu (appeared in back-to-back Annals issues)
- Shmerkin's proof is not based on magnification dynamics
- Wu's proof uses a complicated argument based on Sinai's factor theorem to upgrade the previous observation to get the correct upper bound
- Austin (2020) found a simpler version of Wu's proof

Non-uniform rotations

Goal: drop the assumption that each ϕ_{i} has the same irrational rotation part

Two main places that assumption was used:

- Definition of magnification dynamics

■ Identifying the marginal of $\bar{\mu}$ on the \mathbb{T} coordinate

Non-uniform rotations

Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be an IFS with rotation parts $\theta_{1}, \ldots, \theta_{n} \in \mathbb{T}$.
Let $\theta(z)=\theta_{i}$ for $z \in \phi_{i}(K)$
New magnification dynamics $\widetilde{M}: X \rightarrow X$ are defined by

$$
(z, t, \nu) \mapsto\left(S z, t-\theta(z), S_{*}\left(\nu_{z}\right)\right)
$$

Non-uniform rotations

Assuming the existence of one high-dimensional slice, the same process works - construct an M-invariant measure $\widetilde{\mu}$ supported on measures supported on high-dimensional slices

- Because \widetilde{M} is a skew product in the \mathbb{T} coordinate, the \mathbb{T}-marginal of $\widetilde{\mu}$ is (a priori) not an invariant measure for any system
■ Need to analyze its regularity "by hand"

Non-uniform rotations

By the ergodic theorem, the \mathbb{T}-marginal of $\widetilde{\mu}$ is obtained as the limiting distribution of "multi-rotation orbits":

Definition

Let $\theta_{1}, \ldots, \theta_{n} \in \mathbb{T}$ and fix $\omega \in\left\{\theta_{1}, \ldots, \theta_{n}\right\}^{\mathbb{N}}$. The multi-rotation orbit generated by ω is the sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq \mathbb{T}$ defined by $x_{n}=\omega_{1}+\cdots+\omega_{n}$.

The limiting empirical distribution associated to ω is $\nu_{\omega}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \delta_{X_{n}}$.

Goal: show that for typical ω, ν_{ω} is not too singular

Non-uniform rotations

Proposition

Suppose $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ satisfy

- At most one θ_{j} is rational
- $\left\{\theta_{1}, \ldots, \theta_{n}\right\} \subseteq \operatorname{span}_{\mathbb{Q} \geq 0}\{1, \gamma\}$ for some $\gamma \notin \mathbb{Q}$.

Let $\mu \neq \delta_{\omega}$ be an ergodic shift-invariant measure on $\left\{\theta_{1}, \ldots, \theta_{n}\right\}^{\mathbb{N}}$. Then μ-a.s., ν_{ω} is not singular to Lebesgue measure.

Proof idea: Compare multi-rotation orbit to a single orbit of rotation by γ and use ergodic theorem to control frequency of overlaps.

Corollary

Under these assumptions on the IFS rotations, the attractor K satisfies $\operatorname{dim}(K \cap L) \leq \max (0, \operatorname{dim}(K)-1)$ for every line L.

Non-uniform rotations

Proposition

For Lebesgue-a.e. $\left(\theta_{1}, \ldots, \theta_{n}\right)$ (including all algebraic θ_{j}) and any $\omega \in\left\{\theta_{1}, \ldots, \theta_{n}\right\}^{\mathbb{N}}, \nu_{\omega}$ has Hausdorff dimension $\geq \frac{1}{n}$.

Proof idea: Estimate the typical growth rate of $\Phi_{\theta_{1}, \ldots, \theta_{n}}(r):=\min \left\{k_{1}+\cdots+k_{n}: k_{j} \geq 0,\left\|k_{1} \theta_{1}+\cdots+k_{n} \theta_{n}\right\|<r\right\}$ as $r \rightarrow 0$ to control the ν_{ω}-mass of balls of radius r.

Corollary

If an IFS has rotation parts $\left(\theta_{1}, \ldots, \theta_{n}\right)$ from the "good" set above, then the attractor K satisfies $\operatorname{dim}(K \cap L) \leq \max (0, \operatorname{dim}(K)-1 / n)$ for any line L.

More questions

■ The general case where $\left\{1, \theta_{1}, \ldots, \theta_{n}\right\}$ are linearly independent over \mathbb{Q}

■ Difficulty: there exist examples of $\theta_{1}, \theta_{2} \in \mathbb{T}$ and $\mu \in \operatorname{Prob}_{\sigma}^{e}\left(\left\{\theta_{1}, \theta_{2}\right\}^{\mathbb{N}}\right)$ such that μ-typical multi-rotation orbits are supported on a closed set of dimension 0 .

■ Higher dimensions

- Study multi-rotation orbits on the unit sphere instead of unit circle

