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Classical slicing theorems

Notation. For z € R?, t € T = R/Z, let L, denote the line
through the point z in the direction ™'t

Theorem (Marstrand, 1950s)
Let A C R2. Then for Lebesgue-a.e. (z,t),

dim(ANL;:) < max(0,dim(A) —1).

m Here and throughout, dim(-) is Hausdorff dimension



Classical slicing theorems

Question

What conditions on A imply that
dim(AN L, ;) < max(0,dim(A) — 1) for every z, t?

Conjectures by Furstenberg: if A has nice fractal structure, then
the above should be true.



Iterated function systems

Let ¢1,...,d, be contraction mappings in R?. Then there exists a
unique compact set K C R? such that
K= J oK)
1<i<n

m {¢1,...,0n} is an iterated function system (IFS).
m K is the attractor of the IFS.



Iterated function systems
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Iterated function systems

Definitions
m If the union in K ={J; ;. ¢i(K) is disjoint, the IFS satisfies
the strong separation condition (SSC).

m If all of the ¢; are similarity maps, the attractor K is a
self-similar set.



Iterated function systems

From now on, assume the IFS has the following properties.
m SSC
m Self-similarity
m Each ¢; has the same rotation part 0 ¢ 27Q



Attractor system

The attractor K can be turned into a dynamical system. Define
S:K = Kby S|ym ="

m Well defined by the SSC
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Attractor system

Observation. Suppose there exists a line L such that
dim(K N L) > dim(K) — 1. Say the direction of L is ™%,
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m S(K N L) is a union of slices, each in the direction e?™/(to=f)
and at least one of them also has dimension > dim(K) — 1.

m lterate this procedure: for each n there is a line L, in the
direction €2™/(=1) sych that dim(K N L,) > dim(K) — 1.



Dimension of measures

Let 1 be a probability measure on RY.

m The local dimension of p at x is

dim(u, x) = Iir:l\igfw
m If the limit exists and is u-a.e. constant, the measure p is
exact dimensional and the common value is denoted dim(p).
Correspondence between measures and sets:
m dim(p) = inf{dim(A) : u(A) > 0}
m “Frostman’s lemma”: If dim(A) > «, then there exists a
measure u such that dim(u) = « and u(A) = 1.



Magnification dynamics

Attractor system + keeping track of “slice data”
m Let X = K x T x Prob(K)

m Define M : X — X by (z,t,v) — (Sz,t — 0, S.(v;)), where v,
is defined to be v conditioned on the piece ¢;(K) that
contains z

m Simulates “zooming in" to the point z € K




Magnification dynamics

Idea: Use the existence of one high-dimensional slice to construct
a special invariant measure.

Let L, ¢, be any slice with a := dim(K N Ly 4,) > 0.

m Let 19 € Prob(K) be supported on L, ;, and satisfy
dim(vp) = «

m Let fig := 19 X Oy X Iy, € Prob(X)
m Let i, =130 L Mit,

m = lim,_ 0 &, is an M-invariant probability measure on X
supported on {(z,t,v) : v(L,¢) =1 and dim(v) > a}



Magnification dynamics

The marginal of &z on the T coordinate is invariant for the
irrational circle rotation t — t — 0, so it must be Lebesgue
measure.

Theorem (Furstenberg, 1960s)

Suppose there is some line L with dim(K N L) = « > 0. Then for
Lebesgue-a.e. t there is a line L; in the direction e®™ such that
dim(K N L) > « also.

Idea: if K has high-dimensional slices in many different directions,
it forces dim(K) to be big (c.f. the Kakeya problem)



Magnification dynamics

Theorem (Shmerkin/Wu, 2019)

Let {¢1,...,dn} be a self-similar IFS satisfying the SSC. Further
assume that each ¢; has the same rotation part 6 ¢ 27Q. Then
dim(K N L) < max(0,dim(K) — 1) for every line L.

m Independent & simultaneous proofs by Pablo Shmerkin and
Meng Wu (appeared in back-to-back Annals issues)

m Shmerkin's proof is not based on magnification dynamics

m Wu's proof uses a complicated argument based on Sinai's
factor theorem to upgrade the previous observation to get the
correct upper bound

m Austin (2020) found a simpler version of Wu's proof



Non-uniform rotations

Goal: drop the assumption that each ¢; has the same irrational
rotation part

Two main places that assumption was used:
m Definition of magnification dynamics

m |dentifying the marginal of & on the T coordinate



Non-uniform rotations

Let {¢1,...,¢n} be an IFS with rotation parts 61,...,6, € T.
Let 0(z) = 0; for z € ¢;i(K)

New magnification dynamics M : X — X are defined by

(z,t,v) — (Sz,t — 0(z), Si(v2))




Non-uniform rotations

Assuming the existence of one high-dimensional slice, the same
process works — construct an M-invariant measure 1 supported on
measures supported on high-dimensional slices

m Because M is a skew product in the T coordinate, the
T-marginal of 1 is (a priori) not an invariant measure for any
system

m Need to analyze its regularity “by hand”



Non-uniform rotations

By the ergodic theorem, the T-marginal of 1 is obtained as the
limiting distribution of “multi-rotation orbits":

Definition

Let 61,...,0, € T and fix w € {1,...,0,}". The multi-rotation
orbit generated by w is the sequence {x,}n,>1 C T defined by

Xp = w1+ -+ wp.

The limiting empirical distribution associated to w is
- N-1
Vy = limy_e0 % Do G

Goal: show that for typical w, v, is not too singular



Non-uniform rotations

Suppose {01, ...,0,} satisfy

m At most one 0; is rational

m {01,...,0n} Cspang=o{l,7} for some v Z Q.
Let u # d,, be an ergodic shift-invariant measure on {61, ..., 0,,}N.
Then p-a.s., v, is not singular to Lebesgue measure.

Proof idea: Compare multi-rotation orbit to a single orbit of
rotation by « and use ergodic theorem to control frequency of
overlaps.

Corollary

Under these assumptions on the IFS rotations, the attractor K
satisfies dim(K N L) < max(0,dim(K) — 1) for every line L.



Non-uniform rotations

Proposition

For Lebesgue-a.e. (61,...,0,) (including all algebraic ;) and any
w € {61,...,0,}, v, has Hausdorff dimension > %

Proof idea: Estimate the typical growth rate of
<D91,__79n(r) = min{k1 + -4 k,, : kj > 0, ||k191 + -4 k,,0,,|| < r}
as r — 0 to control the v,,-mass of balls of radius r.

Corollary

If an IFS has rotation parts (61, ...,60,) from the “good" set
above, then the attractor K satisfies
dim(K N L) < max(0,dim(K) — 1/n) for any line L.



More questions

m The general case where {1,60;,...,0,} are linearly
independent over
m Difficulty: there exist examples of 81,6, € T and
p € Prob ({01, 62}"Y) such that u-typical multi-rotation orbits
are supported on a closed set of dimension 0.

m Higher dimensions

m Study multi-rotation orbits on the unit sphere instead of unit
circle



