Slicing theorems for IFS attractors

Adam Lott
UCLA

05 February 2021
Notation. For $z \in \mathbb{R}^2$, $t \in T = \mathbb{R}/\mathbb{Z}$, let $L_{z,t}$ denote the line through the point z in the direction $e^{2\pi it}$.

Theorem (Marstrand, 1950s)

Let $A \subseteq \mathbb{R}^2$. Then for Lebesgue-a.e. (z, t),

$$\dim(A \cap L_{z,t}) \leq \max(0, \dim(A) - 1).$$

- Here and throughout, $\dim(\cdot)$ is **Hausdorff dimension**
Question

What conditions on A imply that $\dim(A \cap L_{z,t}) \leq \max(0, \dim(A) - 1)$ for every z, t?

Conjectures by Furstenberg: if A has nice fractal structure, then the above should be true.
Iterated function systems

Let ϕ_1, \ldots, ϕ_n be contraction mappings in \mathbb{R}^2. Then there exists a unique compact set $K \subseteq \mathbb{R}^2$ such that

$$K = \bigcup_{1 \leq i \leq n} \phi_i(K).$$

- $\{\phi_1, \ldots, \phi_n\}$ is an iterated function system (IFS).
- K is the attractor of the IFS.
Iterated function systems
Iterated function systems
Iterated function systems
Iterated function systems
Iterated function systems

Definitions

- If the union in $K = \bigcup_{1 \leq i \leq n} \phi_i(K)$ is disjoint, the IFS satisfies the **strong separation condition (SSC)**.
- If all of the ϕ_i are similarity maps, the attractor K is a **self-similar set**.

From now on, assume the IFS has the following properties.

- **SSC**
- **Self-similarity**
- Each ϕ_i has the same rotation part $\theta \notin 2\pi\mathbb{Q}$
The attractor K can be turned into a dynamical system. Define $S : K \rightarrow K$ by $S|_{\phi_i(K)} = \phi_i^{-1}$.

- Well defined by the SSC
Observation. Suppose there exists a line L such that $\dim(K \cap L) > \dim(K) - 1$. Say the direction of L is $e^{2\pi it_0}$.

- $S(K \cap L)$ is a union of slices, each in the direction $e^{2\pi i(t_0-\theta)}$, and at least one of them also has dimension $> \dim(K) - 1$.
- Iterate this procedure: for each n there is a line L_n in the direction $e^{2\pi i(t_0-n\theta)}$ such that $\dim(K \cap L_n) > \dim(K) - 1$.

Let μ be a probability measure on \mathbb{R}^d.

- The **local dimension of μ at x** is
 \[
 \dim(\mu, x) = \liminf_{r \searrow 0} \frac{\log \mu(B_r(x))}{\log(1/r)}
 \]

- If the limit exists and is μ-a.e. constant, the measure μ is **exact dimensional** and the common value is denoted $\dim(\mu)$.

Correspondence between measures and sets:

- $\dim(\mu) = \inf\{\dim(A) : \mu(A) > 0\}$
- **“Frostman’s lemma”**: If $\dim(A) \geq \alpha$, then there exists a measure μ such that $\dim(\mu) = \alpha$ and $\mu(A) = 1$.
Magnification dynamics

Attractor system + keeping track of “slice data”

- Let $X = K \times \mathbb{T} \times \text{Prob}(K)$
- Define $M : X \rightarrow X$ by $(z, t, \nu) \mapsto (Sz, t - \theta, S_\ast(\nu_z))$, where ν_z is defined to be ν conditioned on the piece $\phi_i(K)$ that contains z
- Simulates “zooming in” to the point $z \in K$
Magnification dynamics

Idea: Use the existence of one high-dimensional slice to construct a special invariant measure.

Let L_{z_0,t_0} be any slice with $\alpha := \dim(K \cap L_{z_0,t_0}) > 0$.

- Let $\nu_0 \in \text{Prob}(K)$ be supported on L_{z_0,t_0} and satisfy $\dim(\nu_0) = \alpha$.

- Let $\mu_0 := \nu_0 \times \delta_{t_0} \times \delta_{\nu_0} \in \text{Prob}(X)$.

- Let $\mu_n := \frac{1}{n} \sum_{i=0}^{n-1} M_i \mu_0$.

- $\mu := \lim_{n \to \infty} \mu_n$ is an M-invariant probability measure on X supported on $\{(z, t, \nu) : \nu(L_{z,t}) = 1 \text{ and } \dim(\nu) \geq \alpha\}$.
Magnification dynamics

The marginal of $\bar{\mu}$ on the \mathbb{T} coordinate is invariant for the **irrational** circle rotation $t \mapsto t - \theta$, so it must be Lebesgue measure.

Theorem (Furstenberg, 1960s)

Suppose there is some line L with $\dim(K \cap L) = \alpha > 0$. Then for Lebesgue-a.e. t there is a line L_t in the direction $e^{2\pi i t}$ such that $\dim(K \cap L_t) \geq \alpha$ also.

Idea: if K has high-dimensional slices in many different directions, it forces $\dim(K)$ to be big (c.f. the Kakeya problem)
Theorem (Shmerkin/Wu, 2019)
Let \(\{\phi_1, \ldots, \phi_n\} \) be a self-similar IFS satisfying the SSC. Further assume that each \(\phi_i \) has the same rotation part \(\theta \notin 2\pi\mathbb{Q} \). Then \(\dim(K \cap L) \leq \max(0, \dim(K) - 1) \) for every line \(L \).

- Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu (appeared in back-to-back Annals issues)
- Shmerkin’s proof is not based on magnification dynamics
- Wu’s proof uses a complicated argument based on Sinai’s factor theorem to upgrade the previous observation to get the correct upper bound
- Austin (2020) found a simpler version of Wu’s proof
Non-uniform rotations

Goal: drop the assumption that each ϕ_i has the same irrational rotation part

Two main places that assumption was used:
- Definition of magnification dynamics
- Identifying the marginal of $\overline{\mu}$ on the T coordinate
Non-uniform rotations

Let \(\{\phi_1, \ldots, \phi_n\} \) be an IFS with rotation parts \(\theta_1, \ldots, \theta_n \in T \).

Let \(\theta(z) = \theta_i \) for \(z \in \phi_i(K) \)

New magnification dynamics \(\tilde{M} : X \rightarrow X \) are defined by

\[
(z, t, \nu) \mapsto (Sz, t - \theta(z), S_\ast(\nu_z))
\]
Assuming the existence of one high-dimensional slice, the same process works – construct an \(\tilde{M} \)-invariant measure \(\tilde{\mu} \) supported on measures supported on high-dimensional slices.

- Because \(\tilde{M} \) is a skew product in the \(T \) coordinate, the \(T \)-marginal of \(\tilde{\mu} \) is (a priori) not an invariant measure for any system.
- Need to analyze its regularity “by hand.”
By the ergodic theorem, the \mathbb{T}-marginal of $\tilde{\mu}$ is obtained as the limiting distribution of “multi-rotation orbits”:

Definition

Let $\theta_1, \ldots, \theta_n \in \mathbb{T}$ and fix $\omega \in \{\theta_1, \ldots, \theta_n\}^\mathbb{N}$. The **multi-rotation orbit** generated by ω is the sequence $\{x_n\}_{n \geq 1} \subseteq \mathbb{T}$ defined by $x_n = \omega_1 + \cdots + \omega_n$.

The **limiting empirical distribution** associated to ω is $\nu_\omega := \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \delta_{x_n}$.

Goal: show that for typical ω, ν_ω is not too singular
Non-uniform rotations

Proposition

Suppose \(\{\theta_1, \ldots, \theta_n\} \) satisfy

- At most one \(\theta_j \) is rational
- \(\{\theta_1, \ldots, \theta_n\} \subseteq \text{span}_{\mathbb{Q} \geq 0} \{1, \gamma\} \) for some \(\gamma \notin \mathbb{Q} \).

Let \(\mu \neq \delta_\omega \) be an ergodic shift-invariant measure on \(\{\theta_1, \ldots, \theta_n\}^\mathbb{N} \). Then \(\mu\)-a.s., \(\nu_\omega \) is not singular to Lebesgue measure.

Proof idea: Compare multi-rotation orbit to a single orbit of rotation by \(\gamma \) and use ergodic theorem to control frequency of overlaps.

Corollary

Under these assumptions on the IFS rotations, the attractor \(K \) satisfies \(\dim(K \cap L) \leq \max(0, \dim(K) - 1) \) for every line \(L \).
Non-uniform rotations

Proposition

For Lebesgue-a.e. \((\theta_1, \ldots, \theta_n)\) (including all algebraic \(\theta_j\)) and any \(\omega \in \{\theta_1, \ldots, \theta_n\}^\mathbb{N}\), \(\nu_\omega\) has Hausdorff dimension \(\geq \frac{1}{n}\).

Proof idea: Estimate the typical growth rate of

\[
\Phi_{\theta_1, \ldots, \theta_n}(r) := \min \{ k_1 + \cdots + k_n : k_j \geq 0, \| k_1 \theta_1 + \cdots + k_n \theta_n \| < r \}
\]

as \(r \to 0\) to control the \(\nu_\omega\)-mass of balls of radius \(r\).

Corollary

If an IFS has rotation parts \((\theta_1, \ldots, \theta_n)\) from the “good” set above, then the attractor \(K\) satisfies

\[
\dim(K \cap L) \leq \max(0, \dim(K) - 1/n)
\]

for any line \(L\).
More questions

- The general case where \(\{1, \theta_1, \ldots, \theta_n\} \) are linearly independent over \(\mathbb{Q} \)
 - Difficulty: there exist examples of \(\theta_1, \theta_2 \in \mathbb{T} \) and \(\mu \in \text{Prob}_\sigma^e(\{\theta_1, \theta_2\}^\mathbb{N}) \) such that \(\mu \)-typical multi-rotation orbits are supported on a closed set of dimension 0.

- Higher dimensions
 - Study multi-rotation orbits on the unit sphere instead of unit circle