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1. FBI-transforms, wavefront sets and applications

1. FBI-transforms, wavefront sets and applications

Microlocal analysis started in the 60ies,

Kohn-Nirenberg, Hörmander, Maslov, Egorov in the setting of
distributions mod. smooth functions,

Sato-Kawai-Kashiwara [Sa70, SaKaKa71] in the setting of
hyperfunctions mod. analytic functions.

Study of singularities of solutions of linear PDE, applications to spectral
theory and other branches of analysis. Important tools: Pseudodifferential
operators and Fourier integral operators.

The wave front set, WF(u) (Sato[Sa70], Hörmander [Ho71b]) is a central
notion. It refines the one of singular support, sing supp (u). Let X be an
open subset of Rn or a smooth manifold. Let T ∗X ' Xx × Rn

ξ be the
cotangent bundle, write 0 = {(x , ξ) ∈ T ∗X ; ξ = 0}. If u ∈ D′(X ), then
WF (u) is a closed conic subset of T ∗X \ 0 such that
πx(WF (u)) = sing supp (u), where πx : T ∗X → X is the natural
projection.
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1. FBI-transforms, wavefront sets and applications

To illustrate, consider a solution u ∈ D′(Rn+1
t,x ) of Pu = 0 where

P = −D2
t +

∑n
1 D

2
xj

is the wave operator. If (0, 0) ∈ sing supp (u), we
know that sing supp (u) contains some union of light rays passing through
(0, 0) of the form x = tω, t ∈ R, where ω ∈ Sn−1. How can we determine
this union? WF (u) is a closed conic subset of T ∗Rn+1 \ 0, with
πt,x(WF (u)) = sing supp (u). When Pu ∈ C∞, we know that
WF (u) ⊂ p−1(0), where p = −τ2 + ξ2 is the principal symbol of P and
we have a fundamental theorem on propagation of singularities
(Hörmander, Sato-Kawai-Kashiwara) which tells us that WF (u) is a union
of maximally extended integral curves of Hp = p′τ∂t + p′ξ · ∂x in p−1(0).

Thus WF (u) ∩ T ∗(0,0)R
n+1 \ {(0, 0)} determines the lightrays through

(0, 0) that are contained in sing supp (u).
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1. FBI-transforms, wavefront sets and applications

Figure: Wavecone

Our approach in the analytic framework is based on methods and ideas for
Fourier integral operators with complex phase. Originally, it was used to
study propagation of singularities of solutions to linear PDE (microlocal
analysis), then it was globalized and applied to spectral problems (phase
space analysis). 4 / 81



1. FBI-transforms, wavefront sets and applications

Plan of the lectures:

1. a) Analytic wavefront sets, local FBI-transforms and exponentially
weighted spaces of holomorphic functions.
b) Propagation of singularities, eigenvalues of non-self-adjoint operators
and resonances in the semi-classical limit (finally not included here) – a
survey.

2. Eigenvalues of elliptic non-self-adjoint operators:
a) The analytic case, using semi-global weighted spaces.
b) The case of random perturbations (general Weyl law). (Finally not
included here, see [Sj19].)

3. Resonances:
Global weighted spaces.
The role of trapped classical trajectories.
Potential well in an island for a semi-classical Schrödinger operator, shape
resonances and higher levels.
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1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

1a. Analytic wavefront sets and FBI transforms

Let

Fu(ξ) =

∫
e−ix ·ξu(x)dx , ξ ∈ Rn

denote the Fourier transform of a distribution u ∈ S ′(Rn). The most
direct definition of the usual wavefront set ([Ho71b]) is undoubtedly:

Definition (1.1)

Let u ∈ D′(X ) where X ⊂ Rn is open. Let (x0, ξ0) ∈ T ∗X \ 0. We say
that (x0, ξ0) 6∈WF (u) iff ∃ χ ∈ C∞0 (X ) with χ(x0) 6= 0 and a conic
neighborhood V ∈ Rn \ 0 such that with 〈ξ〉 = (1 + ξ2)1/2,

F(χu)(ξ) = ON(〈ξ〉−N) in V for every N ≥ 0. (1)

WF(u) is a closed conic subset of T ∗X \ 0.

We have πx(WF (u)) = sing supp(u) if πx : T ∗X \ 0→ X is the natural
projection.
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1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

The definition of Sato uses the representation of hyperfunctions as sums of
boundary values of holomorphic functions. Somewhat later Hörmander
[Ho71c] defined the analytic wavefront set by modifying (1) in two ways:

Replace the rapid decay by exponential decay.

Since cutoffs are not analytic, use special sequences of cutoffs, that
depend on |ξ|, introduced by Ehrenpreis [Ehr60], Mandelbrojt
[Ma42, Ma52], ...

A third approach is to work with Fourier transforms with Gaussians. Many
different names: FBI, Bargmann-Segal, Gabor, wavepacket .... transforms.
In the context of analytic microlocal analysis they were introduced and
used by D. Iagolnitzer, H. Stapp [IaSt69], J. Bros, Iagolnitzer [BrIa75].
This is the method we follow here. See [Sj82, Ma02a].
Let χ ∈ C∞0 (Rn) be = 1 near 0. We say that (x0, ξ0) 6∈WFa(u) if

Tu(x , ξ) :=

∫
e i(x−y)·ξ−|ξ|(x−y)2

χ(x − y)u(y)dy (2)

is O(e−|ξ|/C ) in a conic neighborhood of (x0, ξ0).
7 / 81



1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

Weighted spaces and symbols. Let Ω ⊂ Cn be open, Φ ∈ C (Ω;R). By
definition, the function u = u(z ; h) on Ω×]0, h0[ belongs to H loc

Φ (Ω) if

u(·; h) ∈ Hol(Ω), for all h, where Hol (Ω) denotes the space of
holomorphic functions on Ω.

∀K b Ω, ε > 0, ∃C > 0 such that |u(z ; h)| ≤ Ce(Φ(z)+ε)/h, z ∈ K .

Put

HΦ(Ω) = Hol (Ω) ∩ L2(Ω; e−2Φ/hL(dx)), L(dx) = Lebesgue measure.

When u ∈ H loc
0 (Ω), we say that u is an analytic symbol. When

u = O(h−m) locally uniformly on Ω, we say that u is of finite order m ∈ R.

Equivalence: u ∼ v , for u, v ∈ H loc
Φ (Ω), means that there exists

C 0(Ω) 3 Φ̃ < Φ, such that u − v ∈ H loc
Φ̃

(Ω).

By HΦ,x0 := the space of germs of functions in H loc
Φ (Ω) at x0 ∈ Ω. We

have a corresponding equivalence relation.
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1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

Classical analytic symbols (Boutet de Monvel, Krée [BoKr67]). Let
ak ∈ Hol (Ω), k = 0, 1, ... and assume that for every Ω̃ b Ω, ∃C = C

Ω̃
> 0

such that
|ak(z)| ≤ C k+1kk , z ∈ Ω̃. (3)

a =
∑∞

0 ak(z)hk is called a formal classical analytic symbol.

We have a realization of a on Ω̃ by

a
Ω̃

(z ; h) =
∑

0≤k≤(eC
Ω̃
h)−1

ak(z)hk ∈ H loc
Φ (Ω̃).

If Ω̂ is another relatively compact subset of Ω, then a
Ω̂

and a
Ω̃

are

equivalent on Ω̃ ∩ Ω̂.
FBI-transforms. Let φ ∈ Hol (neigh ((x0, y0),C2n)), y0 ∈ Rn and assume
that

φ′y (x0, y0) = −η0 ∈ Rn, =φ′′yy (x0, y0) > 0,

detφ′′xy (x0, y0) 6= 0.
(4)
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1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

Let a(x , y ; h) be a classical analytic symbol of order 0, defined near
(x0, y0), elliptic in the sense that a0(x0, y0) 6= 0 and let
χ ∈ C∞0 (neigh (y0,Rn)) be equal to one near y0. If u ∈ D′(Rn) (or just
defined in a neighborhood of the support of χ), we put

Tu(x ; h) =

∫
e iφ(x ,y)/ha(x , y ; h)χ(y)u(y)dy , x ∈ neigh (x0,C

n). (5)

Proposition

Tu ∈ H loc
Φ0

(neigh (x0)), where

Φ0 = sup
y∈neigh (y0,Rn)

−=φ(x , y) ∈ C∞(neigh (x0,C
n);R) is real-analytic.

Example A Bargmann transform with φ(x , y) = i(x − y)2/2. Then
Φ0(x) = (=x)2/2 and the exponential factor in (5) becomes

e
i

2h
(x−y)2

= eΦ0(x)/he
i
h

(<x−y)·(−=x)− 1
2h

(<x−y)2
.

cf. (2). 10 / 81



1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

T is a Fourier integral operator with associated complex canonical
transformation:

κT : neigh ((y0, η0),C2n) 3 (y ,−∂yφ(x , y)) 7→
(x , ∂x(φ(x , y)) ∈ neigh ((x0, ξ0),C2n), ξ0 = ∂φ(x0, y0).

Let

ΛΦ0 = {(x , 2

i
∂xΦ0(x)); x ∈ neigh (x0,C

n)}.

Proposition

We have ΛΦ0 = κT (R2n). Further, Φ0 is strictly pluri-subharmonic.
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1. FBI-transforms, wavefront sets and applications 1a. Analytic wavefront sets and FBI transforms

Assume that η0 6= 0. For x ∈ neigh (x0), write

(y(x), η(x)) = κ−1
T (x , (2/i)∂xΦ0(x)) ∈ T ∗Rn \ 0.

y(x) is the local real maximum of −=φ(x , ·).

Definition

Let u be a distribution defined near y0, independent of h. We say that
(y(x), η(x)) 6∈WFa(u) if Tu ∼ 0 in HΦ0,x .

This leads to the definition of a closed conic subset WFa(u) ⊂ T ∗X \ 0
when u ∈ D′(X ), X ⊂ Rn open. We have

πx (WFa(u)) = sing suppa(u), the analytic singular support of u.
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1. FBI-transforms, wavefront sets and applications 1b. Applications– a survey

1b. Propagation of singularities, eigenvalues of
non-self-adjoint operators and resonances – a survey

Let P be a differential operator with analytic coefficients on an open set
X ⊂ Rn. Let p be the principal symbol. The following theorem is due to
N. Hanges [Ha81]. It improves the classical results of L. Hörmander
[Ho71c] and Sato, Kawai and Kashiwara [SaKaKa71] in that it only
requires one real bicharacteristic strip. See also [HaSj82].

Theorem

Assume that Hp = p′ξ · ∂x − p′x · ∂ξ has a real integral curve

γ : [a, b]→ p−1(0) ∩ T ∗X \ 0, a < b. If u ∈ D′(X ),
WFa(Pu) ∩ γ([a, b]) = ∅, then γ([a, b]) is either contained in, or disjoint
from WFa(u).

There are many results on propagation of singularities, especially for
boundary value problems, e.g. by J. Ralston [Ra76] (Gaussian beams) and
G. Eskin [Es85] (propagation and fundamental solutions in the interior).
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1. FBI-transforms, wavefront sets and applications 1b. Applications– a survey

We have seen that T is a Fourier integral operator with associated
canonical transformation κT with κT (T ∗X ) = ΛΦ0 . We have a “Egorov
theorem”. Let (y0, η0) ∈ T ∗Rn \ 0 be a point where p(y0, η0) = 0,
(x0, ξ0) = κT (y0, η0). Then there exists a semi-classical pseudodifferential
operator Q(x , hDx ; h) with classical analytic symbol
Q(x , ξ; h) ∼ q(x , ξ) + hq1 + ... such that

QTu ∼ ThmPu (6)

for every fixed u ∈ D′(neigh (0,Rn)). We have

q ◦ κT = p.

Q acts in H loc
Φ0

and also in H loc
Φ when Φ is close to Φ0 in C 2 (it is often

very useful to replace Φ0 by a deformation Φ). One proof ([HiSj18]) of
Hanges’ theorem is based on the possibility of choosing T so that Q in (6)
is equal to hDxn .

14 / 81



1. FBI-transforms, wavefront sets and applications 1b. Applications– a survey

Non-self-adjoint operators. Appear naturally in many contexts; fluid
dynamics, Kramers-Fokker-Planck, damped wave equations,....

Difficulty: Spectral instability, often no useful spectral resolution.

Advantage: Often possible to study individual eigenvalues not only in 1D
(as in the self-adjoint case) but also in 2D. This is a kind of complete
integrability, related to the absence of small denominators. (Cherry’s
theorem).

With Michael Hitrik we have written a series of papers about analytic
semi-classical non-self-adjoint operators in 2D of the form

Pε = P0 + iεQ +O(ε2)

where P0 is self-adjoint with leading (real) symbol p completely integrable.
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1. FBI-transforms, wavefront sets and applications 1b. Applications– a survey

Then the energy surface p−1(0) (fixing the real energy to 0) is
decomposed in Hp-flow invariant sets Λ which “most of the time” are torii
(Arnold-Mineur-Liouville theorem). Each torus Λ has a rotation number
that may be rational, but most of the time is irrational and even
Diophantine.

The spectrum near 0 is contained in a band of width � ε, parallel to the
real axis. We have a Weyl law for the distribution of the real parts of the
eigenvalues (Markus–Matseev [MaMa79]).

[HiSjVu07]: Diophantine torii generate distorted lattices of eigenvalues.
Tools: semi-global FBI transforms and related weighted spaces of
holomorphic functions.

Numerical simulations for an operator on the two-torus:
We get a “centipede; mille-pattes” whose body fits with the range of torus
averages. The legs were more mysterious.
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1. FBI-transforms, wavefront sets and applications 1b. Applications– a survey
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Spectrum of p + i*epsilon*q,, epsilon=0.005, h=0.01, kappa=2, F=2

Hitrik-Sj [HiSj18]: The legs are generated by rational torii and the
eigenvalues in the legs are obtained by the secular method, cf. [LiLi92].
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2. Eigenvalues of elliptic non-self-adjoint differential operators

2. Eigenvalues of elliptic non-self-adjoint differential
operators

Non self-adjoint operators appear naturally in a number of areas:

General linear PDE: solvability theory (non-normal operators, H. Lewy
[Le57], L. Hörmander [Ho60a, Ho60b], ...).

Mathematical physics: Damped wave equation,
(Kramers-)Fokker-Planck operator, scattering poles.

Fluid dynamics: Linearizations around special stationary flows.

An important difference with the self-adjoint case is that the resolvent may
be large far away from the spectrum σ(P) of the closed operator P:

‖(z − P)−1‖ � 1

dist (z , σ(P))
,

which implies spectral instability: a small perturbation of P may move the
eigenvalues a lot.

18 / 81



2. Eigenvalues of elliptic non-self-adjoint differential operators

We will discuss non-self-adjoint 2-dimensional problems, allowing very
detailed results about individual eigenvalues. (A series of papers with
Michael Hitrik, see [HiSj18] and further references there.)
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.1. WKB-method and quasi-modes.

2.1. WKB-method and quasi-modes.

Let P(x , hDx ; h) = p(x , hD) + hp1(x , hD) + .. be a semi-classical
(pseudo-)differential operator on a smooth manifold X , (x0, ξ0) ∈ T ∗X ,
p(x0, ξ0) = z0 ∈ C and assume that 1

i {p, p}(x0, ξ0) > 0. Then we can

construct a quasimode of the form u(x ; h) = e
i
h
φ(x)a(x ; h), solving

(P − z0)(u(x ; h)) = O(h∞) i.e. ON(hN), ∀N > 0,

normalized in L2 and exponentially small away from x0. Hörmander
[Ho60a, Ho60b] in a different context, E.B. Davies [Da99], M. Zworski
[Zw01], N. Dencker–Sj–Zworski [DeSjZw04], K. Pravda-Starov [Pr06].
This implies that ‖(P − z0)−1‖ is very large when the resolvent exists, and
spectral instability near z0. (It does not imply that z0 is close to the
spectrum.)

Example: Davies’ operator: (hDx)2 + ix2 on R.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.2. Semi-global FBI-transforms

2.2. Semi-global FBI-transforms

When X = Rn, we can take a Bargmann transform as in the example
above. Let now X be a compact real-analytic Riemannian manifold of
dimension n. Let d(x , y) be the distance We shall define an FBI-transform
as above but with a global choice of phase (cf.
[Bo78, GoLeSt96, Sj96, Zw99, HiSj04]). Let X̃ be a complex
neighborhood of X . The function d(x , y)2 is analytic near the diagonal in
X × X and extends holomorphically to a neighborhood of the diagonal in
X̃ × X̃ , if X̃ is close enough to X . Put

φ(x , y)2 = iλd(x , y)2,

where λ > 0 is constant, large enough, depending on the size of the
bounded region in T ∗X that we want to cover.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.2. Semi-global FBI-transforms

For x ∈ X̃ , |=x | < 1/C , put

Tu(x ; h) = h−
3n
4

∫
e

i
h
φ(x ,y)a(x , y ; h)χ(x , y)u(y)dy , u ∈ D′(X ),

where χ is a suitable smooth cut-off function, equal to 1 near
diag (X × X ) and a is an elliptic classical analytic symbol. We have the
following facts:

As before we can introduce the function
Φ0(x) = supy∈X −=φ(x , y) = −=φ(x , y(x)), x ∈ X̃ , |=x | < 1/C . It is
strictly pluri-subharmonic and of the order of magnitude ∼ |=x |2.
ΛΦ0 := {(x , 2

i ∂Φ0) ∈ T ∗X̃} is given by ΛΦ0 = κT (T ∗X ), where κT is
defined as before, now with a domain containing an arbitrarily large set of
the form {(y , η) ∈ T ∗X ; |η| ≤ O(1)}.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.2. Semi-global FBI-transforms

Deformations of real phase space and averaging. Let Λt ,
t ∈ neigh (0,R) be a smooth family of IR-manifolds in the complexified
cotangent space with Λ0 = T ∗X . Here ”IR” means that the restriction of
the symplectic form is real and nondegenerate. For every choice of real
analytic coordinates, Λt is of the form {ρ+ itHGt (ρ); ρ ∈ T ∗X}. G0 is
independent of the choice of local coordinates. Applying κT , we get

κT (Λt) = ΛΦt , ∂tΦ0 ◦ κT = G0.

Also
p|Λt
' p(ρ+ itHGt (ρ)) = p(ρ)− itHp(G0) +O(t2).

(When Gt is analytic we can replace ρ+ itHG0 by exp(itHG0)(ρ).
Let pε = p + iεq +O(ε2) be a small perturbation of a real Hamiltonian p,
|ε| � 1. Let G be real and analytic, ΛεG = exp(iεHG )(T ∗X ).
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.2. Semi-global FBI-transforms

Then

pε|Λε
' p(ρ+ iεHG (ρ)) = pε(ρ) + iε(q − Hp(G )) +O(ε2)

We can take G with Hp(G ) = q − 〈q〉T ,

〈q〉T =
1

T

∫ T/2

−T/2
q ◦ exp(tHp)dt,

and we get
p|ΛεG

= p(ρ) + iε〈q〉T +OT (ε2).

Particularly efficient when the Hp-flow is periodic. (A. Weinstein [We77],
Y. Colin de Verdière [Co77], A. Grigis [Gr91] and in the present context
Hitrik-Sj [HiSj04, HiSj08].)
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.3. The analytic case in 1D

2.3. The analytic case in 1D

For self-adjoint (pseudo-)differential operators in dimension 1, we often
have a Bohr-Sommerfeld rule to determine the asymptotic behaviour of the
eigenvalues. (B. Helffer – D. Robert [HeRo82] in this degree of generality).
In the non-self-adjoint case we get the same results for small perturbations
Pε = P + iεQ if the coefficients of P0 and Q are analytic. Averaging:
Assume that p−1(0) is a simple closed curve on which dp 6= 0. Let 〈q〉E
be the average of q on p−1(E ) and view 〈q〉 as a function on phase space:
〈q〉(ρ) = 〈q〉p(ρ). Then

p|ΛεG
= p(ρ) + iε〈q〉p(ρ).

We conclude in principle that the eigenvalues of Pε in a fixed
neighborhood of 0 are situated in a O(ε2)-neighborhood of the curve
{E + iε〈q〉E ; E ∈ neigh (0,R)}.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.4. The analytic case in 2D

2.4. The analytic case in 2D

A. Melin–Sj [MeSj02, MeSj03], M. Hitrik–Sj, Hitrik–Sj–S. Vũ Ngo.c: For
analytic non-self-adjoint operators in dimension 2 one can often determine
individual eigenvalues by means of Bohr-Sommerfeld rules in the complex
domain. Especially, small perturbations of self-adjoint operators (cf. the
damped wave equation) have been studied. We discuss one such result
[HiSjVu07].
Let

Pε(x , hD; h) =
∑
|α|≤m

aα(x , ε; h)(hDx)α

be a semi-classical differential operator of order m on a compact analytic
surface X (or on R2), where

aα is smooth in ε ∈ neigh (0,R), holomorphic in x ,
aα(x , ε; h) = aα(x , ε) +O(h),

Pε is elliptic in the classical sense:
∣∣∣∑|α|=m aα(x , 0; 0)ξα

∣∣∣ � |ξ|m,

Pε=0 = P(x , hD; h) is self-adjoint in L2(X ; dx).
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.4. The analytic case in 2D

The leading symbol pε(x , ξ) = Pε(x , ξ; 0) is of the form
p(x , ξ) + iεq(x , ξ) +O(ε2) where p is real and we assume q real for
simplicity.
Assume that p is completely integrable, (there exists a non-trivial analytic
function which Poisson commutes with p) and that

p−1(0) is connected and dp 6= 0 on that set. (7)

Example

Pε = −h2∆ + iεV (x) on a surface of revolution.

Then we have a decomposition

p−1(0) ∩ T ∗X =
⊔
Λ∈J

Λ, (8)

where Λ are compact connected sets, invariant under the Hp flow. Here
Hp = p′ξ · ∂x − p′ξ · ∂ξ. Typically, Λ are Lagrangian tori forming 1
parameter families: the regular part. (Arnold-Mineur-Liouville theorem).
There can also be degenerations: Λ ∈ S .
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.4. The analytic case in 2D

Each torus Λ ∈ J \ S has a rotation number ω(Λ) = [a1 : a2] ∈ RP1

depending analytically on Λ.
We say that Λ ∈ J \ S is respectively rational, irrational, diophantine if
a1/a2 has the corresponding property. Diophantine means that there exist
α > 0, d > 0 such that

|(a1, a2) · k | ≥ α

|k |1+d
, 0 6= k ∈ Z2. (9)

We introduce

〈q〉T =
1

T

∫ T/2

−T/2
q ◦ exp(tHp)dt, T > 0, (10)

and consider the compact intervals

Q∞(Λ) := [ lim
T→∞

inf
Λ
〈q〉T , lim

T→∞
sup

Λ
〈q〉T ]. (11)

Then, when ε, δ → 0,

{z ∈ σ(Pε); |<z | ≤ δ} ⊂
[−δ, δ] + iε[ inf

Λ∈J
inf Q∞(Λ)− o(1), sup

Λ∈J
supQ∞(Λ) + o(1)], (12)

28 / 81



2. Eigenvalues of elliptic non-self-adjoint differential operators 2.4. The analytic case in 2D

For each torus Λ ∈ J \ S , we let 〈〈q〉〉(Λ) be the average of q|Λ When Λ is
irrational then Q∞(Λ) = {〈〈q〉〉(Λ)}.
Let F0 ∈ ∪Λ∈JQ∞(Λ) and assume that there exists a Diophantine torus Λd

(or finitely many), such that

〈〈q〉〉(Λd) = F0, dΛ〈〈q〉〉(Λd) 6= 0 6= dΛω(Λd). (13)

Using averaging, in particular complex Birkhoff normal forms, we obtained:

Theorem ([HiSjVu07])

Assume also that F0 does not belong to Q∞(Λ) for any other Λ ∈ J. Let
0 < δ < K <∞. Then ∃C > 0 such that for h > 0 small enough, and
hK ≤ ε ≤ hδ, the eigenvalues of Pε in the rectangle
|<z | < hδ/C , |=z − εF0| < εhδ/C form a distorted lattice, given by a
complex Bohr-Sommerfeld condition, with horizontal spacing � h and
vertical spacing � εh.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D

2.5. Numerical illustrations in 2D

See [HiSj18]. Numerically easy situation: X = T2,

Pε = −h2∆x ,y + iε(q0(x , y) + q1(x , y)hDx + q2(x , y)hDy )

where qj are real trigonometric polynomials of degree F .
Symbol:

ξ2 + η2 + iε (q0(x , y) + q1(x , y)ξ + q2(x , y)η)︸ ︷︷ ︸
=:q(x ,y ,ξ,η)

.

We look at the eigenvalues z with 0.85 ≤ <z ≤ 1. The energy surface
ξ2 + η2 = 1 is foliated into invariant tori, ξ = const, η = const, that we
parametrize by arg (ξ + iη):

The torus average of q,

The torus max and min of q

Q∞(Λ) for each relevant rational torus.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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Below we plot the spectrum for the same fixed q, with h = 0.01, and ε
successively doubling from h/2 to 16h. We get a “centipede; mille pattes”
whose body fits with the range of torus averages. The legs were more
mysterious. Influence of rational tori? Relation with the operator
(hD)2 + i cos x?? 31 / 81



2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.5. Numerical illustrations in 2D
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.6. The centipede (le millepatte)

2.6. The centipede (le millepatte)

Let Pε satisfy the general conditions above. We consider the
decomposition p−1(0) =

⊔
Λ∈J Λ in (8).

Recall that Q∞(Λ), Λ ∈ J \ S is reduced to the point 〈〈q〉〉Λ when
Λ ∈ J \ S is irrational and is an interval containing 〈〈q〉〉Λ when Λ is
rational.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.6. The centipede (le millepatte)

Let Λ0 ∈ J \ S be a rational torus and assume that (dΛω)(Λ0) 6= 0,

inf Q∞(Λ0) < inf
Λ∈J\{Λ0}

inf Q∞(Λ)

or the reversed inequality with all “inf” replaced by “sup”.
Choose action-angle coordinates (x , ξ) near Λ0 so that Λ0 is given by
ξ = 0 in T ∗T2, p = p(ξ), and

∂ξ2p(0) > 0, ∂ξ1p(0) = 0, ∂2
ξ1
p(0) 6= 0,

where we keep the assumption from (13), that the derivative of the
rotation number is 6= 0. Then

∂ξ1p(ξ) = 0⇔ ξ1 = f (ξ2),

where f is analytic and the tori ΛE ⊂ p−1(E ), given by p(f (ξ2), ξ2) = E
are rational with the same rotation number as Λ0.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.6. The centipede (le millepatte)

Define

〈q〉2(x1, ξ) =
1

2π

∫ 2π

0
q(x , ξ)dx2,

and assume that for ξ ∈ neigh (0,R2), T 3 x1 7→ 〈q〉2(x1, ξ) has a unique
minimum x1(ξ) which is nondegenerate. Observe that
〈q〉2(x1(0), 0) = inf Q∞(Λ0). We finally assume (for simplicity) that the
subprincipal symbol of P vanishes. Let x1(ξ2) = x1(f (ξ2), ξ2). Let
δ ∈]1/18, 1/9[ be fixed,

h1/(1−δ) � ε� h6/(5+12δ). (14)

Put

h̃ =
h√
ε
� 1.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.6. The centipede (le millepatte)

Theorem ([HiSj18])

∃C1 > 0 such that ∀C0 > 0, we have the following description of the
eigenvalues of Pε in the region

{z ∈ C; |<z | < 1

C1
, =z ≤ ε(inf Q∞(<z) + C0h̃)}, :

For h > 0 small enough, the eigenvalues are simple and given by

λj ,k =p(f (ξ2(j)), ξ2(j)) + iε〈q〉2(x1(ξ2(j)), f (ξ2(j)), ξ2(j))

+ εh̃(λ0
j ,k + λ1

j ,k h̃ + λ2
j ,k h̃

2 + . . .),
(15)

with j ∈ Z, ξ2(j) = h(j − θ2) ∈ neigh (0,R), N 3 k ≤ O(1), where
λνj ,k = λνk(ξ2(j),

√
ε) is a smooth function of ξ2(j) ∈ neigh (0,R) and

√
ε ∈ neigh (0,R+). Here, θ2 = k0(α2)/4 + S2/2πh, where k0(α2) =

Maslov index, S2 = classical action, of the natural cycle in Λ0.
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.6. The centipede (le millepatte)

Here λ0
k(ξ2, 0) are eigenvalues of a complex harmonic oscillator,

λ0
k(ξ2, 0) =

e iπ/4(∂2
ξ1
p(f (ξ2), ξ2))

1
2 (∂2

x1
〈q〉2(x1(ξ2), f (ξ2), ξ2))

1
2

(
k +

1

2

)
.

(16)
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.7. About the proof

2.7. About the proof

We can make ε-deformations of T ∗X as already explained.
The deformed spaces are closely related to normal forms that are also
obtained by the method of averaging. In the case of a Diophantine torus
Λ0, the normal form is simply:

Λ0 = {ξ = 0} in T ∗R2, Pε = Pε(ξ; h)︸ ︷︷ ︸
independent of x

+O((ε, h, ξ)∞).

The reason for that is that we can solve

HpG = q − 〈〈q〉〉Λ︸ ︷︷ ︸
torus average

, Λ ∈ J

to infinte order at Λ = Λ0. (Small divisors.)
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.7. About the proof

When Λ0 is rational, there are zero divisors and in the action angle
coordinates, we can only solve

HpG = q − 〈q〉2(x1, ξ), for ξ1 = f (ξ2),

i.e. we can only eliminate the x2 variable. This amounts to the so called
secular method [LiLi92].
Normal form for Pε: After conjugation with an elliptic Fourier integral
operator with complex phase we get microlocally near Λ0 = {ξ = 0} the
operator P̂ε such that

The symbol is independent of x2 up to O(εN+1 + (ξ1− f (ξ2))N +h∞),

The subprincipal symbol is O(ε),

Up to O(ε2) the leading symbol is

p(f (ξ2), ξ2) + g(ξ)(ξ1 − f (ξ2))2 + iε〈q〉2(x1, ξ).
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2. Eigenvalues of elliptic non-self-adjoint differential operators 2.7. About the proof

In order to treat this operator, use Fourier series in x2 and get the family
of operators.

p(f (jh), jh) + g(hDx1 , ξ2)(hDx1 − f (jh))2 + iε〈q〉2(x1, ξ1, jh). (17)

To be able to absorb the errors we need a good control over the resolvent
of these operators when the spectral parameter is not too high in the
upper half-plane. To understand (17), we can consider the model case

(hDx1)2 + iεx2
1 = ε((h̃Dx1)2 + ix2

1 ) on R,

whose spectrum is given by the simple eigenvalues εe iπ/4(2k + 1)h̃, k ∈ N.
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3. Resonances

3. Resonances

Resonances, or scattering poles is a vast subject. Here I will concentrate
on the semi-classical Schrödinger operator and apply the FBI approach as
it was developed in [HeSj86]. See [DyZw19], [Sj02] for other monographs.
Let

P = −h2∆ + V (x), x ∈ Rn, (18)

where V is smooth, real and has a holomorphic extension (also denoted
by V ) to a truncated sector

Γ = {x ∈ Cn; |<x | > C , |=x | < |Rex |/C}, for some C > 0, (19)

and
V (x)→ 0, x →∞ in Γ. (20)
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3. Resonances

Using exterior complex distorsions (B. Simon [Si78], W. Hunziker [Hu86]
and [SjZw91]) one can show that (P − z)−1 : L2 → H2 extends
meromorphically as a map L2

comp → H2
loc from the open upper half-plane

to a sector
{z ∈ C; −1/C̃ < arg z ≤ 0} (21)

The poles are called scattering poles or resonances. No smallness for h is
required so far; for the study near ∞ there is an effective Planck’s
constant h̃ = h/〈x〉 which tends to 0 when x →∞.
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3. Resonances 3.1 Global weighted spaces

3.1 Global weighted spaces

Let R(x) = 〈x〉, r(x) = 1, r̃(x , ξ) = (r(x)2 + ξ2)1/2. R indicates the
natural scale in x-space and r̃ that in the ξ-directions.
If a ∈ C∞(R2n) and m > 0 is smooth, we write a ∈ S(m), if for all
α, β ∈ Nn,

∂αx ∂
β
ξ a(x , ξ) = O(1)m(x , ξ)R(x)−|α|r̃(x , ξ)−|β|. (22)

We require m to be an order function in the sense that m ∈ S(m).
r , R, r̃ are order functions.
Let G ∈ S(r̃R) be real-valued. Consider the manifold

ΛG = {(x , ξ) ∈ C2n; =(x , ξ) = HG (<(x , ξ))}. (23)

We have a corresponding “exponent”

H = −<ξ · =x + G (<(x , ξ)) = G (<(x , ξ))−<ξ · G ′ξ(<(x , ξ)). (24)

(23) gives a parametrization R2n 3 ρ 7→ ρ+ iHG (ρ) of ΛG allowing to
define symbol spaces S(m) = S(m,ΛG ) of functions on ΛG .
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3. Resonances 3.1 Global weighted spaces

Let λ = λ(α) ∈ S(r̃R−1,ΛG ) be positive, elliptic (in the sense that λ is
non-vanishing and 1/λ ∈ S((r̃R−1)−1,ΛG )) and put

φ(α, y) = (αx − y)αξ + iλ(α)(αx − y)2/2, α = (αx , αξ) ∈ ΛG , y ∈ Cn.
(25)

The amplitude will be a Cn+1-valued smooth function t(α, y ; h) on
ΛG × Cn

y which is affine linear in y . Restrict the attention to a region

|y − αx | < O(1)R(αx), (26)

and assume that t ∈ h−3n/4S(r̃n/4R−n/4) and that t, ∂y1t, ..., ∂ynt are
maximally linearly independent in the natural sense.
Let χ ∈ C∞0 (B(0, 1/C )) be equal to one in B(0, 1/(2C )), where C > 0 is
large enough. We define the FBI-transform T : D′(Rn)→ C∞(ΛG ;Cn+1)
by

Tu(α; h) =

∫
Rn

e
i
h
φ(α,y)t(α, y ; h)χα(y)u(y)dy , (27)

where χα(y) = χ((y −<αx)/R(<αx)).
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3. Resonances 3.1 Global weighted spaces

We also assume:

∃ g0 = g0(x) ∈ S(rR), such that G (x , ξ)− g0(x)

has its support in a region where |ξ| ≤ O(r(x))

and G (x , ξ)− g0(x) is sufficiently small in S(rR).

(28)

Definition

H(ΛG ,m) is the completion of C∞0 (Rn) for the norm

‖u‖H(ΛG ,m) = ‖Tu‖L2(ΛG ,m2e−2H/hdα). (29)

Cf. the recent works [GaZw19a], [GaZw19b], [BoJe20]!
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3. Resonances 3.1 Global weighted spaces

Let p = ξ2 + V (x) be the symbol of P. We can view
P : H(ΛtG , r̃

2)→ H(ΛtG ) for 0 < t � 1 as a pseudodifferential operator
with leading symbol

p|ΛtG
' p(ρ+ itHG (ρ)) = p(ρ)− itHpG +O(t2).

Let G ∈ S(r̃R) be an escape function in the sense that for a given energy
level E0 > 0, we have

HpG � 1 on p−1(E0) ∩ {(x , ξ) ∈ R2n; |x | � 1}.

(The standard choice is G (x , ξ) = x · ξ, truncated in the region, |ξ| � 1.
The term escape function was used by Morawetz, Ralston and Strauss
[MoRaSt77].) This implies that if we fix t > 0 small enough, then
p|ΛtG

(ρ) 6∈ neigh (E0,C) away from a bounded set in phase space. By

Fredholm theory, it follows that P has purely discrete spectrum in
neigh (E0,C). The eigenvalues are precisely the resonances.
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3. Resonances 3.2 The role of trapped trajectories

3.2 The role of trapped trajectories

For E > 0, let

Γ±(E ) = {ρ ∈ p−1(E ); exp(tHp)(ρ) 6→ ∞, t → ∓∞}.

One can show that

ρ ∈ Γ±(E )⇔ | exp(tHp)(ρ)| ≤ C (ρ), ∓t ≥ 0.

The set K (E ) = Γ+(E ) ∩ Γ−(E ) is compact; the set of trapped
trajectories.
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3. Resonances 3.2 The role of trapped trajectories

Figure: K(E)
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3. Resonances 3.2 The role of trapped trajectories

If V is analytic and K (E ) = ∅ for some E > 0, then ∃ neighborhood
W ⊂ C of E , independent of h such that P has no resonances in W
when h is small enough (implicit in [HeSj86]: ∃ an escape function
such that HpG > 0 on all of p−1(E )).
Without the analyticity assumption we still have a W as above such
that for every fixed C > 0 there are no resonances in
{z ∈W ; −Ch ln(1/h)} for h small enough (A. Martinez [Ma02b] ).
For every E > 0 there exists W as above such that the number of
resonances in W is ≤ O(h−n). Such results in the context of obstacle
scattering go back to R. Melrose [Me84]
We have dynamical upper bounds: When the classical dynamical
system is hyperbolic, there are upper bounds on the # of resonances
in rectangles ]− a, a[+i ]− δ, 0] that depend on the Minkowski
dimension of the trapped set. See [Sj86, Sj90] as well as later results
for hyperbolic surfaces by Zworski [Zw99] and others.
for certain levels (that are analytic singularites of an E -dependent
phase space volume), the number of resonances in any neighborhood
W of E is ≥ h−n/C . Follows from trace formulae. See [Sj01].
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3. Resonances 3.3 Shape resonances and higher levels

3.3 Potential well in an island, shape resonances and
higher levels

We are mainly interested in the resonances near a limiting level E0 > 0
that we reduce to 0 by substracting E0 from the potential in our
Schrödinger operator. Let n ≥ 2 and let V ∈ C∞(Rn;R) denote the
modified potential so that

V has a holomorphic extension to a truncated sector

{x ∈ Cn; |<x | > C , |=x | < |<x |/C},
(30)

V (x)→ −E0, |x | → ∞, E0 > 0. (31)

Assume that for some E > −E0,

V−1(]−∞,E [) = UE ∪ SE , (32)

with UE , SE open connected, UE bounded, UE ∩ SE = ∅. Assume also
that there are no trapped trajectories in p−1(E ) ∩ π−1

x (SE ).
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3. Resonances 3.3 Shape resonances and higher levels

Let Pint = −h2∆ + Vint be a reference operator obtained by increasing the
potential (“filling the sea”) near SE so that the new potential Vint is equal
to V in a neighborhood of UE and ≥ E + 1/O(1) outside. Then Pint has
discrete real spectrum near E and in a neighborhood of E we can find a
bijection b from the set of discrete eigenvalues onto the set of resonances
of P = −h2∆ + V in that neighborhood such that
b(λ)− λ = O(e−1/(Ch)). See [HeSj86, CoDuKlSe87, FuLaMa11].
If we increase E , a “best case scenario” is that the assumptions above are
fulfilled until we reach a critical level, say 0, and that,

U0 ∩ S0 = {x0}, (33)

for some point x0 ∈ Rn, say x0 = 0. We have V (0) = 0.
Assume that

0 is a nondegenerate critical point for V of signature (n − 1, 1). (34)
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3. Resonances 3.3 Shape resonances and higher levels

Figure: View from above
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3. Resonances 3.3 Shape resonances and higher levels

The point (0, 0) ∈ R2n is a stationary point and hence a trapped trajectory
for the Hp flow, where Hp = p′ξ · ∂x − p′ξ · ∂x , p(x , ξ) = ξ2 + V (x).

Assume that
dV (x) 6= 0, when x ∈ ∂U0 \ {0}. (35)

V is analytic in a neighborhood of S0, (36)

(0, 0) is the only trapped trajectory in p−1(0)∣∣
S0

. (37)

For E ≤ 0, put

ω(E ) = vol
(
p−1(]−∞,E ])|U0

)
. (38)

Since n ≥ 2, we check that ω ∈ C 1([−1/C , 0]). Let ω also denote a C 1

extension to the interval [−1/C , 1/C ] so that ω(E ) is well-defined up to a
term o(E ) for 0 ≤ E ≤ 1/C .
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3. Resonances 3.3 Shape resonances and higher levels

Theorem (Zerzeri–Sj 2020)

There exists a constant t0 > 0 and a constant 0 < δ0 � 1 such that the
following holds for every fixed C0 > 0:
For every 0 < δ ≤ δ0, there exists 0 < ε(δ)� 1 such that for every
0 < ε ≤ ε(δ) and 0 < h ≤ h(ε, δ) small enough:

(A) The number of resonances (of P) in ]− C0ε, ε[+i ]− t0ε,−δε[ is
Oδ(εnh−n),

(B) For all a, b ∈]− C0ε, ε[ with a < b, the number of resonances in
]a, b[+i ]− δε, 0] is equal to (2πh)−n

(
ω(b)− ω(a) +O(δ| ln δ|ε)

)
,

uniformly with respect to a, b, h.

More precise results are known when n = 1. In this case, the function ω
has a logarithmic singularity at 0. See [FuRa98], [BoFuRaZe14]
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3. Resonances 3.3 Shape resonances and higher levels

Proof, some ingrediants. The first thing is to find a nice escape function
G , which vanishes over a neighborhood of U0 and in a

√
ε-neighborhood

of (0, 0)
∂αρ G = O(1)(ε+ ρ2)1−|α|/2, α ∈ N2n. (39)

Define several reference operators Pε, P
ext
ε , P int

ε by modifying the
potential terms:

Vε = V + εχ(ε−1/2(x , hDx),

V ext
ε = Vε + ”filling of the well”

V int
ε = Vε + ”filling of the sea”

Figure: Reference potentials 60 / 81



3. Resonances 3.3 Shape resonances and higher levels

Let

R =]−O(ε), ε/O(1)[+i ]− ε/O(1),O(ε)[, Rδ = {z ∈ R; |=z | > δε},

Rδ,ε = Rδ,A,B,ε = Rδ ∪ (Aε+]− δε/4, δε/4[+i [−δε, δε])
∪ (Bε+]− δε/4, δε/4[+i [−δε, δε]).

Then:
Pε has no eigenvalues in Rδ,
Pε,A,B,δ (obtained from Pε by creating two gaps of size εδ in the spectrum)
has no eigenvalues in Rε,A,B,δ.
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3. Resonances 3.3 Shape resonances and higher levels

Figure: Rε,A,B,δ
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3. Resonances 3.3 Shape resonances and higher levels

Relative determinants.
Recall (see e.g. [GoKr69]) that under suitable but very general
assumptions,

| detAB−1| = | det
(
1 + (A− B)B−1

)
|

≤ exp ‖(A− B)B−1‖tr ≤ exp
(
‖A − B‖tr‖B−1‖

)
.

We have

‖Pε − Pext
ε ‖tr = O(h−n)

‖P − Pε‖tr = O(εn+1h−n)

‖Pε − Pε,δ‖tr = O(εδh−n), Pε,δ = Pε,A,B,δ.

Define

DP(z) = ln
∣∣det(P − z)(Pext

ε − z)−1
∣∣

DPε(z) = ln
∣∣det(Pε − z)(Pext

ε − z)−1
∣∣

DPε,δ(z) = ln
∣∣det(Pε,δ − z)(Pext

ε − z)−1
∣∣ .
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3. Resonances 3.3 Shape resonances and higher levels

We have

DP −DPε

{
≤ Oδ(1)εn/hn in Rδ,

≥ −Oδ(1)εn/hn in Rδ ∩ {<z ≤ −ε/O(1)}.

Similar estimates hold for DP −DPε,δ in Rδ by Rδ,ε.
Standard arguments, including Jensen’s formula, lead to:
Consider the holomorphic function f (z) = det((P − z)(Pext

ε − z)−1) on R,
whose zeros are the resonances of P. Then

|f (z)| ≤ exp
(
h−n(φ(z) +O(εδ))

)
in Rδ,ε,

where φ(z) = hnDPε,δ . We have

|f (z)| ≥ exp
(
h−n(φ(z)−O(εδ))

)
at plenty of points in Rδ,ε.

We can then apply a result on counting of zeros of holomorphic functions
with exponential growth: Theorem 1.1 in [Sj10] (or [Sj19, Theorem
12.1.1]).

64 / 81



References

References

K.G. Andersson, Propagation of analyticity of solutions of partial differential
equations with constant coefficients, Ark. f. Matematik. 8(1970), 277–302.
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no 39.

69 / 81



References

M. Hitrik, E. Caliceti, S. Graffi, J. Sjöstrand Quadratic PT–symmetric
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M. Hitrik, J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators
in 2 dimensions I, Ann. Henri Poincaré 5(1)(2004), 1–73.

M. Hitrik, Non-selfadjoint perturbations of selfadjoint operators in 2
dimensions II. Vanishing averages, Comm. Partial Differential Equations
30(7-9)(2005), 1065–1106.
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J. Rauch, J. Sjöstrand, Propagation of analytic singularities along diffracted
rays Indiana Univ. Math. J., 30(3)(1981), 283-401.

M. Rouleux, Absence of resonances for semiclassical Schrödinger operators
with Gevrey coefficients, Hokkaido Math. J. 30 (2001), no. 3, 475–517

M. Rouleux, Resonances for a semi-classical Schrödinger operator near a
non-trapping energy level, Publ. Res. Inst. Math. Sci. 34 (1998), no. 6,
487–523.

M. Rouleux, Tunneling effects for h-pseudodifferential operators, Feshbach
resonances, and the Born-Oppenheimer approximation, Evolution equations,
Feshbach resonances, singular Hodge theory, 131–242, Math. Top., 16,
Wiley-VCH, Berlin, 1999.

M. Sato, Hyperfunctions and partial differential equations, Proc. Int. Conf.
Funct. Anal. Rel. Topics, Tokyo 1969, 91-94 (1970).

M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudo-differential
equations, Hyperfunctions and pseudo-differential equations (Proc. Conf.,
Katata, 1971), pp. 265–529. Lecture Notes in Math., Vol. 287, Springer,
Berlin, 1973.

77 / 81



References

B. Simon, Resonances and complex scaling a rigorous overview, Int. J.
Quantum Chemistry, 14(1978), 529–542.
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J. Sjöstrand, Analytic singularities of solutions of boundary value problems, in
”Singularities in Boundary value problems”, Reidel publ.Co.(1981), 235-269.
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J. Sjöstrand, Estimates on the number of resonances for semiclassical
Schrödinger operators, Proceedings of the 8:th Latin-American School of
Mathematics, 1986, Springer LNM , 1324 (1988), 286-292.
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