2021 BAS Annual Case Competition

Team 18:
Meichen Chen, Aimee Xu, Leonard Zhang
Agenda

1. Sensitivity Analysis Objective
2. SPIA Sensitivity Testing
3. SPIA Asset Portfolio
4. Business Impact
Sensitivity Analysis

Objective

What do we gain from this project?
Motivation

● Why is this needed?
 ○ To protect Luvalle
 ○ Analyze our risk profile
 ○ Set strategy in low rate environment
Risk vs. Reward

<table>
<thead>
<tr>
<th></th>
<th>Risk</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term Life</td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>Indexed Universal</td>
<td>High, indirectly depends on stock market</td>
<td>Potentially high or low</td>
</tr>
<tr>
<td>Single Premium</td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>Variable Annuity</td>
<td>Higher, directly depends on stock market</td>
<td>Potentially high or low</td>
</tr>
</tbody>
</table>
What are potential risks for our SPIA product?
Data Quality:
Inconsistencies Within Fields

<table>
<thead>
<tr>
<th>Iss_Age</th>
<th>Pol_Sts</th>
<th>Iss_Yr</th>
<th>Birth_Yr</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>PD</td>
<td>2016</td>
<td>1940</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>PD</td>
<td>17</td>
<td>2055</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>NA</td>
<td>2015</td>
<td>2055</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>NA</td>
<td>2018</td>
<td>2055</td>
<td>12</td>
</tr>
<tr>
<td>67</td>
<td>AC</td>
<td>2020</td>
<td>1960</td>
<td>2</td>
</tr>
</tbody>
</table>

See Appendix for details
Data Quality: Relationships Between Fields

- Checked Iss_Age and Att_Age were accurate as of 12/31/2020
- Noticed unusually high and low benefits

See Appendix for details
Sensitivity Expectations vs Results
(Trends in Comparison to Best Estimate)

<table>
<thead>
<tr>
<th></th>
<th>Best Estimate</th>
<th>Base Mortality Shock</th>
<th>MI Shock</th>
<th>Rates Up</th>
<th>Rates Down</th>
<th>Rates 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectations (millions)</td>
<td>$333</td>
<td>$344</td>
<td>$335</td>
<td>$300</td>
<td>$373</td>
<td>$400</td>
</tr>
<tr>
<td>Results (millions)</td>
<td>$333</td>
<td>$333</td>
<td>$335</td>
<td>$300</td>
<td>$373</td>
<td>$400</td>
</tr>
</tbody>
</table>
Projected PV Benefits Runoff

PV Benefits (Millions of Dollars)

Year

- Best Est
- Mort Shock
- MI Shock
- Rates Up
- Rates Down
- Rates 0%
Sensitivity Impact on PV Benefits

Difference from Best Estimate

-15.00%
-10.00%
-5.00%
0.00%
5.00%
10.00%
15.00%
20.00%

Sensitivity

Least Sensitive
Most Sensitive

MI Shock
Mort Shock
Rates Up
Rates Down
Rates 0%

0.51%
3.11%
-9.93%
11.85%
20.07%
Analyze Past Data

Compare trends with results

Improve Model Accuracy

Validation Methods
How can we make investments to back up liabilities under the low interest rate environment?
Objectives:

3 portfolios:

Current portfolio

Alternate 1

Alternate 2

Lower credit rating, shorter tenors

Same credit rating, much shorter tenors

0% interest rate shock

Appropriateness for backing the SPIA Liability

Other sensitivities before making final decision
Implications from 1% rate shock

Amount invested: $342.7m

Bond Price (Millions of Dollars)

390
380
370
360
350
340
330
320
310
300

Rates Up 1%
No Change
Rates Down 1%

Interest Rate

Current
Alternate 1
Alternate 2
0% Rate Shock Estimate

Interest Rate \downarrow Bond Price \uparrow

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Duration</th>
<th>Baseline Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>10.1</td>
<td>2.1%</td>
</tr>
<tr>
<td>Alternate 1</td>
<td>8.9</td>
<td>2.25%</td>
</tr>
<tr>
<td>Alternate 2</td>
<td>7.5</td>
<td>1.8%</td>
</tr>
</tbody>
</table>
Key Ideas:

If interest rates decrease by x%, then bond prices increase by (Duration * x) %.

Baseline Yields ⇔ Interest Rate

Resulting Formula for 0% rate Shock:

New Bond Price = Initial Bond Price * [1 + (Baseline Yields * Duration)]
Interest Rate Sensitivities with 0% Rate Shock

- **Current**
- **Alternate 1**
- **Alternate 2**

Bond Price (Millions for Dollars)

- Rates Up 1%
- No Change
- Rates Down 1%
- 0% rate

Interest Rate
Possible Inaccuracies

- 0% interest rate may not mean that the interest rate is literally 0.

- Change in bond price given a 1% change in interest rate does not exactly match the duration.
Which portfolio?

Factors to Consider

- Sensitivities
- Yields
- Bond Maturity
- Credit Quality
- Expectations for the Future

Bond Maturity

Credit Quality

Sensitivities

Yields

Expectations for the Future
Current Portfolio
- Majority 20y bonds
- High credit quality

Drawbacks:
- If interest rates decrease -> lose more money
- Majority of returns in far future
- Most sensitive to interest rate changes

Alternate 1
- Most yields
- Majority 10y bonds
- Medium credit quality

Drawback:
- Highest default risk (5%)

Alternate 2
- Least sensitive
- Majority 5y bonds
- High credit quality

Drawbacks:
- Least yields
- If interest rates increase -> higher opportunity cost for short-term bond
Other Possible Sensitivities for Bond Price

- Inflation Rate
- Term to Maturity
- Credit Quality
- Inflation
Business Impact

How can we best protect Luvalle against risk?
Enterprise-Wide Recommendations
Thank you!
Appendix

<table>
<thead>
<tr>
<th>Policy Deleted</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIA00164, SPIA00346, SPIA00295</td>
<td>Birth Year was 2055</td>
</tr>
<tr>
<td>SPIA00740, SPIA00086</td>
<td>Policy Status was NA</td>
</tr>
<tr>
<td>SPIA00952, SPIA00953, SPIA00954, SPIA00955, SPIA00956, SPIA00957</td>
<td>Issue Age was 0</td>
</tr>
<tr>
<td>SPIA00272, SPIA00298, SPIA00725, SPIA00928</td>
<td>Duplicates</td>
</tr>
</tbody>
</table>

Additional Changes:
- Changed 104 policies to reflect annual payments instead of biannual payments
- Changed Att_Age so they all reflect age as of 12/31/2020
- Changed formatting in Iss_yr from 17 to 2017