2021 UCLA Case Competition

Team 32: Dylan Yu, Lucy Xue, Doris Liu, James Li

Table of Contents

- 01 DATA EXPLORATION
- 02 SENSITIVITY ANALYSIS
- 03 ASSET PORTFOLIO
- 04 ENTERPRISE VIEW & KEY RISKS

Data Exploration

Data Quality

• Issue 1: Policy duplicates.

SPIA00272	AC	2015	11	25	1943
SPIA00272	AC	2015	11	25	1943

• Adjustment: removed the duplicates.

• Issue 2: Birth year being later than issue year.

Iss_Yr 💌	Iss_Mo 💌	Iss_Day 💌	Birth_Yr 🗷	Birth_Mo 💌	Birth_Day 💌	Sex 💌	Iss_Age 💌	Att_Age 💌
2016	1	26	2055	11	22	F	60	65
2016	6	7	2055	2	20	М	61	65

• Adjustment: recalculated the birth year according to the given attained age.

Data Quality (Cont.)

- Issue 3: Inconsistencies with benefit amounts and single premium.
 - Adjustment: removed the outliers.

Nominal Benefit vs Premium

Regression Statistics					
Multiple R	0.746				
R Square	0.557				
Adjusted R Square	0.556				
Standard Error	5633.645				
Observations	1000.000				

Before adjustment

Regression Statistics					
Multiple R	0.917				
R Square	0.841				
Adjusted R Square	0.841				
Standard Error	3024.334				
Observations	993.000				

After adjustment

Sensitivity Analysis

Sensitivity Expectations

Sensitivity Factors

- Two factors: mortality rate and interest rate
- Decreasing mortality (increasing mortality improvement) = increasing PV
- Increasing interest rate = decreasing PV

Time Expectation

- Sensitivity increases with later projection dates
- More time for money to accumulate, greater mortality improvement

Assumptions About Mortality

• Lee-Carter model for non-constant mortality improvement is unnecessary

Sensitivity Results

PV of total benefits

$\% \Delta PV = \frac{PV^* - PV_{BE}}{PV_{BE}}$

Scenario	Best Est	Mort Shock	MI Shock	Rates Up	Rates Down	Rates 0%					
Proj Year							Mort	MI	RU	RD	0%
2020	332m	343m	334m	299m	372m	399m					
2030	159m	168m	160m	133m	189m	212m					
2040	51m	57m	52m	40m	65m	76m	0.021	0.005	0.000	0 1 1 0	0.201
2050	7.4m	9.2m	7.7m	5.4m	10.3m	12.6m	0.031	0.005	-0.099	0.117	0.201
2060	251k	404k	263k	166k	380k	488k					
2070	1.5k	4.0k	1.5k	0.9k	2.4k	3.3k					

Sensitivity Results

- For a given projection date, older policyholders' benefits are less sensitive to interest rate
- Yet they are more sensitive to mortality rate

Interest Sensitivity

Mortality Sensitivity

Asset Portfolio

Comments on Asset Sensitivities

Assumptions

- To estimate the sensitivities, we assumed the future cash flows were fixed, and discounted back by the different yield rates to get PV
- Term structure of interest unknown
- 0% interest rate unlikely
- Sensitivities of liabilities should drive assets!

Credit Rating Factor

- Using data from S&P Global, we ran SLR to model default probability versus year, for each credit rating
- For BBB rated bonds, probability of default increases by 0.31% each year

Default Factor					
AA	.08%				
А	0.13%				
BBB	0.31%				

0% Shock Results

Portfolio	Baseline PV	0% PV	0% Rating Adj PV
CURRENT	343m	453m	445m
ALTERNATIVE 1	343m	436m	422m
ALTERNATIVE 2	343m	400m	396m

Review of Each Portfolio

- CURRENT: Duration of 10.1, high-grade bonds (2% loss)
- ALTERNATIVE 1: Duration of 8.9, medium-grade bonds (3% loss)
- ALTERNATIVE 2: Duration of 7.5, high-grade bonds (1% loss)

04 Enterprise View & Key Risks

Term Life Insurance

Liquidity Risk:

• Risk of not having sufficient cash to pay out claims

Possible Solution:

- Implement liquidity risk control
- Monitor liquidity risk profile

Index Universal Life Insurance

Asset Liability Management Risk:

• Make sure investment income is more than total liabilities

Possible Solution:

• Reinsurance

Variable Annuity (VA)

Market Risk:

- Equity Market Risk
- Interest Rate Risk

Possible Solution:

• Diversified portfolio (futures, bonds, options)

Single Premium Immediate Annuity (SPIA)

Longevity Risk:

- Mortality assumptions are not as expected
- Policyholders live longer than expected

Possible Solution:

- Design products with age restrictions on both receiving guaranteed benefits and on income commencement
- Risk pooling and product diversification

Thank You for Listening !