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Bob Blattner was a very good friend of ours, and was an active and re-
sourceful collaborator of ours in the late 1960’s and early 1970’s. He was a very
versatile mathematician whose discoveries went far beyond our joint work.

Bob Blattner was an undergraduate at Harvard, receiving hia AB summa
cum laude in 1953. His undergraduate advisor was George W. Mackey whose
work was to have a major influence on Bob’s first publications. He received
his PhD from the University of Chicago in 1953 under the supervision of Irving
Segal.

1 Induced representations of groups

The basics of the representation theory of finite groups goes back to Frobenius.
If H is a subgroup of G, then every representation of G obviously restricts to a
representation of H. Frobenius showed how, starting with a representation of
H on can construct a representation of G called the induced representation and
proved the Frobenius reciprocity theorem. In today’s terminology, this would
say that the restriction functor (going from the category of G-representations
to H-representations) and the induction functor (going from the category of H
representations to the category of G-representations) are adjoint functors. From
his construction of induced representations, Frobenius was able to describe the
irreducible representations of a semi-direct product.

In 1939, Wigner applied the Frobenius method to determine the irreducible
representations of the Poincarë group, and found the amazing result that pa-
rameters describing the physically relevant representations are none other than
parameters such as mass and spin which enter into the description of elementary
particles. As the Poincaré group is far from being finite, the mathematical ques-
tion arises as how to formulate the notion of induced representations for (say)
a locally compact compact group G and a unitary representation L of a closed
subgroup H. The key results in this mathematical investigation are all due to
Mackey (with some input by Loomis and others) and today the subject is known
as the Wigner-Mackey theory of induced representations. Mackey’s approach
made use of a very heavy dose of deep facts from measure theory and some
technical assumptions such as seperability and the existence of “quasi-invariant
measures” on G/H.
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In a series of papers in the early 1960’s, Bob cleaned up this subject enor-
mously. He gives a reformulation of the definition of the induced representation
UL. In this reformulation no mention is made of quasi-invariant measures (and
hence is “more invariant”) and the separability hypothesis is avoided. A theorem
of Mackey (on an isomorphism between the algebra of intertwining operators
of representations of H and a subalgebra of the intertwining operators of the
induced representations, which Mackey proved under separability assumptions
is extended by Bob to eliminate the separability hypotheses. In several other
papers Bob streamlines and generalizes other theorems of Mackey.

2 Induced and produced representations of Lie
algebras, and the realization theorem for tran-
sitive Lie algebras

The study of transitive Lie algebras (at least in low dimensions) goes by to Lie
in his Transformationensgrouppen where he was interested in using sym-
metry toward the solution of differential equations. In our paper “An algebraic
model of transitive differential geometry” we proved the following “realization
theorem’: Let g be a Lie algebra over a field k of characteristic zero and t
a sub algebra of finite cxdimension n. Then g can be represented as deriva-
tions of the k[x1, . . . , xn] in such a way that there are derivations of the form
∂

∂xi
+ · · · , i = 1, . . . , n in the image, and t is represented by such ‘formal vector

fields” which vanish at the origin. Furthermore, this representation is unique
up to formal power series change of variables. Our proof involved finding the
required formal vector fields and the coordinate change relating two such re-
alizations recursively “coefficient by coefficient”. In 1969 Bob developed the
theory of produced and induced representations of Lie algebras and used this
to give a beautiful coordinate free proof of this realization theorem. In more
detail: Let U(g) and U(t) be the universal enveloping algebras of g and t. Given
a representation (ρ, V ) of t (and hence of U(t)), let W = HomU(t)(U(g, V ∗).
Thas the structure of a U(g) module (hence of a g module) called the produced
module. It is the Lie algebra version of the induced module from a subgroup.
If one takes (ρ, V ) to be the trivial representation of t on the base field, then
W has a natural ring structure on which g acts as derivations. Bob proves the
realizationn theorem by showing that if k has zero characteristic then W is iso-
morphic to the power series ring. He then proves some important theorems on
these transitive Lie algebras using a Lie algebra produced version of Mackey’s
imprimitivity theorem.

3 The BKS pairing

Dirac proposed that quantum Hamiltonians should be obtained from classi-
cal mechanics via a homomorphism from the Poisson algebra of functions on

3



phase space to the Lie algebra (under commutator) of skew-adjoint operators
on Hilbert space. In the case of polynomials of degree two or less on standard
phase space, this was successfully carried out giving rise to the famous paper
by André Weil on the metaplectic representation (inspired in part by work of
Irving Segal). But a “no-go” theorem of Grunwald and van Hove showed that
this representation can not be extended so as to include any polynomial of de-
gree higher than two. Also, the above constructed representation is limited to
the standard phase space consisting of T ∗Rn whereas the geometry of classical
mechanics requires more general symplectic manifolds. At this point, geometric
quantization was introduced by Kostant and Souriau. It involves two stages:
the first (called pre-quantization) provides a representation of elements of the
Poisson algebra of a symplectic manifold M as first order differential operators
on a line bundle which certain homological conditions on M are satisfied. n
accordance with the metaplectic correction this line bundle is multiplied by the
bundle of half-forms.The second stage, called quantization involves a choice of
polarization which restricts the class of functions which can be “quantized”.
Bob, in collaboration with Kostant and Sternberg introduced a pairing between
the Hilbert spaces associated with different polarizations under certain hypothe-
ses. The possible applications of this method is still an active area of research.

4 The Blattner conjecture

Among workers in representations of Lie groups, Bob is best known for a conjec-
ture about the K-types of the discrete series, that he made in conversation with
Harish-Chandra. As Prof. Varadarajan discusses this in his memorial, we need
not go into detail. See also the wikipedia article on the Blattner conjecture.

5 Work on Hopf algebras

We are not competent to write about this work, and rely on Prof. Montgomery,
his wife and collaborator, to describe this.
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