Intermediate Excel Workshop II

November 21, 2019

Keyboard Shortcuts

Shortcut	Windows/PC	Mac
Jump to end of data table	Ctrl + (Up/Down/Left/ Right)	Cmd + (Up/Down/Left/ Right)
Jump to end of data table + highlight entire region	Ctrl + Shift + (Up/Down/Left/ Right)	Cmd + Shift + (Up/Down/Left/ Right)
Cycle through cell references	F4	Cmd + T
Display formula + highlight inputs	F2	Ctrl + U

BRUIN ACTUARIAL SOCIETY

INDEX Function

Summary: Returns value at a given position in a range or array.

Purpose: Get a value in a list or table based on location

Return Value: Value at a given location

Syntax: =INDEX(array, row_num, [column_num])

Arguments:

- array range of cells, or an array constant
- row_num row position in the reference or array
- column_num column position in the reference or array

Step 1. Identify an array

- Identify the array or search area to pull data from
- Exclude label column and rows

	A	В	C	D	E	F
1	Disease Cour	nts 2017				
2						
3		County 1	County 2	County 3	County 4	
4	Chicken Pox	4	5	0	5	
5	Swine Flu	2	3	1	2	
6	Measles	0	0	6	6	
7	Tetanus	8	7	4	8	
8						
9	Swine Flu in	County 3	=INDEX B4:E	7		
10						
11						

Step 2. Identify the row_num

- Identify the row you are looking for
- The number is relative -- you are specifying the second row from the top of the array, not row 2 on the spreadsheet

	A	В	С	D	E	F
1	Disease Cour	nts 2017				
2						
3		County 1	County 2	County 3	County 4	
4	Chicken Pox	4	5	0	5	
5	Swine Flu	2	3	1	2	
6	Measles	0	0	6	6	
7	Tetanus	8	7	4	8	
8				<u></u>		
9	Swine Flu in	County 3	=INDEX(B4:E	7 2		
10						
11						

Step 3. Identify the column_num

- Column of the array you would like to reference
- The number is also relative to the array, not for the whole spreadsheet

4	A	В	C	D	E	F
1	Disease Cour	nts 2017				
2						
3		County 1	County 2	County 3	County 4	
4	Chicken Pox	4	5	0	5	
5	Swine Flu	2	3	1	2	
6	Measles	0	0	6	6	
7	Tetanus	8	7	4	8	
8						
9	Swine Flu in	County 3	=INDEX(B4:E	7, 2, 3		
10						
11						

Example Output

Finding the amount of swine flu cases in County 3

4	A	В	C	D	E	F
1	Disease Cour	nts 2017				
2						
3		County 1	County 2	County 3	County 4	
4	Chicken Pox	4	5	0	5	
5	Swine Flu	2	3	1	2	
6	Measles	0	0	6	6	
7	Tetanus	8	7	4	8	
8				_		
9	Swine Flu in	County 3	1			
10						
11						

MATCH Function

Summary: Used to locate the position of a lookup value in a row, column, or table

Purpose: Get position of an item in an array

Return Value: Number representing a position in the array

Syntax: =MATCH(lookup_value, lookup_array, [match_type])

Arguments:

- lookup_value Value to match in lookup_array
- lookup_array Range of cells or an array reference
- [match_type] [optional] how to match, specified as -1, 0, or 1 (default is 1)

Step 1. Input the lookup_value

• Identify the label or value the function is looking for

4	A	В	C	D	E	F
1	Disease Cour	nts 2017				
2						
3		County 1	County 2	County 3	County 4	
4	Chicken Pox	4	5	0	5	
5	Swine Flu	2	3	1	2	
6	Measles	0	0	6	6	
7	Tetanus	8	7	4	8	
8					<u></u>	
9	Position of C	hicken Pox Co	olumn A	=MATCH("Ch	icken Pox"	
10						
11						

Step 2. Specify the lookup_array

• Choose an array that you want to search in

	A	В	C	D	E	F	
1	Disease Cour	nts 2017					
2							
3		County 1	County 2	County 3	County 4		
4	Chicken Pox	4	5	0	5		
5	Swine Flu	2	3	1	2		
6	Measles	0	0	6	6		
7	Tetanus	8	7	4	8		
8							
9	Position of C	hicken Pox Co	olumn A	=MATCH("Chicken Pox", A4:A7			
10							
11							

Step 3. [optional] Specify the match_type

- Specifies the method for the first argument
 - 1 = assumes array is assorted by ascending order and returns largest value ≤ lookup_value
 - 0 = finds exact value as lookup_value
 - -1 = finds smallest value \geq lookup_value

_1	A B		C	D	E	F	
1	Disease Cour	nts 2017					
2							
3		County 1	County 2	County 3	County 4		
4	Chicken Pox	4	5	0	5		
5	Swine Flu	2	3	1.	2		
6	Measles	0	0	6	6		
7	Tetanus	8	7	4	8		
8							
9	Position of C	hicken Pox C	olumn A	=MATCH("Chicken Pox", A4:A7, 0)			
10							
11							

Example Output

Position of Chicken Pox Column A

1	A B		C	D	E	F
1	Disease Cour	nts 2017				
2						
3		County 1	County 2	County 3	County 4	
4	Chicken Pox	4	5	0	5	
5	Swine Flu	2	3	1	2	
6	Measles	0	0	6	6	
7	Tetanus	8	7	4	8	
8						
9	Position of C	hicken Pox Co	olumn A	1		
10						
11						

INDEX and **MATCH** can be combined to create a more powerful, error-resistant **VLOOKUP**

- VLOOKUP requires us to count how many columns over the return value is found
- VLOOKUP can only search for lookup_value in the first column of table_array
- If we insert a column, VLOOKUP will either return the wrong column's value or break completely
- INDEX MATCH allows us to look up across both rows and columns, whereas VLOOKUP and HLOOKUP only allow one dimension

Example: VLOOKUP vs INDEX MATCH

- VLOOKUP is essentially a special case of INDEX MATCH
 - =VLOOKUP(lookup_value, table_array, col_index_num, FALSE) is the same as
 - =INDEX(table_array, MATCH(lookup_value, lookup_array, 0), col_index_num)
- If we wanted INDEX MATCH to do the same thing as VLOOKUP, *lookup_array* would simply be the first column of table_array
- We can see INDEX MATCH gives us more freedom:
 - We can select any **lookup_array** that we want
 - We can even replace col_index_num with another MATCH statement!

Try Question 1 in the "Questions" sheet.

Conditional Formatting

	Ho	me	Insert	Page	e Layout	Fo	ormulas	Data	Review	View	Add-in:	5	Help	Devel	oper [·]	Team 🎾
	[Calibr	i	• 11	• A	Ă	= =	- ≫ -	ab c∉	General		Ŧ		ŧ.		
		B 1	<u>U</u> -	•	👌 - 🔼	-	= =	€ →		\$ - %	∕ 9 €.0 .00	00. 0.¢	Cond Form	ditional I atting •	Format as Table -	s Cell Styles +
Г	5		F	ont		- Fa	A	lignment	E.	N	umber	E.		5	Styles	

• Another quick way to format cells and visualize the data within

Try Question 2 in the "Questions" sheet.

Sparklines

D

BRUIN ACTUARIAL SOCIETY

С

10

5

4

В

9

8

9

2

7

A

6

9

9

2

3

4

5

- Useful tool for quickly visualizing a lot of data without having to go through the trouble of making a chart
- For example, summarizing data in each row and each column:

Try Question 3 in the "Sparklines" sheet.

- Useful tool for quickly visualizing data created from PivotTable
- Can specify types of graphs and filter data

Try Question 4 in the "PivotChart" sheet.

LINEST Function

Summary: Find statistical parameters for data with linear trends

Purpose: Find slope, intercept, coefficient of determination, etc. for data

Return Value: Returns slope for the line of best fit for data (more if you use array formula, but we will not cover it today)

Syntax: =LINEST(known_y's, [known_x's], [const], [stats])

Arguments:

- known_y's- y values for data
- [known_x's],- [optional] x values of data. Default is [1,2,..] that is the same size as y's
- [const] [optional] 0 for forcing y-intercept to be 0, 1 otherwise (1 is default)
- [stats] [optional] 1 for returning all values, 0 for returning only slope & intercepts

Example Output Finding the slope for x and y

		Α	В	С	D	
	1	х	у			
	2	2	11.15156			
	3	3	14.08644			
	4	7	26.52386			
	5	9	32.89035			
	6	13	44.88248			
	7					
l	8	Formula	=LINEST(\$	B\$2:\$B\$6 <mark>,\$</mark>	A\$2:\$A\$6,:	1,1)
	9	Slope	3.080185			

LOGEST Function

Summary: Find statistical parameters for data with exponential trends (y = b*(m^x))

Purpose: Find growth factor, coefficient of determination, etc. for data

Return Value: Return growth factor (m) for the line of best fit for data (more if you use array formula, but we will not cover it today)

Syntax: =LOGEST(known_y's, [known_x's], [const], [stats])

Arguments:

- known_y's- y values for data
- [known_x's],- [optional] x values of data. Default is [1,2,..] that is the same size as y's
- [const] [optional] 0 for forcing b to be 1, and 1 otherwise (1 is default)
- [stats] [optional] 1 for returning all values, 0 for returning only b & m

Example Output

Finding the growth factor for x and y

	А	В	с	D	E
1	х	у			
2	2	23			
3	3	55			
4	7	4378			
5	9	39370			
6	13	3188647			
7					
8	Formula	=LOGEST(\$B\$2:\$B\$6,	\$A\$2:\$A\$6	,1,1)
	Growth				
9	factor	2.954096			

Try Questions 5 and 6 in the "LINEST and LOGEST" sheet.

Set Objective:		\$A\$1		1
To: O <u>M</u> ax		<u>V</u> alue Of:	0	
Ry Changing Variable	Cells			
gy changing ranable				t
Subject to the Constr	aints:			
-,			^	<u>A</u> dd
				⊆hange
				Delete
				Beset All
Alaka Unconstrai	inod Variables Nee-b	legative		Foad/save
I wage choristral	ned variables ruon n	regauve		
Select a Solving Method:	GRG Nonlinear		~	Options
Solving Method				
Solving Method Select the GRG Non engine for linear So	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are
Solving Method Select the GRG Non engine for linear So non-smooth.	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are
Solving Method Select the GRG Non engine for linear So non-smooth.	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol olver Problems, and s	ver Problems that are s select the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob <u>S</u> olve	ct the LP Simplex lems that are Close
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob <u>S</u> olve	ct the LP Simplex lems that are Close
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob Solve	ct the LP Simplex lems that are Close
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol olver Problems, and s	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob <u>S</u> olve	ct the LP Simplex lems that are Close
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	Close
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are Clgse
Solving Method Select the GRG Non engine for linear So non-smooth. Help	nlinear engine for Sol	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are Clgse
Solving Method Select the GRG Non engine for linear So non-smooth. Help	hlinear engine for Sol	ver Problems that are s elect the Evolutionary e	mooth nonlinear. Sele ngine for Solver prob	ct the LP Simplex lems that are

BR

Solver

- <u>https://support.office.com/en-us/article/load-the-solver-add-in-in-excel-612926fc-d53b-46b4-872c-e24772f078ca</u>
- A more powerful version of GoalSeek that can optimize (min/max) with constraints

Try Question 7 in the "Solver" sheet.

Questions?

