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Classical slicing theorems

Notation. For z ∈ R2, t ∈ T = R/Z, let Lz,t denote the line
through the point z in the direction e2πit .

Theorem (Marstrand, 1950s)

Let A ⊆ R2. Then for Lebesgue-a.e. (z , t),

dim(A ∩ Lz,t) ≤ max(0, dim(A)− 1).

Here and throughout, dim(·) is Hausdorff dimension



Classical slicing theorems

Question

What conditions on A imply that
dim(A ∩ Lz,t) ≤ max(0, dim(A)− 1) for every z , t?

Conjectures by Furstenberg: if A has nice fractal structure, then
the above should be true.



Iterated function systems

Let φ1, . . . , φn be contraction mappings in R2. Then there exists a
unique compact set K ⊆ R2 such that

K =
⋃

1≤i≤n
φi (K ).

{φ1, . . . , φn} is an iterated function system (IFS).

K is the attractor of the IFS.
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Iterated function systems

Definitions

If the union in K =
⋃

1≤i≤n φi (K ) is disjoint, the IFS satisfies
the strong separation condition (SSC).

If all of the φi are similarity maps, the attractor K is a
self-similar set.



Iterated function systems

From now on, assume the IFS has the following properties.

SSC

Self-similarity

Each φi has the same rotation part θ 6∈ 2πQ



Attractor system

The attractor K can be turned into a dynamical system. Define
S : K → K by S |φi (K) = φ−1i .

Well defined by the SSC



Attractor system

Observation. Suppose there exists a line L such that
dim(K ∩ L) > dim(K )− 1. Say the direction of L is e2πit0 .

S(K ∩ L) is a union of slices, each in the direction e2πi(t0−θ),
and at least one of them also has dimension > dim(K )− 1.

Iterate this procedure: for each n there is a line Ln in the
direction e2πi(t0−nθ) such that dim(K ∩ Ln) > dim(K )− 1.



Dimension of measures

Let µ be a probability measure on Rd .

The local dimension of µ at x is

dim(µ, x) = lim inf
r↘0

logµ(Br (x))

log(1/r)

If the limit exists and is µ-a.e. constant, the measure µ is
exact dimensional and the common value is denoted dim(µ).

Correspondence between measures and sets:

dim(µ) = inf{dim(A) : µ(A) > 0}
“Frostman’s lemma”: If dim(A) ≥ α, then there exists a
measure µ such that dim(µ) = α and µ(A) = 1.



Magnification dynamics

Attractor system + keeping track of “slice data”

Let X = K × T× Prob(K )

Define M : X → X by (z , t, ν) 7→ (Sz , t − θ,S∗(νz)), where νz
is defined to be ν conditioned on the piece φi (K ) that
contains z

Simulates “zooming in” to the point z ∈ K



Magnification dynamics

Idea: Use the existence of one high-dimensional slice to construct
a special invariant measure.

Let Lz0,t0 be any slice with α := dim(K ∩ Lz0,t0) > 0.

Let ν0 ∈ Prob(K ) be supported on Lz0,t0 and satisfy
dim(ν0) = α

Let µ0 := ν0 × δt0 × δν0 ∈ Prob(X )

Let µn := 1
n

∑n−1
i=0 M i

∗µ0

µ := limn→∞ µn is an M-invariant probability measure on X
supported on {(z , t, ν) : ν(Lz,t) = 1 and dim(ν) ≥ α}



Magnification dynamics

The marginal of µ on the T coordinate is invariant for the
irrational circle rotation t 7→ t − θ, so it must be Lebesgue
measure.

Theorem (Furstenberg, 1960s)

Suppose there is some line L with dim(K ∩ L) = α > 0. Then for
Lebesgue-a.e. t there is a line Lt in the direction e2πit such that
dim(K ∩ L) ≥ α also.

Idea: if K has high-dimensional slices in many different directions,
it forces dim(K ) to be big (c.f. the Kakeya problem)



Magnification dynamics

Theorem (Shmerkin/Wu, 2019)

Let {φ1, . . . , φn} be a self-similar IFS satisfying the SSC. Further
assume that each φi has the same rotation part θ 6∈ 2πQ. Then
dim(K ∩ L) ≤ max(0, dim(K )− 1) for every line L.

Independent & simultaneous proofs by Pablo Shmerkin and
Meng Wu (appeared in back-to-back Annals issues)

Shmerkin’s proof is not based on magnification dynamics

Wu’s proof uses a complicated argument based on Sinai’s
factor theorem to upgrade the previous observation to get the
correct upper bound

Austin (2020) found a simpler version of Wu’s proof



Non-uniform rotations

Goal: drop the assumption that each φi has the same irrational
rotation part

Two main places that assumption was used:

Definition of magnification dynamics

Identifying the marginal of µ on the T coordinate



Non-uniform rotations

Let {φ1, . . . , φn} be an IFS with rotation parts θ1, . . . , θn ∈ T.

Let θ(z) = θi for z ∈ φi (K )

New magnification dynamics M̃ : X → X are defined by

(z , t, ν) 7→ (Sz , t − θ(z), S∗(νz))



Non-uniform rotations

Assuming the existence of one high-dimensional slice, the same
process works – construct an M̃-invariant measure µ̃ supported on
measures supported on high-dimensional slices

Because M̃ is a skew product in the T coordinate, the
T-marginal of µ̃ is (a priori) not an invariant measure for any
system

Need to analyze its regularity “by hand”



Non-uniform rotations

By the ergodic theorem, the T-marginal of µ̃ is obtained as the
limiting distribution of “multi-rotation orbits”:

Definition

Let θ1, . . . , θn ∈ T and fix ω ∈ {θ1, . . . , θn}N. The multi-rotation
orbit generated by ω is the sequence {xn}n≥1 ⊆ T defined by
xn = ω1 + · · ·+ ωn.

The limiting empirical distribution associated to ω is
νω := limN→∞

1
N

∑N−1
n=0 δxn .

Goal: show that for typical ω, νω is not too singular



Non-uniform rotations

Proposition

Suppose {θ1, . . . , θn} satisfy

At most one θj is rational

{θ1, . . . , θn} ⊆ spanQ≥0{1, γ} for some γ 6∈ Q.

Let µ 6= δω be an ergodic shift-invariant measure on {θ1, . . . , θn}N.
Then µ-a.s., νω is not singular to Lebesgue measure.

Proof idea: Compare multi-rotation orbit to a single orbit of
rotation by γ and use ergodic theorem to control frequency of
overlaps.

Corollary

Under these assumptions on the IFS rotations, the attractor K
satisfies dim(K ∩ L) ≤ max(0, dim(K )− 1) for every line L.



Non-uniform rotations

Proposition

For Lebesgue-a.e. (θ1, . . . , θn) (including all algebraic θj) and any
ω ∈ {θ1, . . . , θn}N, νω has Hausdorff dimension ≥ 1

n .

Proof idea: Estimate the typical growth rate of
Φθ1,...,θn(r) := min{k1 + · · ·+ kn : kj ≥ 0, ‖k1θ1 + · · ·+ knθn‖ < r}
as r → 0 to control the νω-mass of balls of radius r .

Corollary

If an IFS has rotation parts (θ1, . . . , θn) from the “good” set
above, then the attractor K satisfies
dim(K ∩ L) ≤ max(0, dim(K )− 1/n) for any line L.



More questions

The general case where {1, θ1, . . . , θn} are linearly
independent over Q

Difficulty: there exist examples of θ1, θ2 ∈ T and
µ ∈ Probe

σ({θ1, θ2}N) such that µ-typical multi-rotation orbits
are supported on a closed set of dimension 0.

Higher dimensions

Study multi-rotation orbits on the unit sphere instead of unit
circle


