Stochastic Quasi-Newton Methods

Donald Goldfarb

Department of IEOR
Columbia University

UCLA Distinguished Lecture Series
May 17-19, 2016

/35



Stochastic Approximation
Stochastic Gradient Descent
Variance Reduction Techniques

Newton-like and quasi-Newton methods for convex stochastic
optimization problems using limited memory block BFGS
updates.

@ Numerical results on problems from machine learning.

@ Quasi-Newton methods for nonconvex stochastic optimization
problems using damped and modified limited memory BFGS
updates.



Stochastic optimization

@ Stochastic optimization
min f(x) =E[f(x,£)], & is random variable
Or finite sum (with fi(x) = f(x,&;) for i=1,...,n and very

large n)
min f(x Z fi(x

o f and Vf are very expensive to evaluate, stochastic gradient
descent (SGD) methods choose a random subset S C [n] and
evaluate

(x) 5 Zf(x and  Vfs(x SZVf
’ ‘IES ’ ‘IES

@ Essentially, only noisy info about £, Vf and V?f is available

@ Challenge: how to smooth variability of stochastic methods

@ Challenge: how to design methods that take advantage of
noisy 2nd-order information?



Stochastic optimization

Deterministic gradient method

Stochastic gradient method



Stochastic Variance Reduced Gradients

@ Stochastic methods converge slowly near the optimum due to
the variance of the gradient estimates Vfs(x); hence requiring
a decreasing step size.

@ We use the control variates approach of Johnson and Zhang
(2013) for a SGD method SVRG.

o It uses d = Vfs(xt) — Vis(wi) + VF(wg), where wy is a
reference point, in place of Vfs(x¢) .

@ wy, and the full gradient, are computed after each full pass of

the data, hence doubling the work of computing stochastic
gradients.

\ VF(wg) =V fs(w)




Stochastic Average Gradient

o At iteration t
- Sample i from {1,..., N}
- update y/™ = Vfi(x*) and yj”r1 =yf forall j#i
- Compute gt+1 — % jN:1 it+1

- Set xttl = xt — gttlgttl

g [ty eee ] e ERFA

Replace
v

g“’l; | y1t| y§ | (XX |ylt+1| e .. |Y1€1—1| yItV

@ Provable linear convergence in expectation.

@ Other SGD variance reduction techniques have been recently
proposes including the methods: SAGA, SDCA, S2GD.



Quasi-Newton Method for min f(x) : f € C!

o Gradient method:
Xk+1 = Xk — g VF(xk)
@ Newton's method:
Xip1 = Xk — ak[V2F(x)] TV F ()
@ Quasi-Newton method:
Xk4+1 = Xk — akBI:lVf(xk)

where By > 0 approximates the Hessian matrix

e Update
Bki1Sk = Yk, (Secant equation)

where Sk = Xk+1 — Xk = Ozkdk, and Yk = ka+1 - ka
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BFGS

@ BFGS quasi-Newton method

T T
Yie Yk Bisisy B
s;—yk S;— BkSk

Bi+1 = Bk +

where s = xg11 — xx and yx = VF(xk+1) — VI (xk)
Bky1 = 0if By > 0 and skTyk > 0 (curvature condition)
Secant equation has a solution if s, yx > 0

When f is strongly convex, skTyk > 0 holds automatically

If f is nonconvex, use line search to guarantee skTyk >0

T T T

SkY, Yk, SkS,

o H =/ — F)H (] — %)+ ==
k1 = ( skTyk) k( skTyk) Y




Prior work on Quasi-Newton Methods for Stochastic

Optimization

P1

P2

N.N. Schraudolph, J. Yu and S.Glinter. A stochastic quasi-Newton
method for online convex optim. Int’l. Conf. Al & Stat., 2007
Modifies BFGS and L-BFGS updates by reducing the step s, and
the last term in the update of Hy, uses step size o, = /3/k for small
8> 0.

A. Bordes, L. Bottou and P. Gallinari. SGD-QN: Careful
quasi-Newton stochastic gradient descent. JMLR vol. 10, 2009
Uses a diagonal matrix approximation to [V2f(-)]~! which is
updated (hence, the name SGD-QN) on each iteration,

ay =1/(k + a).



Prior work on Quasi-Newton Methods for Stochastic

Optimization

P3 A. Mokhtari and A. Ribeiro. RES: Regularized stochastic
BFGS algorithm. IEEE Trans. Signal Process., no. 10, 2014.
Replaces yx by yx — dsi for some § > 0 in BFGS update and
also adds 1 to the update; uses o = [3/k; converges in
expectation at sub-linear rate E(f(xx) — *) < C/k

P4 A. Mokhtari and A. Ribeiro. Global convergence of online
limited memory BFGS. to appear in J. Mach. Learn. Res.,
2015.

Uses L-BFGS without regularization and «, = [3/k; converges
in expectation at sub-linear rate E(f(x¥) — f*) < C/k
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Prior work on Quasi-Newton Methods for Stochastic

Optimization

P5 R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer. A

P6

stochastic quasi-Newton method for large-scale optim.
arXiv1401.7020v2, 2015

Averages iterates over L steps keeping Hy fixed; uses average
iterates to update Hy using subsampled Hessian to compute

Yk; ax = [/k; converges in expectation at a sub-linear rate
E(f(xk) — )< C/k

P. Moritz, R. Nishihara, M.I. Jordan. A linearly-convergent
stochastic L-BFGS Algorithm, 2015 arXiv:1508.02087v1
Combines [P5] with SVRG; uses fixed step size «; converges
in expectation at a linear rate.
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Using Stochastic 2nd-order information

o Assumption: f(x) = 137  f(x) is strongly convex and twice

~n
continuously differentiable.

@ Choose (compute) a sketching matrix Si (the columns of Sy
are a set of directions).

@ We do not use differences in noisy gradients to estimate
curvature, but rather compute the action of the sub-sampled
Hessian on Sg. i.e.,

@ compute Yy = |—71.‘ > ier V2£i(x)Sk, where T C [n].
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Example of Hessian-Vector Computation

In binary classification problem, sample function (logistic loss)
f(w; x;,zj) = zilog(c(w; x;)) + (1 — z) log(1 — c(w; x;))

where

1
1+ exp(—x;' w)’

c(w;x;) = xi € R",weR" z e{0,1},

Gradient:
Vi(w;xi,zi) = (c(w; x;) — zi)x;
Action of Hessian on s :

V2 (w;xi, z)s = c(w; x;)(1 — c(w; X)) (x; s)x;
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block BFGS

The block BFGS method computes a "least change” update to the
current approximation Hy to the inverse Hessian matrix V2f(x) at
the current point x, by solving

min ||H — H||
s.t., H= HT, HY) = 5.

where [|A| = [[(V?f(xk))2A(V?f(xk))'/?||f (F = Frobenius)

This gives the updating formula (analgous to the updates derived

by Broyden, Fletcher, Goldfarb and Shanno, 1970).

Hictr = (1=Sk[S¢ YAl Yi ) Hk( = YalS{ Vil 7S¢ +SlSk Vil 2S¢

or, by the Sherman-Morrison-Woodbury formula:

Bii1 = Bx — BiSk[S: BkSk)71S) Bi + Yi[S{ Vil 1Y)
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Limited Memory Block BFGS

After M block BFGS steps starting from Hj1_ps, one can express
Hiy1 as

His1 = ViH VI + SiMST
= Vi Vi_1Hi—1 thl Vi + VkSk_lAk_lskal VkT + Sk/\kSkT

k+1-M

= Vikri-mHir-mVidiiom + Y Vit SihiST Vi,
i—k
where
Vie= (I = SihYd) (1)

and A, = (Slz_yk)_l and V., = Vi --- V.
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Limited Memory Block BFGS

@ Hence, when the number of variables d is large, instead of
storing the d x d matrix Hy, we store the previous M block
curvature triples

(Sk1=Ms Yir1-m> Nes1=m) 5 -+ (Sks Yies A) -

@ Then, analogously to the standard L-BFGS method, for any
vector v € R?, H,v can be computed efficiently using a
two-loop block recursion (in O(Mp(d + p) + p3) operations),
if all S; € R9*P.

Intuition
@ Limited memory - least change aspect of BFGS is important

@ Each block update acts like a sketching procedure.
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Two Loop Recursion

Algorithm 0.1: Two Loop Recursion
Input: g, €R? S;, Y; € R¥9and \; e RI*9 foric {t+1—M,... t}

1 initiate: v = g;

2 fori=t,....t —M+1do
3 Oé,':/\,'SI-TV

4 v=v— Y

5 end

6 fori=t—M+1,...,tdo
7 Bi=NYv

8 V:V—|—5,‘(Oz,'—ﬂ;)

9 end

output: H;gs =v

=
o
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Choices for the Sketching Matrix Sy

We employ one of the following strategies

e Gaussian: Sk ~ N(0,/) has Gaussian entries sampled i.i.d at
each iteration.

@ Previous search directions s; delayed: Store the previous L
search directions Sy = [sk41-1,- .-, Sk] then update Hy only
once every L iterations.

@ Self-conditioning: Sample the columns of the Cholesky factors
Ly of Hy (i.e., LkLZ— = Hy) uniformly at random. Fortunately
we can maintain and update Ly efficiently with limited
memory.

The matrix S is a sketching matrix, in the sense that we are
sketching the, possibly very large equation V2f(x)H = /| to which
the solution is the inverse Hessian. Right multiplying by S
compresses/sketches the equation yielding V2f(x)HS = S.
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The Basic Algorithm

Algorithm 0.1: Stochastic Variable Metric Learning with SVRG

Input: H_; € R wy € RY, np € R,, s = subsample size, g = sample
action size and m

1 for k =0,..., max_iter do

2 = Vr(w)

3 Xo — Wk

4 fort=0,...,m—1do

5 Sample S, T¢ C [n] i.i.d from a distribution S
6 Compute the sketching matrix S, € R9*9

7 Compute V2fs(x:)S;

8 H; =update metric(H;_1, S, V?f7-(x:)S:)

9 dr = —H; (Vis(x) — Vs(wk) + p)

10 Xet1 = X + nd;

11 end

12 Option I: wi1 = X

13 Option Il: wy 1 = x;, i selected uniformly at random from [m];
112 end
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Convergence - Assumptions

There exist constants A\, A € R such that
@ f is A—strongly convex

A
F(w) > £(x) + VF(x)T(w = x) + 5 lIw —x[3, (2
@ f is A=smooth
T A 2
Fw) < F() + V)T (w —x) + S llw =xlz, - (3)
@ These assumptions imply that

M < V2fs(w) <A, forallx cRY SCn], (4)

@ from which we can prove that there exist constants v, € R,
such that for all k we have

vl 2 He X T1. (5)
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Bounds on Spectrum of H,

Lemma

Assuming 30 < A < A such that
M < V2fr(x) < A
for all x € RY and T € [n],
vyl < He XTI
where

wwm = 7 1< (U /RPEM o sprcrg) and s = A/A

@ bounds in MNJ depend on problem dimension m <7z

and I < W# ~ (dr)4tM
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Linear Convergence

Theorem

Suppose that the Assumptions hold. Let w, be the unique
minimizer of f(w). Then in our Algorithm, we have for all k > 0
that

Ef(wi) — f(wi) < pFEf(wo) — F(wy),

where the convergence rate is given by

_1/2mn + AN = X)
AR W Sy P

<1,

assuming we have chosen n < y\/(2[2A2) and that we choose m
large enough to satisfy

1
>
M= 20 (o —nT2A2A — V)’

which is a positive lower bound given our restriction on 7).



Numerical Experiments

Empirical Risk Minimization Test Problems

@ logistic loss with f regularizer

n
min ) _ log(L + exp(—y;(a', w))) + Ll|wli3
i=1
given data: A= [al,a%,---,a" € R y € {0,1}".
@ For each method, chose step size
n€{1,.5,.1,.05,...,5 x 1078 1078} that gave best results

@ Computed full gradient after each full data pass.
@ Vertical axis in figures below: log(relative error)
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epsilon-normalized d = 2,000, n = 400, 000
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rcvl-training d =
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url-combined d = 3,231,961, n = 2,396, 130
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Contributions

o New metric learning framework. A block BFGS framework for
gradually learning the metric of the underlying function using
a sketched form of the subsampled Hessian matrix

o New limited memory block BFGS method. May also be of
interest for non-stochastic optimization

o Several sketching matrix possibilities.

@ More reasonable bounds on eigenvalues of Hy
= more reasonable conditions for step size
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Nonconvex stochastic optimization

@ Most stochastic quasi-Newton optimization methods are for
strongly convex problems; this is needed to ensure a curvature
condition required for the positive definiteness of By (Hy)

@ This is not possible for problems min f(x) = E[F(x, )], where
f is nonconvex

@ In deterministic setting, one can do line search to guarantee
the curvature condition, and hence the positive definiteness of
Bk (Hy)

@ Line search is not possible for stochastic optimization

@ To address these issues we develop a stochastic damped and a
stochastic modified L-BFGS method.
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Stochastic Damped BFGS (Wang, Ma, G, Liu, 2015)

o Let yx = % Dot (VE(Xkr1, Eri) — VE(xk, £i 7)) and define
Yk = Okyx + (1 — 0x)Brsk,

where
. 1, if SZ—_Vk > 0.2552—8;(5;(,
o (0.75s, Bisk)/ (s Bksk — s yk), if s yk < 0.25s/ Bysy.

e Update Hy: (replace yx by vk )
Hi1 = (I = pisiyid YHk( — pisi ) + prsks

where px = 1/s/ 3
@ Implemented in a limited memory version

@ Work in progress: combine with variance reduced stochastic
gradients (SVRG)
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Convergence of Stochastic Damped BFGS Method

Assumptions
[AS1] f € C!, bounded below, Vf is L—Lipschitz continuous
[AS2] For any iteration k, the stochastic gradient satisfies

Ee [VF(xk, &x)] = V£ (x)
Ee, [[IVF(xk, &k) — V() |1?] < 02

Theorem (Global convergence): Assume AS1-AS2 hold, (and
ax = B/k < ~/(LT?) for all k), then there exist positive
constants v, I', such that v/ < H, < T/, for all k, and

Iikminf |IVf(xk)|l = 0, with probability 1.

—00

e Under additional assumption Eg, [[|Vf(xk,&)|?] < M
klim |Vf(x)|]| =0, with probability 1.
—00

@ We do not need to assume convexity of f
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Block-L-BFGS Method for Non-Convex Stochastic

Optimization

o Block-update
Hisr = (I = SNY H(D = YA ST + Siht ST

where Ay = S/ Yy = S V2F(xx) Sk
@ In non-convex case Ay = /\;(r may not be positive definite.

@ Ay /0 discovered while computing Cholesky factorization
LDLT of A.
If during Cholesky, d; > & or |(LD/?);| < j are not satisfied,
d; is increased by 7;.
= (Me)jj < (M) + 75

@ has the effect of moving search direction Hy1Vf(xk+1)
toward one of negative curvature.

@ Modification based on Gershgorin disc also possible.
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