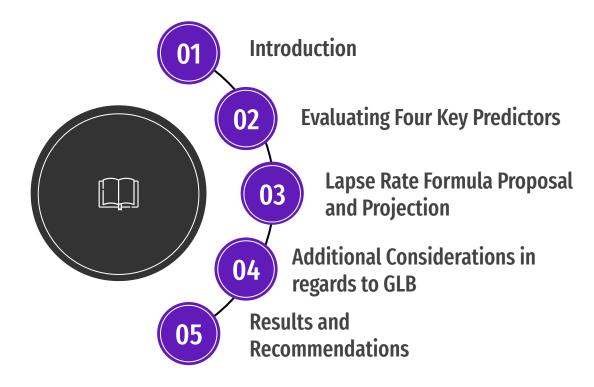
2024 Annual BAS Case Competition

Team 1: Nathan Wei Chan, Derek Younger, Dalton Bassler-Haynes, Beloved Maina

Agenda

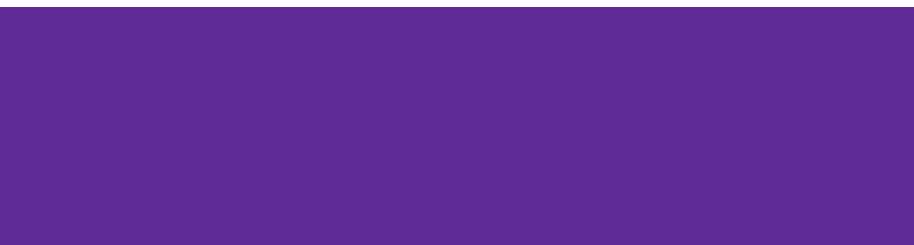


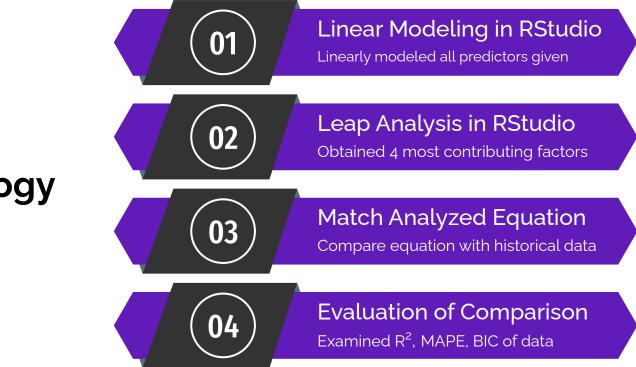
Introduction

Goals



Evaluating Factors for Lapse Formula





Methodology

Impactful Factors High mortality rate \rightarrow high lapse rate

Mortality Rate

High crediting rate—retention of policyholder

Crediting Rate

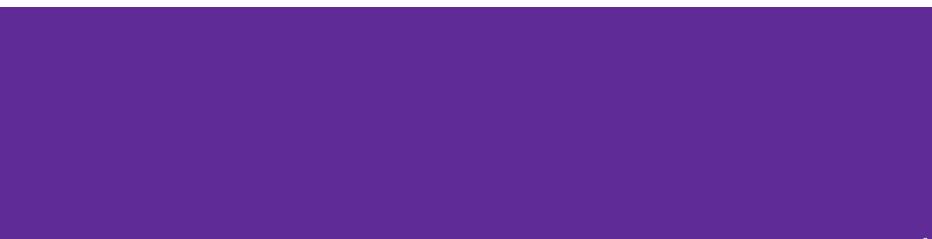
Long term indicator of future interest rate

10 Yr. Treasury Rate

Penalty discouraging early lapse/withdrawal/

Surrender Charge

Proposed Lapse Formula

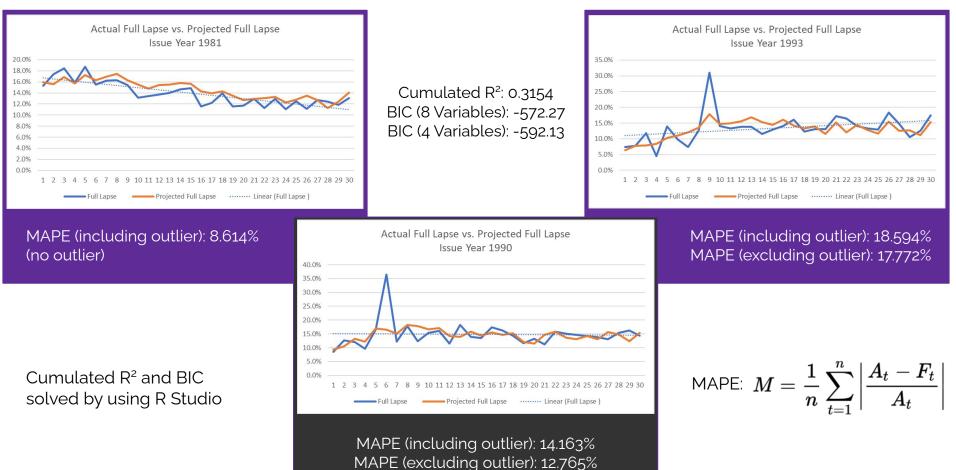


Lapse Rate as a function of the 4 proposed variables.

f(a, b, c, d) = 0.1135 + 0.516a - 0.876b + 1.08c - 1.06d

a = Mortality Rate b = Crediting Rate c = 10-Year Treasury Rate d = Surrender Charge $\Box_0 = 0.1135$ $\Box_1 = 0.516$ $\Box_2 = -0.876$ $\Box_3 = 1.08$ $\Box_4 = -1.06$

Matching Equation with Historical Data



10

Lapse Rate Predictions with Projected Data

Projected Lapse Using Equation

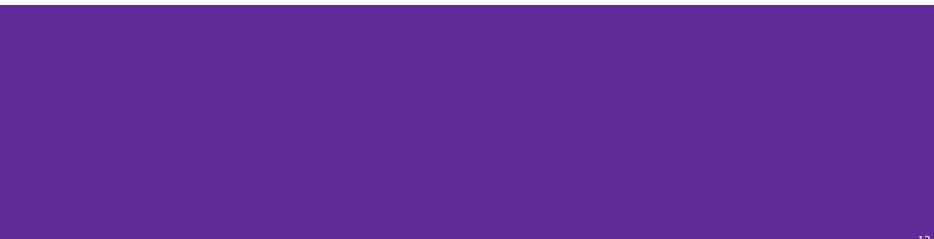
a = Mortality Rate b = Crediting Rate c = 10-Year Treasury Rate d = Surrender Charge

Year	Mortality Rate	Crediting Rate	10 Yr. Treasury Rate	Surrender Charge	Projected Lapse
2023	0.06%	4.50%	3.96%	12%	3.00%
2024	0.46%	4.50%	3.95%	10%	3.00%
2025	1.79%	4.50%	4.00%	10%	3.00%
2026	0.30%	4.70%	4.19%	7%	4.49%
2027	1.05%	4.80%	4.28%	5%	7.02%
2028	1.64%	4.80%	4.93%	4%	9.08%
2029	1.81%	5.00%	5.07%	3%	10.21%
2030	0.34%	5.00%	5.64%	2%	11.13%
2031	0.32%	5.00%	5.80%	0%	13.40% 🚽
2032	0.18%	5.20%	5.50%	0%	12.83%
2033	1.77%	5.20%	6.16%	0%	14.37%
2034	0.26%	5.50%	5.90%	0%	13.04%
2035	0.37%	5.50%	7.42%	0%	14.74%
2036	0.78%	5.50%	6.60%	0%	14.07%
2037	0.14%	5.50%	7.00%	0%	14.17%

f(a, b, c, d) = 0.1135 + 0.516a - 0.876b + 1.08c - 1.06d

Account for 17.09% increase outlier

Additional proposed factors



Additional Proposed Factor, Monthly Unemployment Rates

Assume policyholders schedule GLB to correlate with retiring.

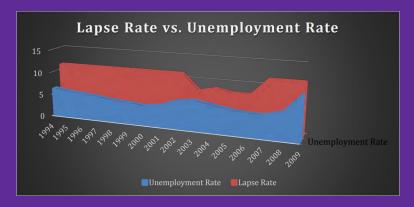
Unemployment Rate doesn't account for retirees

Focused on policyholders before GLB occurs

Unemployment Example

• Study by SOA, showing that Lapse Rate vs. Unemployment Rate are weakly correlated. (Modeling the Unemployment Risk in Insurance Products, SOA)

_ Table 23			
Statistic	Result (%)		
Correlation	4.4		
Covariance	8.0		
R-Squared	0.2		
Slope	3.8		



Results and Recommendations

MAPE Interpretation

We solved for the Mean Absolute Percentage Error, a good estimate of the data is generally accepted to have an MAPE of ≤ 20%.

R² Interpretation

Obtained an R² value of 0.3154 using RStudio. Relatively accurate to the cumulative data given a large set of variables to consider.

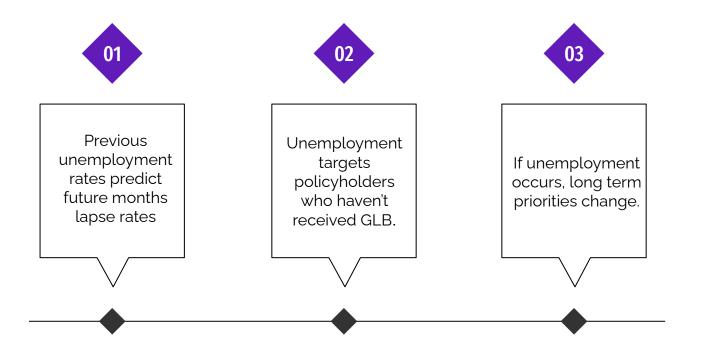
BIC Interpretation

Bayesian Information Criterion is a measure of the simplicity and relative accuracy of the linear representation. Measures absolute difference between 2 BIC; ≥ 6 is significant.

Overall Recommendation

Our equation builds a relatively good prediction using Mortality Rate, Crediting Rate, 10 Yr. Treasury Rate, and Surrender Charge. These 4 variables and our equation should be of good use to Sgt. Pepper Financial Group.

Why does Unemployment Matter?



RStudio Appendix



(A) Summary of Linear Regression

```
#Using all the data to make the main model with all variables
model_all_pred = lm(Full.Lapse ~ MVA + Mortality.Rate + Crediting.Rate +
                      X5yr.Treasury.Rate + General.Account.Portfolio.Yield +
                      Statutory.Reserves....billions. + X10.Yr.Treasury.rate +
                      Surrender.charge, data = master_data)
summary(model_all_pred)
# now finding best subset of 4
# Using leaps data package to systematically check every combination for the best adjusted RA2 value
best_subset = regsubsets(Full.Lapse~.,
                         data = master_data, nbest = 1, nvmax = NULL, force.in = NULL, force.out = NULL,
                         method = "exhaustive")
best_subset
summary_best_subset <- summary(best_subset)</pre>
as.data.frame(summary_best_subset$outmat)
which.max(summary_best_subset$adjr2)
# Which 4 are the best variables that contribute the most to RA^2
summary_best_subset$which[4,]
# Final formula with the 4 best predictors
model_all_pred_2 = lm(Full.Lapse ~ Mortality.Rate + Crediting.Rate +
                      X10.Yr.Treasury.rate +
                      Surrender.charge, data = master_data)
# Final model with all the intercepts
summary(model_all_pred_2)
```

(B) Summary of 8 Variable Model

. . . .

> summary(model_all_pred)

Call:

Residuals:

Min	1Q	Median	3Q	Max
-0.053673	-0.012104	-0.004833	0.008350	0.201799

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.083132	0.071554	1.162	0.2487	
MVA	-0.074025	0.163031	-0.454	0.6510	
Mortality.Rate	0.470492	0.218905	2.149	0.0346	*
Crediting.Rate	-0.962730	0.528502	-1.822	0.0722	
X5yr.Treasury.Rate	0.227750	0.780656	0.292	0.7712	
General.Account.Portfolio.Yield	0.526794	1.832566	0.287	0.7745	
Statutory.Reservesbillions.	0.001037	0.002402	0.432	0.6671	
X10.Yr.Treasury.rate	0.776866	1.235763	0.629	0.5313	
Surrender.charge	-1.151413	0.236218	-4.874	5.35e-06	***
Signif. codes: 0 '***' 0.001 ''	**' 0.01 '*	[•] 0.05 '.'	0.1 ' '	1	

Residual standard error: 0.03323 on 81 degrees of freedom Multiple R-squared: 0.3639, Adjusted R-squared: 0.301 F-statistic: 5.792 on 8 and 81 DF, p-value: 7.743e-06

> # Which 4 are the best variables that contribute the most to RA2

```
> summary_best_subset$which[4,]
```

(Intercept)	ïPolicy.Year	MVA	Mortality.Rate
TRUE	FALSE	FALSE	TRUE
Crediting.Rate	X5yr.Treasury.Rate	General.Account.Portfolio.Yield	Statutory.Reservesbillions.
TRUE	FALSE	FALSE	FALSE
X10.Yr.Treasury.rate	Surrender.charge		
TRUE	TRUE		

(C) Summary of Reduced Linear Regression

```
> # Final model with all the intercepts
> summary(model_all_pred_2)
Call:
lm(formula = Full.Lapse ~ Mortality.Rate + Crediting.Rate + X10.Yr.Treasury.rate +
   Surrender.charge, data = master_data)
Residuals:
    Min
              10 Median
                               30
                                      Max
-0.05497 -0.01493 -0.00713 0.01288 0.19969
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                    0.11355 0.01646 6.897 8.83e-10 ***
(Intercept)
Mortality.Rate
                0.51615 0.21186 2.436 0.0169 *
Crediting.Rate -0.87614 0.51976 -1.686 0.0955.
X10.Yr.Treasury.rate 1.08137 0.25696 4.208 6.35e-05 ***
Surrender.charge -1.06032
                              0.22319 -4.751 8.16e-06 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.03289 on 85 degrees of freedom
Multiple R-squared: 0.3462, Adjusted R-squared: 0.3154
F-statistic: 11.25 on 4 and 85 DF, p-value: 2.259e-07
```

(D) BIC Calculations

```
# Finding BIC, grading on how well the model models data and simplicity
residuals = residuals(model_all_pred_2)
residuals.
# RSS- residual sum of squares
RSS = sum(residuals^2)
RSS
# Get sample size (n) and number of parameters (k)
n <- length(residuals)</pre>
k <- length(coefficients(model_all_pred_2))</pre>
# Estimate variance of residuals
sigma_hat_squared <- RSS / (n - k)
sigma_hat_squared
# Calculate BTC
BIC_4_var <- n * \log(sigma_hat_squared) + k * \log(n)
BIC 4 var
# BIC for the 4 variable model
# Find BIC for model with all variables
residuals_8 = residuals(model_all_pred)
RSS 8 = sum(residuals 8^2)
n_8 = length(residuals_8)
k_8 = length(coefficients(model_all_pred))
sigma_8 = RSS_8 / (n_8 - k_8)
BIC_8_var = n_8 * \log(sigma_8) + k_8 * \log(n_8)
BIC 8 var
# Since the BIC difference is greater than 10, therefore there is a significant
# Preference over the 4 variable model vs the 8 variable model.
```

(E) BIC Implementation

> RSS [1] 0.09194491 > n [1] 90 > k [1] 5 > sigma_hat_squared [1] 0.001081705 $> BIC_4_var$ [1] -592.1305 $> RSS_8$ [1] 0.08945228 > n_8 [1] 90 > k_8 [1] 9 > sigma_8 [1] 0.001104349 > BIC_8_var [1] -572.2666

Thank You! Any questions?

