Slicing theorems for IFS attractors

Adam Lott UCLA

05 February 2021

(ロ)、(型)、(E)、(E)、 E) の(()

Classical slicing theorems

Notation. For $z \in \mathbb{R}^2$, $t \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, let $L_{z,t}$ denote the line through the point z in the direction $e^{2\pi i t}$.

Theorem (Marstrand, 1950s)

Let $A \subseteq \mathbb{R}^2$. Then for Lebesgue-a.e. (z, t),

 $\dim(A \cap L_{z,t}) \leq \max(0,\dim(A)-1).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Here and throughout, $dim(\cdot)$ is **Hausdorff dimension**

Classical slicing theorems

Question

What conditions on A imply that $\dim(A \cap L_{z,t}) \leq \max(0, \dim(A) - 1)$ for every z, t?

Conjectures by Furstenberg: if A has nice fractal structure, then the above should be true.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let ϕ_1, \ldots, ϕ_n be contraction mappings in \mathbb{R}^2 . Then there exists a **unique** compact set $K \subseteq \mathbb{R}^2$ such that

$$\mathcal{K} = \bigcup_{1 \leq i \leq n} \phi_i(\mathcal{K}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

{\$\phi_1\$,...,\$\phi_n\$} is an iterated function system (IFS).
K is the attractor of the IFS.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(ロ)、(型)、(E)、(E)、 E) の(()

Definitions

• If the union in $K = \bigcup_{1 \le i \le n} \phi_i(K)$ is disjoint, the IFS satisfies the strong separation condition (SSC).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

■ If all of the ϕ_i are similarity maps, the attractor K is a self-similar set.

From now on, assume the IFS has the following properties.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- SSC
- Self-similarity
- Each ϕ_i has the same rotation part $\theta \notin 2\pi \mathbb{Q}$

The attractor K can be turned into a dynamical system. Define $S: K \to K$ by $S|_{\phi_i(K)} = \phi_i^{-1}$.

Well defined by the SSC

Observation. Suppose there exists a line *L* such that $\dim(K \cap L) > \dim(K) - 1$. Say the direction of *L* is $e^{2\pi i t_0}$.

- S(K ∩ L) is a union of slices, each in the direction e^{2πi(t₀-θ)}, and at least one of them also has dimension > dim(K) − 1.
- Iterate this procedure: for each *n* there is a line L_n in the direction $e^{2\pi i(t_0 n\theta)}$ such that $\dim(K \cap L_n) > \dim(K) 1$.

Let μ be a probability measure on \mathbb{R}^d .

• The local dimension of μ at x is

$$\dim(\mu, x) = \liminf_{r \searrow 0} \frac{\log \mu(B_r(x))}{\log(1/r)}$$

- If the limit exists and is μ-a.e. constant, the measure μ is
 exact dimensional and the common value is denoted dim(μ).
 Correspondence between measures and sets:
 - $\dim(\mu) = \inf\{\dim(A) : \mu(A) > 0\}$
 - "Frostman's lemma": If dim(A) ≥ α, then there exists a measure μ such that dim(μ) = α and μ(A) = 1.

Magnification dynamics

Attractor system + keeping track of "slice data"

- Let $X = K \times \mathbb{T} \times \operatorname{Prob}(K)$
- Define M : X → X by (z, t, ν) → (Sz, t − θ, S_{*}(ν_z)), where ν_z is defined to be ν conditioned on the piece φ_i(K) that contains z
- Simulates "zooming in" to the point $z \in K$

Idea: Use the existence of one high-dimensional slice to construct a special invariant measure.

Let L_{z_0,t_0} be any slice with $\alpha := \dim(K \cap L_{z_0,t_0}) > 0$.

 Let ν₀ ∈ Prob(K) be supported on L_{z0,t0} and satisfy dim(ν₀) = α

• Let
$$\overline{\mu}_0 := \nu_0 \times \delta_{t_0} \times \delta_{\nu_0} \in \mathsf{Prob}(X)$$

• Let
$$\overline{\mu}_n := \frac{1}{n} \sum_{i=0}^{n-1} M_*^i \overline{\mu}_0$$

■ $\overline{\mu} := \lim_{n \to \infty} \overline{\mu}_n$ is an *M*-invariant probability measure on *X* supported on $\{(z, t, \nu) : \nu(L_{z,t}) = 1 \text{ and } \dim(\nu) \ge \alpha\}$

The marginal of $\overline{\mu}$ on the \mathbb{T} coordinate is invariant for the **irrational** circle rotation $t \mapsto t - \theta$, so it must be Lebesgue measure.

Theorem (Furstenberg, 1960s)

Suppose there is some line L with dim $(K \cap L) = \alpha > 0$. Then for Lebesgue-a.e. t there is a line L_t in the direction $e^{2\pi i t}$ such that dim $(K \cap L) \ge \alpha$ also.

Idea: if K has high-dimensional slices in many different directions, it forces dim(K) to be big (c.f. the Kakeya problem)

Theorem (Shmerkin/Wu, 2019)

Let $\{\phi_1, \ldots, \phi_n\}$ be a **self-similar** IFS satisfying the **SSC**. Further assume that each ϕ_i has the same rotation part $\theta \notin 2\pi\mathbb{Q}$. Then $\dim(K \cap L) \leq \max(0, \dim(K) - 1)$ for every line *L*.

- Independent & simultaneous proofs by Pablo Shmerkin and Meng Wu (appeared in back-to-back Annals issues)
- Shmerkin's proof is not based on magnification dynamics
- Wu's proof uses a complicated argument based on Sinai's factor theorem to upgrade the previous observation to get the correct upper bound

Austin (2020) found a simpler version of Wu's proof

Goal: drop the assumption that each ϕ_i has the same irrational rotation part

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two main places that assumption was used:

- Definition of magnification dynamics
- Identifying the marginal of $\overline{\mu}$ on the \mathbb{T} coordinate

Non-uniform rotations

Let $\{\phi_1, \ldots, \phi_n\}$ be an IFS with rotation parts $\theta_1, \ldots, \theta_n \in \mathbb{T}$. Let $\theta(z) = \theta_i$ for $z \in \phi_i(K)$

New magnification dynamics $\widetilde{M}: X \to X$ are defined by

$$(z, t, \nu) \mapsto (Sz, t - \theta(z), S_*(\nu_z))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Assuming the existence of one high-dimensional slice, the same process works – construct an \widetilde{M} -invariant measure $\widetilde{\mu}$ supported on measures supported on high-dimensional slices

Because \widetilde{M} is a skew product in the \mathbb{T} coordinate, the \mathbb{T} -marginal of $\widetilde{\mu}$ is (a priori) not an invariant measure for any system

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Need to analyze its regularity "by hand"

By the ergodic theorem, the $\mathbb T\text{-marginal}$ of $\widetilde\mu$ is obtained as the limiting distribution of "multi-rotation orbits":

Definition

Let $\theta_1, \ldots, \theta_n \in \mathbb{T}$ and fix $\omega \in \{\theta_1, \ldots, \theta_n\}^{\mathbb{N}}$. The **multi-rotation** orbit generated by ω is the sequence $\{x_n\}_{n\geq 1} \subseteq \mathbb{T}$ defined by $x_n = \omega_1 + \cdots + \omega_n$.

The limiting empirical distribution associated to ω is $\nu_{\omega} := \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \delta_{x_n}.$

Goal: show that for typical ω , ν_{ω} is not too singular

Non-uniform rotations

Proposition

Suppose $\{\theta_1, \ldots, \theta_n\}$ satisfy

- At most one θ_j is rational
- $\{\theta_1, \ldots, \theta_n\} \subseteq \operatorname{span}_{\mathbb{Q}^{\geq 0}}\{1, \gamma\}$ for some $\gamma \notin \mathbb{Q}$.

Let $\mu \neq \delta_{\omega}$ be an ergodic shift-invariant measure on $\{\theta_1, \ldots, \theta_n\}^{\mathbb{N}}$. Then μ -a.s., ν_{ω} is not singular to Lebesgue measure.

Proof idea: Compare multi-rotation orbit to a single orbit of rotation by γ and use ergodic theorem to control frequency of overlaps.

Corollary

Under these assumptions on the IFS rotations, the attractor K satisfies dim $(K \cap L) \leq \max(0, \dim(K) - 1)$ for every line L.

Non-uniform rotations

Proposition

For Lebesgue-a.e. $(\theta_1, \ldots, \theta_n)$ (including all algebraic θ_j) and any $\omega \in \{\theta_1, \ldots, \theta_n\}^{\mathbb{N}}$, ν_{ω} has Hausdorff dimension $\geq \frac{1}{n}$.

Proof idea: Estimate the typical growth rate of $\Phi_{\theta_1,...,\theta_n}(r) := \min\{k_1 + \cdots + k_n : k_j \ge 0, \|k_1\theta_1 + \cdots + k_n\theta_n\| < r\}$ as $r \to 0$ to control the ν_{ω} -mass of balls of radius r.

Corollary

If an IFS has rotation parts $(\theta_1, \ldots, \theta_n)$ from the "good" set above, then the attractor K satisfies $\dim(K \cap L) \leq \max(0, \dim(K) - 1/n)$ for any line L.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More questions

- The general case where $\{1, \theta_1, \dots, \theta_n\}$ are linearly independent over \mathbb{Q}
 - Difficulty: there exist examples of $\theta_1, \theta_2 \in \mathbb{T}$ and $\mu \in \operatorname{Prob}_{\sigma}^{e}(\{\theta_1, \theta_2\}^{\mathbb{N}})$ such that μ -typical multi-rotation orbits are supported on a closed set of dimension 0.
- Higher dimensions
 - Study multi-rotation orbits on the unit sphere instead of unit circle