Ninth Annual Bruins Actuarial Society Case Competition

> Christopher Nie, Jiayu Wang, Alycia Liem, Agustin Wong

Agenda

- Enterprise Perspective
- Product Line Risks
- Data Quality
- Sensitivity Expectations
- Sensitivity Results
- Methodology for Bond Summary
- o% Shock on SPIA Asset Portfolio
- Factors to Consider
- Appropriateness of Portfolio
- Appendix

Enterprise Perspective

- Liability and Asset Sensitivity Analysis
- Impact of Different Interest Rates on
 - Asset-liability mismatch
 - Obligation to policies
 - Product

Product Line Risks

Data Quality

ASOP No 23 3.1

• "...Identify data values that are questionable or relationships that are significantly inconsistent."

Minor Issues

- Data Entry Errors in "Issue Year" = 17
 - Changed to 2017
- "Pol_Sts" = NA
 - Changed to AC
- "Birth_Yr"= 2055
 - Changed to 1955
- "lss_Age" = o
 - Calculated new Issue Age from birthdate

Normal Data

• No issues identified with month/day of issue & sex

Relationships in Data

- Modal Benefit α 1/Mode
- Modal Benefit α Single Premium

Inconsistent yearly payment

- Yearly payment= Modal Modal Benefit
- Yearly payment amounts far outpacing single premium
- SPIA00323:

Single Premium= \$122,400 Mode=12 • Modal Benefit= \$8,604 = \$103,248

Outliers affect SPIA PV of Benefits

• Revised numbers where possible to infer

Sensitivity Expectations

Scenario

- Best Estimate
- Base Mortality Shock
- Mortality Improvement Shock
- 1% Interest Rate Increase
- 1% Interest Rate Decrease
- Discount Rate: o%

Expectation on PV Benefits

- N/A (Base line)
- Present Value

Methodology & Implications

Accounting for Convexity

- Duration assumes interest rates and bonds have linear relationship
- Convexity allows for other factors and accounts for non-linearity changes
- Assuming yield is equal to coupon rate

 $Convexity = \frac{P_i + P_d - P_0}{2 \cdot P_0 \cdot (\Delta Y)^2}$ Change in Bond Price = $-D \cdot \Delta Y \cdot \frac{(\Delta Y)^2}{2} \cdot Convexity$

 $P_0 = bond \ price$ $P_i = bond \ price \ after \ increase \ in \ interest \ rate$ $P_d = bond \ price \ after \ decrease \ in \ interest \ rate$ $\Delta Y = change \ in \ interest \ rate$ D = duration

Implications for a decreasing interest rate environment

- Bond prices increase as yield decrease, thus portfolio value increases
- Gains not realized unless portfolio was sold. Benefits of selling would be offset by lower yields
- Proceeds reinvested at potential lower interest rate results in reinvestment risk

o% Shock on Bond Portfolios

Yield Rate vs Portfolio Prices

Sensitivity Factors affecting Portfolio PV

- Exact Cash Flows & Individual Yields
- Default risk
- Embedded Options
 - Callable
 - Convertible
- Inflation Risk
- Market Interest Rates

Appropriateness of Portfolios

Current Portfolio

21% 5-year AA, 38% 10-year A, and 41% 20-year A Pro: Hedging potential risks; Value increases when interest rate decreases Con: Most sensitive; Inability to cover liabilities when rate increases

Alternative 1

30% 5-year A, 50% 10-year BBB, and 20% 20-year BBB Pro: Less sensitive; A balance between current and Alt 2 Con: Inability to cover liabilities when rate increases.

Alternative 2

50% 5-year AA, 40% 10-year A, and 10% 20-year A

Pro: Least sensitive; Covers more liability when interest rates go up(relative to other portfolios) Con: Adverse to low interest rate environment

Data Appendix

Conclusion

Thank you judges and organizers for this great opportunity!

