
#### Count On Coaching Actuaries.







# **Coaching Actuaries Tutorial**

**Bruin Actuarial Society** 

4

© UCLA BAS 2022





1. Who is Coaching Actuaries (CA)?

2. What is Offered?

3. Learn & Adapt Demo

4. What are the Club Benefits?

5. Group Photo!



# **1.** Who is Coaching Actuaries?



# **Mission of Coaching Actuaries**

To provide our students with the best possible materials to help them build their knowledge, feel prepared, and pass their exams.



# 2. What is Offered?



### What Is Offered?



#### Learn the essentials

Understand everything you need to know to pass the exam. Learn by reading online manuals and watching video lessons.



#### Take practice exams

Experience the exam format with our Adapt practice tool, then analyze your performance and adapt your study focus.

| <b>~</b> |  |
|----------|--|
| <b>~</b> |  |
| <b>~</b> |  |
| <b>~</b> |  |
| _        |  |

#### Gain confidence to pass

Improve with Adapt exams and increase the challenge so you'll be ready for the real thing.



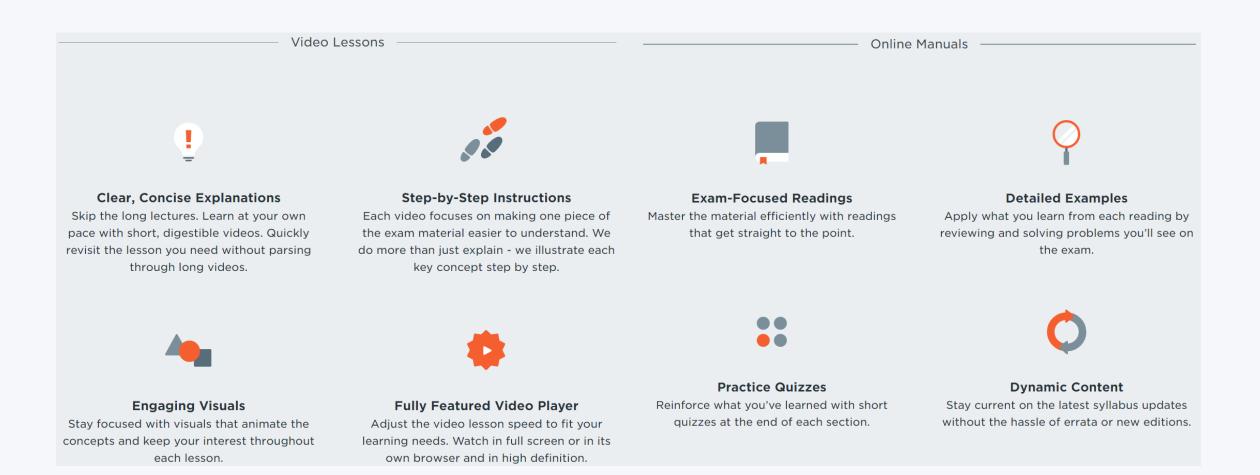
## What Is Offered?

Additional resources available:

- Online Discussion Forum
- Study Schedule to plan out your Learn/Adapt study days
- Formula Sheets
- Sample SOA/CAS questions with step-by-step solutions

| $\begin{aligned} & \operatorname{Pr}(A) + \operatorname{Pr}(B) + \operatorname{Pr}(C) \\ & -\operatorname{Pr}(A \cap B) - \operatorname{Pr}(B \cap C) - \operatorname{Pr}(A \cap C) \\ & +\operatorname{Pr}(A \cap B \cap C) \\ & +\operatorname{Pr}(A \cap B \cap C) \\ & A'' = 1 - \operatorname{Pr}(A) \end{aligned}$ we of Total Probability $\begin{aligned} & (B) = \sum_{i=1}^{N} \operatorname{Pr}(B \cap A_i) \\ & \operatorname{Morgan's Law} \\ & ((A \cup B)'] = \operatorname{Pr}(A' \cap B'') \\ & ((A \cap B)'] = \operatorname{Pr}(A' \cup B') \\ & \operatorname{nditional Probability} \\ & \operatorname{nditional Probability} \\ & (A \cap B) = \frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\ & \operatorname{denence} \\ & (A \cap B) = \operatorname{Pr}(A) - \operatorname{Pr}(B) \\ & (A \cap B) = \operatorname{Pr}(A) \end{aligned}$ | *Probability Mass Function (PMF)<br>$\sum_{al, x} p_x(x) = 1$ $Pr(X = a) = 0 \text{ (continuous)}$ *Cumulative Distribution Function<br>(CDF)<br>$F_x(x) = PT(X \le x) = \sum_{i \le x} p_x(i)$ $Pr(a < X \le b) = F_x(b) - F_x(a)$ $f_x(x) = \frac{d}{dx}F_x(x) \text{ (continuous)}$ *Expected Value<br>$E[c] = c$ $E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_x(x) dx$ $E[g(X)] = \int_{0}^{\infty} g'(x) \cdot S_x(x) dx,$ for $x \ge 0$ and $g(0) = 0$<br>$E[g(X)] = c \ge E[g(X)]$ $E[g(X)] = c \ge E[g(X)]$ $E[g_x(X)] = c \ge E[g(X)]$ $E[g_x(X)] = c \ge E[g(X)]$ | $\begin{split} & \mathcal{M}_{X,Y}(t) = \mathcal{M}_{X}(t) \cdot \mathcal{M}_{Y}(t) \text{ (independent)} \\ & \frac{d^{n}}{dt^{n}} \mathcal{M}_{X}(t) \Big _{t=0} = \mathbb{E}[X^{n}] \\ & \mathbf{Probability Generating Function (PGF)} \\ & P_{X}(t) = \mathcal{M}_{Y}(t) \\ & P_{X}(t) = \mathcal{M}_{Y}(t) \\ & P_{X}(0) = p_{X}(0) \\ & \frac{d^{n}}{dt^{n}} P_{X}(t) \Big _{t=0} \\ & p_{X}(0) \\ & \frac{d^{n}}{dt^{n}} P_{X}(t) \Big _{t=1} \\ & = \mathbb{E}[X(X-1) \dots (X-n+1)] \\ & \mathbf{Percentiles} \\ & \text{The 100}p^{nh} \text{ percentile is the smallest value} \\ & \text{of } \pi_{y} \text{ where } F_{X}(\pi_{y}) \geq p. \\ & \mathbf{Univariate Transformation} \\ & f_{Y}(y) = f_{X}[g^{-1}(y)] \cdot \left  \frac{d}{dy}g^{-1}(y) \right  \\ & \text{where } y = g(x) \Leftrightarrow x = g^{-1}(y) \end{split}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| yes' Theorem<br>$\begin{aligned} &\sum_{n=1}^{Pr(B A_k) \cdot \Pr(A_k)} = \frac{\Pr(B A_k) \cdot \Pr(A_l)}{\sum_{n=1}^{m} \Pr(B A_l) \cdot \Pr(A_l)} \\ &\text{mbinatorics} \\ &= n \cdot (n-1) \cdot \cdot 2 \cdot 1 \\ &k = \frac{n!}{(n-k)!} \\ &k = \binom{n!}{(n-k)!} = \frac{n!}{(n-k)! \cdot k!} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Variance, Standard Deviation, and<br>Coefficient of Variation<br>Var(X) = $E[X^2] - (E[X])^2$<br>Var $[aX + b] = a^2 \cdot Var[X]$<br>Var $[c] = 0$<br>SD[X] = $\sqrt{Var[X]}$<br>CV[X] = SD[X]/E[X]                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |




### What Is Offered?

| Introductory       | Intermediate | SOA Only       | CAS Only |
|--------------------|--------------|----------------|----------|
| Ρ                  | IFM          | FAM            | MAS-I    |
| FM                 |              | FAM-L          |          |
| VEE Microeconomics |              | FAM-S          |          |
| VEE Macroeconomics |              | SRM            |          |
| VEE Accounting     |              | PA             |          |
| VEE Finance        |              | ASTAM          |          |
|                    |              | ALTAM          |          |
|                    |              | VEE Math Stats |          |

# **3.** Learn & Adapt Demo



#### Learn





## Adapt

#### 

#### **Tailored Practice Exams**

Adapt's dynamic practice exams challenge you at your level. The better you perform, the more difficult your exams become until you're ready for the real thing.



#### Earned Level System

Measure your exam-readiness on a 0-10 scale. Surveys indicate that 90% of users who reach Earned Level 7 or higher pass their exams.



#### Section Reports

Analyze your performance on practice questions by topic to identify your weak areas.



#### **Discussion Forum**

Get help from our coaches. We've been there, passed that, and we want to help you do the same.



#### **Video Solutions**

Learn from the practice questions you miss with video and written solutions. See how to solve the problem step-by-step.

#### History

Review the practice questions you've taken in prior quizzes or practice exams to see what you missed.



•+ = •

Maximize your memorization with all the essential exam formulas in one organized place.



Quiz Builder Create short quizzes to polish specific topics. You choose the length and difficulty.



#### **Pass Guarantee**



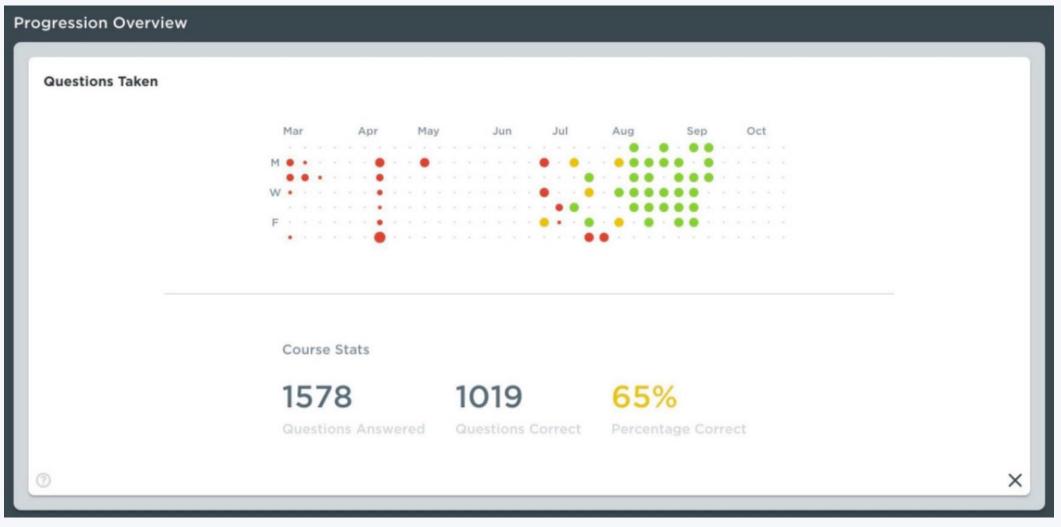


#### **Proven Process**

90% of surveyed CA students at Earned Level 7 or above pass their exam. When you reach Earned Level 7, you know you're ready.

#### **Pass Guarantee**

Renew your subscription once for free when you get any 180-day subscription and you don't pass the exam.




### **Adapt: Success Rate**





## **Adapt: Progression Overview**



© UCLA BAS 2022



## **Adapt: Earned Level**

Your Earned Level (EL) helps Adapt provide you with questions at the correct level of difficulty for you, so that practice exams and questions are not too difficult or too easy.

Raise your EL by passing a practice exam with greater than 70% accuracy. Score less than 50% and your EL goes down. Your EL determines the difficulty of your next practice exam.



Our surveyed users who reach an EL of 7 or higher have a pass rate of 90% or above.





## **Adapt: Reviewing Exam Progress**

| Oct 20 at 10:21 PM<br>Date Completed | 6.1<br>Difficulty | N/A<br>Earned Level | 91% (32 / 35)<br>Score | REVIEW                      |  |
|--------------------------------------|-------------------|---------------------|------------------------|-----------------------------|--|
| Oct 19 at 2:12 PM                    | 5.9               | N/A                 | 66% (23 / 35)          | Constant and a local sector |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Oct 14 at 12:06 AM                   | 6.1               | 7.27 (+1.10)        | 80% (28 / 35)          |                             |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Oct 12 at 11:14 PM                   | 5.0               | N/A                 | 77% (27 / 35)          | Construction of the         |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Oct 7 at 9:12 PM                     | 5.0               | N/A                 | 74% (26 / 35)          |                             |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Oct 4 at 10:38 PM                    | 5.0               | 6.17 (+1.18)        | 80% (28 / 35)          | and the second second       |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Sep 30 at 11:02 PM                   | 3.1               | 4.99 (+1.99)        | 86% (30 / 35)          |                             |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Sep 25 at 10:05 PM                   | 3.0               | 3 (0)               | 66% (23 / 35)          | DEVIEW                      |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |
| Sep 23 at 9:32 PM                    | 2.9               | 3 (0)               | 69% (24 / 35)          | DEVIEW                      |  |
| Date Completed                       | Difficulty        | Earned Level        | Score                  | REVIEW                      |  |

# **4.** Club Benefits



# **Club Benefits**

- Additional discount off student pricing
- Discount on CA Merch Store
- Opportunity to connect with Coach K

#### **Club Discount Codes**

- Adapt 25% off
- Adapt + Manual 50% off
- Adapt + Learn 70% off

\*\*\* Email BAS with your official UCLA email to receive the discount codes above. \*\*\*



## **Additional CA Resources**

## Links

- ✓ <u>Discount Tutorial Video</u>
- ✓ <u>Coaching Actuaries</u>
- ✓ Formula Sheets



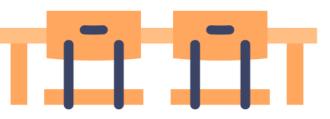
@coachingactuaries





**Coaching Actuaries** 

### **Group Photo Time!**






#### Count On Coaching Actuaries.







# **Coaching Actuaries Tutorial**

**Bruin Actuarial Society** 

CA



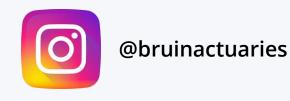
## **AND THAT'S A WRAP!**

#### **KEY TAKEAWAYS**

- Coaching Actuaries (CA) is an actuarial exam prep program dedicated to help you study and pass your actuarial exams
- ✓ Email us with your <u>official UCLA email</u> to receive the CA discount codes for Adapt, Adapt + Manual, and Adapt + Learn

#### ANNOUNCEMENTS

- ✓ Mentorship Mixer on Thursday 10/20 in MS 3974
- First-Year & International Workshop on Tuesday 10/25 in MS 6627
- ✓ TIA Info Session on Thursday 10/27 in MS 6627






bruinactuaries@gmail.com



www.math.ucla.edu/~actuary/





#### **Questions?**

