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PREFACE TO THE SECOND EDITION

There was no question of “updating” this book nearly thirty years after it was first
published—in 1980, volume 100 in the Studies in Logic series of North Holland. The
only completely rewritten sections are 6F, which gives a proof of the determinacy of
Borel sets (a version of Martin’s second proof not available in 1980) and 7F, where
the question of how much choice is needed (especially) to prove Borel determinacy is
examined. There is also a new, brief section 31 on the relativization method of proof,
which has baffled some of the not-so-logically minded readers. Beyond that, the main
improvements over the first edition are that

- this one has many fewer errors (I hope):

- the bibliography has been completed and expanded with a small selection of
relevant, more recent publications;

- and many passages have been rewritten.

(It has been said that the most basic instinct in man is not for food or sex but to edit
someone else’s writing—and the urge to edit one’s own writing is, apparently, even
stronger.)

There have been two major developments in Descriptive Set Theory since 1980
which have fundamentally changed the subject.

One is the establishment of a robust connection between determinacy hypotheses,
large cardinal axioms and inner model theory, starting with Martin and Steel [1988]
and Woodin [1988], to such an extent that one cannot now understand any of these
parts of set theory without also understanding the others. I have added some “forward
references” to these developments when they touch on questions that were formulated
in the book.

The other is the explosion in applications of Descriptive Set Theory to other parts
of mathematics, cf. Kechris [1995]. This area really took off with Harrington, Kechris,
and Louveau [1990] which (with the work that followed it) established the study of
definable equivalence relations on Polish spaces as a subject of its own, with deep
connections to classical mathematics. It was not possible to point to this work in
this revision, especially as the basic result in Silver [1980] was not (for some reason)
included in the original.

Many of the notions and techniques introduced in this book have been used heavily
in these developments, notably scales and the application of effective methods to the
“classical” theory. Some of it has become obsolete, of course; but I do not believe that
its self-contained, foundationally motivated and unified introduction to the effective
theory and the consequences of determinacy hypotheses has been duplicated.

I am grateful to all those who have sent me comments and corrections, including
(from the incomplete records that I have) Ben Miller, Mike Brady, Vassilis Gregoriades,



X PREFACE TO THE SECOND EDITION

Tonny Hurkens, Aleko Kechris, Tony Martin, Itay Neeman, Richard Shore and John
Steel. 1 am especially grateful to Christos Kapoutsis who set the manuscript in
beautiful I£TEX several years ago—and I apologize to him that it took me so long to
do my part and finish the job.

Paleo Faliro, Greece July 29, 2008



PREFACE TO THE FIRST EDITION

This book was conceived in the winter of 1970 when I heard that I was getting a Sloan
Fellowship and I thought I would take a year off to write a book. It took a bit longer
than that, but I have many good excuses.

I am grateful to the Sloan Foundation, the National Science Foundation and the
University of California for their financial support—and to the Mathematics Depart-
ment at UCLA for the stimulating and pleasant working environment that it provides.

One often sees in prefaces long lists of persons who have contributed to the project
in one way or another and I hope I will be forgiven for not complying with tradition; in
my case any reasonably complete list would have to start with Lebesgue and increase
the size of the book beyond the publisher’s indulgence. I will, however, mention
my student Chris Freiling who read carefully through the entire final version of the
manuscript and corrected all my errors.

My wife Joan is the only person who really knows how much I owe to her and she
is too kind to tell. But I know too.

Finally, my deepest feelings of gratitude and appreciation are reserved for the very
few friends with whom I have spent so many hours during the last ten years arguing
about descriptive set theory; Bob Solovay and Tony Martin in the beginning, Aleko
Kechris, Ken Kunen and Leo Harrington a little later. Their influence on my work
will be obvious to anyone who glances through this book and I consider them my
teachers—although of course, they are all so much younger than me. No doubt I
would still work in this field if they were all priests or generals—but I would not enjoy
it half as much.

Santa Monica, California December 22, 1978

Added in proof. 1 am deeply grateful to Dr. Haimanti Sarbadhikari who read the first
seven chapters in proof and corrected all the errors missed by Chris Freiling. I am also
indebted to Anna and Nicholas for their substantial help in constructing the indexes
and to Tony Martin for the sustenance he offered me during the last stages of this
work.

xi






ABOUT THIS BOOK

My aim in this monograph is to give a brief but coherent exposition of the main results
and methods of descriptive set theory. I have made no attempt to be complete; in a
subject so broad this would degenerate into a long catalog of specialized results which
would cover up the main thread. On the contrary, I have tried very hard to be selective,
so that the central ideas stand out.

Much of the material is in the exercises. A very few of them are simple, to test the
reader’s comprehension, and a few more give interesting extensions of the theory or
sidelines. The vast majority of the exercises are an integral part of the monograph and
would be normally billed “theorems.” There are extensive “hints” for them, proofs
really, with some of the details omitted.

I have tried hard to attribute all the important results and ideas to those who invented
them but this was not an easy task and I have undoubtedly made many errors. 7There
is no suggestion that unattributed results are mine or are published here for the first time.
When I do not give credit for something, the most likely explanation is that I could
not determine the correct credit. My own results are immodestly attributed to me,
including those which are first published here.

Many of the references are in the historical sections at the end of each chapter. The
paragraphs of these sections are numbered and the footnotes in the body of the text
refer to these paragraphs—each time meaning the section at the end of the chapter
where the reference occurs. In a first reading, it is best to skip these historical notes
and read them later, after one is familiar with the material in the chapter.

The order of exposition follows roughly the historical development of the subject,
simply because this seemed the best way to do it. It goes without saying that the
classical results are presented from a modern point of view and using modern notation.

What appeals to me most about descriptive set theory is that to study it you must
really understand so many things: you need a little bit of topology. analysis and logic,
a good deal of recursive function theory and a great deal of set theory, including
constructibility, forcing, large cardinals and determinacy. What makes the writing of
a book on the subject so difficult is that you must explain so many things: a little bit of
topology, analysis and logic, a good deal of recursive function theory, etc. Of course,
one could aim the book at those who already know all the prerequisites, but chances
are that these few potential readers already know descriptive set theory. My aim has
been to make this material accessible to a mathematician whose particular field of
specialization could be anything, but who has an interest in set theory, or at least what
used to be called “the theory of pointsets.” He certainly knows whatever little topology
and analysis are required, because he learned that as an undergraduate, and he has
read Halmos’ Naive Set Theory [1960] or a similar text. Beyond that, what he needs to

Xiii



Xiv ABOUT THIS BOOK

read this book is patience and a basic interest in the central problem of descriptive set
theory and definability theory in general: o find and study the characteristic properties
of definable objects.



INTRODUCTION

The roots of Descriptive Set Theory go back to the work of Borel, Baire and Lebesgue
around the turn of the 20th century, when the young French analysts were trying
to come to grips with the abstract notion of a function introduced by Dirichlet and
Riemann. A function was to be an arbitrary correspondence between objects, with no
regard for any method or procedure by which this correspondence could be established.
They had some doubts whether so general a concept should be accepted; in any
case, it was obvious that all the specific functions which were studied in practice were
determined by simple analytic expressions, explicit formulas, infinite series and the like.
The problem was to delineate the functions which could be defined by such accepted
methods and search for their characteristic properties, presumably nice properties not
shared by all functions.

Baire was first to introduce in his Thesis [1899] what we now call Baire functions (of
several real variables), the smallest set which contains all continuous functions and
is closed under the taking of (pointwise) limits. He gave an inductive definition: the
continuous functions are of class 0 and for each countable ordinal £, a function is of
class £ if it is the limit of a sequence of functions of smaller classes and is not itself
of lower class. Baire, however, concentrated on a detailed study of the functions of
class 1 and 2 and he said little about the general notion beyond the definition.

The first systematic study of definable functions was Lebesgue’s [1905], Sur les
fonctions représentables analytiquement. This beautiful and seminal paper truly started
the subject of descriptive set theory.

Lebesgue defined the collection of analytically representable functions as the smallest
set which contains all constants and projections (x1, X>. . ..., x,) — X; and which is closed
under sums, products and the taking of limits. It is easy to verify that these are precisely
the Baire functions. Lebesgue then showed that there exist Baire functions of every
countable class and that there exist definable functions which are not analytically
representable. He also defined the Borel measurable functions and showed that they
too coincide with the Baire functions. In fact he proved a much stronger theorem
along these lines which relates the Aierarchy of Baire functions with a natural hierarchy
of the Borel measurable sets at each level.

Today we recognize Lebesgue [1905] as a classic work in the theory of definability.
It introduced and studied systematically several natural notions of definable functions
and sets and it established the first important hierarchy theorems and structure results
for collections of definable objects. In it we can find the origins of many standard
tools and techniques that we use today, for example universal sets and applications of
the Cantor diagonal method to questions of definability.
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One of Lebesgue’s results in [1905] identified the implicitly analytically definable
functions with the Baire functions. To take a simple case, suppose that f : R? — R is
analytically representable and for each x, the equation

Sxy)=0

has exactly one solution in y. This equation then defines y implicitly as a function of x;
Lebesgue showed that it is an analytically representable function of x, by an argument
which was “simple, short but false.” The wrong step in the proof was hidden in a
lemma taken as (basically) trivial, that a set in the line which is the projection of a
Borel measurable set in the plane is itself Borel measurable.

Ten years later the error was spotted by Suslin, then a young student of Lusin at
the University of Moscow, who rushed to tell his professor in a scene charmingly
described in Sierpinski [1950].

Suslin called the projections of Borel sets analytic and showed that indeed there
are analytic sets which are not Borel measurable. Together with Lusin they quickly
established most of the basic properties of analytic sets and they announced their
results in two short notes in the Comptes Rendus, Suslin [1917] and Lusin [1917].

The class of analytic sets is rich and complicated but the sets in it are nice. They are
measurable in the sense of Lebesgue, they have the property of Baire and they satisfy
the Continuum Hypothesis, i.e., every uncountable analytic set is equinumerous with
the set of all real numbers. The best result in Suslin [1917] is a characterization of
the Borel measurable sets as precisely those analytic sets which have analytic comple-
ments. Lusin [1917] announced another basic theorem which implied that Lebesgue’s
contention about implicitly analytically definable functions is true, despite the error in
the original proof.

Suslin died in 1919 and the study of analytic sets was continued mostly by Lusin
and his students in Moscow and by Sierpinski in Warsaw. Because of what Lusin
delicately called “difficulties of international communication” those years, they were
isolated from each other and from the wider mathematical community, and there were
very few publications in western journals in the early twenties.

The next significant step was the introduction of projective sets by Lusin and Sier-
pinskiin 1925: aset is projective if it can be constructed starting with Borel measurable
sets and iterating the operations of projection and complementation. Using later ter-
minology, let us call analytic sets 4 sets, analytic complements CA sets, projections of
CA sets PCA sets, complements of these CPCA sets, etc. Lusin in his [1925a], [1925b],
[1925c] and Sierpinski [1925] showed that these classes of sets are all distinct and they
established their elementary properties. But it was clear from the very beginning that
the theory of projective sets was not easy. There was no obvious way to extend to
these more complicated sets the regularity properties of Borel and analytic sets; for
example it was an open problem whether analytic complements satisfy the Continuum
Hypothesis or whether PCA sets are Lebesgue measurable.

Another fundamental and difficult problem was posed in Lusin [1930a]. Suppose P
is a subset of the plane; a subset P* of P uniformizes P if P* is the graph of a function
and it has the same projection on the line as P, as in the figure on the opposite page.
The natural question is whether definable sets admit definable uniformizations and it
comes up often, for example when we seek “canonical” solutions for y in terms of x
in an equation

f(x.y)=0.
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Lusin and Sierpinski showed that Borel sets can be uniformized by analytic comple-
ments and Lusin also verified that analytic sets can be projectively uniformized. In a
fundamental advance in the subject, Kondo [1938] completed earlier work of Novikov
and proved that analytic complements and PCA sets can be uniformized by sets in the
same classes. Again, there was no clear method for extending the known techniques
to solve the uniformization problem for the higher projective classes.

As it turned out, the “difficulties of the theory of projective sets” which bothered
Lusin from his very first publication in the subject could not be overcome by ingenuity
alone. There was an insurmountable technical obstruction to answering the central
open questions in the field, since all of them were independent of the axioms of classical
set theory. It goes without saying that the researchers in descriptive set theory were
formulating and trying to prove their assertions within axiomatic Zermelo-Fraenkel
set theory (with choice), as all mathematicians still do, consciously or not.

The first independence results were proved by Goédel, in fact they were by-products
of his famous consistency proof of the Continuum Hypothesis. He announced in his
[1938] that in the model L of constructible sets there is a PCA set which is not Lebesgue
measurable: it follows that one cannot establish in Zermelo-Fraenkel set theory (with
the Axiom of Choice and even if one assumes the Continuum Hypothesis) that all
PCA sets are Lebesgue measurable. His results were followed up by some people,
notably Mostowski and Kuratowski, but that was another period of “difficulties of
international communication” and nothing was published until the late forties. Ad-
dison [1959b] gave the first exposition in print of the consistency and independence
results that are obtained by analyzing Godel’s L.

The independence of the Continuum Hypothesis was proved by Cohen [1963b],
whose powerful method of forcing was soon after applied to independence questions in
descriptive set theory. One of the most significant papers in forcing was Solovay [1970],
where it is shown (among other things) that one can consistently assume the axioms
of Zermelo-Fraenkel set theory (with choice and even the Continuum Hypothesis)
together with the proposition that all projective sets are Lebesgue measurable; from
this and Godel’s work it follows that in classical set theory we can neither prove nor
disprove the Lebesgue measurability of PCA sets.

Similar consistency and independence results were obtained about all the central
problems left open in the classical period of descriptive set theory, say up to 1940.
It says something about the power of the mathematicians working in the field those
years, that in almost every instance they obtained the best theorems that could be
proved from the axioms they were assuming.

So the logicians entered the picture in their usual style, as spoilers. There was,
however, another parallel development which brought them in more substantially and
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in a friendlier role. Before going into that, let us make a few remarks about the
appropriate context for studying problems of definability of functions and sets.

We have been recounting the development of descriptive set theory on the real
numbers, but it is obvious that the basic notions are topological in nature and can
be formulated in the context of more general topological spaces. All the important
results can be extended easily to complete, separable, metric spaces. In fact, it was
noticed early on that the theory assumes a particularly simple form on Baire space

N =%w,

the set of all infinite sequences of natural numbers, topologized with the product
topology (taking w discrete). The key fact about A is that it is homeomorphic with its
own square N x N, so that irrelevant problems of dimension do not come up. Results
in the theory are often proved just for V', with the (suitable) generalizations to other
spaces and the reals in particular left for the reader or simply stated without proof.

Let us now go back to a discussion of the impact of logic and logicians on descriptive
set theory.

The fundamental work of Gddel [1931] on incompleteness phenomena in formal
systems suggested that it should be profitable to delineate and study those functions
(of several variables) on the set w of natural numbers which are effectively computable.
A great deal of work was done on this problem in the nineteen thirties by Church,
Kleene, Turing, Post and Godel among others, from which emerged a coherent and
beautiful theory of computability or recursion. The class of recursive functions (of
several variables) on @ was characterized as the smallest set which contains all the
constants, the successor and the projections (x1, X2, ..., x,) — x; and which is closed
under composition, a form of simple definition by induction (primitive recursion) and
minimalization, where g is defined from f by the equation

g(x1,x2.....x,) = least w such that f(x1.x2,...,x,.w) =0,
assuming that for each xy, ..., x, there is a root to the equation
f(x1. ... x5 w) =0.

Church [1936] and independently Turing [1936] proposed the Church-Turing Thesis
(hypothesis) that all number theoretic functions which can be computed effectively by
some algorithm are in fact recursive, and to this date no serious evidence has been
presented to dispute this.

Kleene [1952a], [1952b] extended the theory of recursion to functions

fro"x N o

with domain some finite cartesian product of copies of the natural numbers and Baire
space. For example, a function f : @ x N' — @ is recursive (by the natural extension
of the Church-Turing Thesis) if there is an algorithm which will compute f (n, o) given
n and a sufficiently long initial segment of the infinite sequence «.

Aset A C w" x N* is recursive if its characteristic function is recursive. By the
Church-Turing Thesis again, these are the decidable sets for which we have (at least in
principle) an algorithm for testing membership.

Using recursion theory as his main tool, Kleene developed a rich and intricate
theory of definability on the natural numbers in the sequence of papers [1943], [1955a],
[1955b]. [1955¢].
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The class of arithmetical sets is the smallest family which contains all recursive sets
and is closed under complementation and projection on w. The analytical sets are
defined similarly, starting with the arithmetical sets and iterating any finite number of
times the operations of complementation, projection on w and projection on A/. Both
these classes are naturally ramified into subclasses, much like the subclasses A, CA,
PCA, ... of projective sets of reals. Notice that the definitions make sense for subsets
of an arbitrary product space of the form w" x N*. Kleene, however, was interested
in classifying definable sets of natural numbers and he stated his ultimate results just
for them. The more complicated product spaces were brought in only so projection
on A\ could be utilized to define complicated subsets of w.

Kleene studied a third notion (discovered independently by Davis [1950] and
Mostowski [1951]) which is substantially more complicated. The class of hyperarith-
metical sets of natural numbers is the smallest family of subsets of w which contains the
recursive sets and is closed under complementation and “recursive” countable union,
suitably defined. The precise definition is quite intricate and the proofs of the main
results are subtle, often depending on delicate estimates of the complexity of explicit
and inductive definitions.

Using later terminology, let us call £} the simplest analytical sets of numbers, those
which are projections to w of arithmetical subsets of w x N. The most significant
result of Kleene [1955¢] (and the whole theory for that matter) was a characterization
of the hyperarithmetical sets as precisely those Z} sets which have =! complements.

Now this is clearly reminiscent of Suslin’s characterization of the Borel sets. A closer
look at specific results reveals a deep resemblance between these two fundamental
theorems and suggests the following analogy between the classical theory and Kleene’s
definability theory for subsets of w:

Ror NV 1)
continuous functions recursive functions
Borel sets hyperarithmetical sets
analytic sets X1 sets
projective sets analytical sets.

In fact, the theories of the corresponding classes of objects in this table are so similar,
that one naturally conjectures that Kleene was consciously trying to create an “effective
analog” on the space w of classical descriptive set theory.

As it happened, Kleene did not know the classical theory, since he was a logician
by trade and at the time that was considered part of topology. Mostowski knew it,
being Polish, and he first used classical methods in his [1946], where he obtained
independently many of the results of Kleene [1943]. More significantly, Mostowski
introduced the hyperarithmetical sets following closely the classical approach to Borel
sets, as opposed to Kleene’s initial rather different definition in his [1955b].

First to establish firmly the analogies in the table above was Addison, in his Ph.D.
Thesis [1954] and later in his [1959a]. Over the years and with the work of many
people, what was first conceived as “analogies” developed into a general theory which
yields in a unified manner both the classical results and the theorems of the recursion
theorists; more precisely, this effective theory yields refinements of the classical results
and extensions of the theorems of the recursion theorists.

It is this extended, effective descriptive set theory which concerns us here.



6 INTRODUCTION

Powerful as they are, the methods from logic and recursion theory cannot solve
the “difficulties of the theory of projective sets,” since they too are restricted by
the limitations of Zermelo-Fraenkel set theory. The natural next step was taken in
the fundamental paper Solovay [1969], where for the first time strong set theoretic
hypotheses were shown to imply significant results about projective sets.

Solovay proved that if there exist measurable cardinals, then PCA sets are Lebesgue
measurable, they have the property of Baire and they satisfy the Continuum Hypothe-
sis. Later, he and Martin proved a difficult uniformization theorem about CPCA sets
in their joint [1969], and Martin [1971] established several deep properties of CPCA
sets, all under the same hypothesis, that there exist measurable cardinals.

For our purposes here, it is not important to know exactly what measurable cardinals
are. Suffice it to say that their existence cannot be shown in Zermelo-Fraenkel set
theory and that if they exist, they are terribly large sets: bigger than the continuum,
bigger than the first strongly inaccessible cardinal, bigger than the first Mahlo cardinal,
etc. It is also fair to add that few people are willing to buy their existence after a casual
look at their definition. Nevertheless, no one has shown that they do not exist, and
it was known from previous work of Scott, Gaifman, Rowbottom and Silver that the
existence of measurable cardinals implies new and interesting propositions about sets,
even about real numbers. These, however, were metamathematical results, the kind
that only logicians can love. Solovay’s chief contribution was that he used this new
and strange hypothesis to solve natural, mathematical problems posed by Lusin more
than forty years earlier.

Unfortunately, measurable cardinals were not a panacea. Soon after Solovay’s
original work it was shown by himself, Martin and Silver among others that they do
not resolve the open questions about projective sets beyond the CPCA class, except
for some isolated results about PCPCA sets.

The next step was quite unexpected, even by those actively searching for strong
hypotheses to settle the old open problems. Blackwell [1967] published a new, short
and elegant proof of an old result of Lusin’s about analytic sets, using the determinacy
of open games.

Briefly, an infinite game (of perfect information) on w is described by an arbitrary
subset 4 C N of Baire space. We imagine two players I and IT successively choosing
natural numbers, with I choosing kg, then II choosing &, then I choosing k;, etc.;
after an infinite sequence

a=(k0,k1,...)

has been specified in this manner, we say that [ wins if @ € A4, Il wins if & ¢ A. The
game (or the set 4 which describes it) is determined. if one of the two players has a
winning strategy, a method of playing against arbitrary moves of his opponent which
will always produce a sequence winning for him.

It was known that open games are determined and Blackwell’s proof hinged on that
fact. It was also known that one could prove the existence of non-determined games
using the Axiom of Choice, but no definable non-determined game on w had ever
been produced.

Working independently, Addison and Martin realized that Blackwell’s proof could
be lifted to yield new results about the third class of projective sets, if only one as-
sumed the hypothesis that enough projective sets are determined. Soon after, Martin
and Moschovakis again independently used the hypothesis of projective determinacy
to settle a whole slew of old questions about all levels of the projective hierarchy,
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see Addison and Moschovakis [1968] and Martin [1968]. Three years later the uni-
formization problem was solved on the same hypothesis in Moschovakis [1971a] and
the methods introduced there led quickly to an almost complete structure theory for
the classes of projective sets, see especially Kechris[1973], [1974], [1975], Martin [1971]
and Moschovakis [1973], [1974c].

This is where matters stand today.






CHAPTER 1

THE BASIC CLASSICAL NOTIONS

Let o = {0,1,2,...} be the set of (nonnegative) integers and let R be the set of real
numbers. The main business of Descriptive Set Theory is the study of w, R and their
subsets, with particular emphasis on the definable sets of integers and reals. Another
fair name for it is Definability Theory for the Continuum.

In this first chapter we will introduce some of the basic notions of the subject and
we will establish the elementary facts about them.

1A. Perfect Polish spaces

Instead of working specifically with the reals, we will frame our results in the wider
context of complete, separable metric spaces (Polish spaces) with no isolated points
(perfect). One of the reasons for doing this is the wider applicability of the theory
thus developed. More than that, we often need to look at more complicated spaces in
order to prove results about R.(1-5)

Of course R is a perfect Polish space and so is the real n-space R” for each n > 2.
There are two other important examples of such spaces which will play a key role in
the sequel.

Baire space is the set of all infinite sequences of integers (natural numbers),

N="w

with the natural product topology, taking w discrete. The basic neighborhoods are of
the form
N(ko,....ky) ={a e N :a(0) =ko,...,a(n) =k,}.
one for each tuple ky. . ... k,. We picture \V as (the set of infinite branches of) a tree,
where each node splits into countably many one-point extensions, Figure 1A.1.
It is easy to verify that the topology of N\ is generated by the metric

0. ifa=2,
d(a. p) = 1 .
, if .
least n[a(n) # B(n)] + 1 ifa 7 f
Also, NV is complete with this metric and the set of ultimately constant sequences is
countable and dense in V', so A is a perfect Polish space.

One can show that N is homeomorphic with the set of irrational numbers, topol-
ogized as a subspace of R. The proof appeals to some basic properties of continued
fractions and does not concern us here—it can be found in any good book on number
theory, for example Hardy and Wright [1960]. Although we will never use this result,
we will find it convenient to call the members of A irrationals.
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FIGURE 1A.1. Picturing \V as a tree.

Notice that Baire space is totally disconnected, i.e., the neighborhood base given
above consists of clopen (closed and open) sets.

1A.1. THEOREM. For every Polish space 9N, there is a continuous surjection
n:N—>M
of Baire space onto 9.
Proor. Fix a countable dense subset
D ={ro,r1,72,...}

of M and to each @ € N assign the sequence {x¢} = {x,} by the recursion

X0 = ”a(O)
Xy = Fa(n+1) ifd(xﬂara(nJrl)) < 2—1’15
" Xn ifd(xm roz(n+1)) >27"

Now for each n,
d(xna xn+1) <2,
so {x%} is Cauchy and we can set
n(a) = lim, o x2.
It is obvious that 7 is continuous since
a(0) = B(0),...,a(n) = p(n) = x§ :xg,...,x,‘f
from which it follows immediately that
d(n(a).7(p)) < d(n(e). x5) +d(x. 7(p))
< 27n+1 + 27n+1 — 27n+2'
On the other hand, for each x € 9t let
a(n) = least k such that d (x,r;) < 27"

I
“
ERSN
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FIGURE 1A.2. The Cantor set.

and check that 7(a) = lim, r,(,) = x. -
Another very useful perfect Polish space is the set of all infinite binary sequences

C = (02’

again with the product topology. Thisis a compact subspace of A/ naturally represented
by the complete binary tree. It is obviously homeomorphic with the classical Cantor
set obtained from the closed interval [0, 1] on the line by successively removing the
open middle third, as in Figure 1A.2. Again we will abuse terminology a bit by calling
C the Cantor set.

With each perfect Polish space 9t we can associate a fixed enumeration

N(9,0), N(9, 1), N(9N.2). . ..

of a countable set of open nbhds which generates the topology. When 9 is clearly
understood by the context we will use the simpler notation

No.Ni. Ny, ... .

Of course we may assume that the ;’s are open balls. There are situations, however,
when this is not convenient. For example, if 99t = X x X} is the product of two spaces,
it is often preferable to work with the nbhds of the form B; x B, where By and B, are
chosen from bases in X and X5>.

We will leave open the possibility that the N;’s are not open balls. However, we will
assume that with each N; we have associated a center x; and a radius p; such that the
following hold:

(1) Xx; € N;, if N; 7& .

(2) If x € N;, thend (x, x;) < p;.

(3) If x is any point, then for every n we can find some N; such that x € N; and

radius(N;) < 27",
For any set P C 90, let
P = closure of P,

so that Ny = N (901, 5) is the closure of the s’th nbhd in the fixed base for the topology
for 9.

The simple construction in the next result will be useful in many situations beyond
the corollary following it.

1A.2. THEOREM. Let M be a perfect, Polish space. We can assign to each finite binary
sequence u = (to. ..., t,—1) (t; = 0. 1) an open nbhd N, # 0 in 9 so that
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FIGURE 1A.3.

(i) if u is a proper initial segment of v, then NU(U) C Now)s
(i) if u an v are incompatible, then
Ng(u) n NJ@) =0,
(i) ifu = (to.....ta—1) has length n. then radius(N,,)) < 27". (See Figure 1A.3.)
Proor. Two sequences u = (tg,....t,—1)., v = (5.....8x—_1), are incompatible, if
for somei < n,i < k we have t; # s;.
We define N, (,) by induction on the length » of the binary sequence u = (1. ....%,—1)
starting with some N, of radius < 1 = 2-0 that we assign to the empty sequence.
Givenu = (1. ....1,—1) and assuming that N, has already been defined, we know
that there must be infinitely many points in N,(,) or else the center of this nbhd would

be isolated. Choose then x # y in N,(,) and find open balls B, B, with centers x
and y respectively and such that

as in Figure 1A.4.
It is now enough to choose i, j such that N; C By, N; C B, and N;, N, have radii
< 271 and set

U(ZO,...Dlnfl,O):l', O-(t():---a[nfl:l):j'

Verification of (i), (ii) and (iii) with this definition of ¢ is trivial. =

1A.3. COROLLARY. For every perfect Polish space 9N, there is a continuous injection
n7:Cr— M
of the Cantor set into M.

ProoOF. Given an infinite binary sequence «, put
x% = the center ofN(i)ﬁ, o(a(0).....aln — 1)))

and let
n(a) = lim,_ o x2.
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FiGURE 1A 4.

It is immediate that 7 is an injection (one-to-one). That 7 is continuous can be proved
by verifying

n*I[NS]:U”{a:N(DJT,a(a(O),...,a(n—l))) QNS} 4

Exercises

1A.4. For each compact Polish space X, let C[X] be the set of all continuous
functions on X to R with the usual supnorm distance,

d(f.g) = supremum{|f(x) — g(x)| : x € X'}
Prove that C[X] is a perfect Polish space.
HinT. Use the separability of X and appeal to the Stone-Weierstrass Theorem. -

1A.5. Foreach perfect Polish space X, let H[X] be the set of all compact non-empty
subsets of X. If x € X and 4 € H[X], put

d(x,A) = infimum{d(x,y) : y € A}

where on the right d is the distance function on X. The Hausdorff distance between
two compact sets is defined by

d(A. B) = maximum{supremum{d (x. B) : x € A}.
supremum{d (y. 4) : y € B}}.
Prove that this is a metric on H[X] and that H[X] is a perfect Polish space.
HinT. The set of all finite subsets of any dense subset of X is dense in H[X]. -

1B. The Borel pointclasses of finite order

In order to study the subsets of a perfect Polish space 9, it will be necessary to
consider other spaces related to 91, e.g.. the products 91 x M, N x M, w x M. Let
us first establish notation and terminology which make these detours easy.

We fix once and for all a collection F of metric spaces with the following properties:
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N ={(x"p)d((x.p). (x".p)) < 1}
(x.»)

X

F1GURE 1B.1. The unit ball in a product space.

(1) The discrete space w, the reals R, Baire space N and the Cantor set C are in F.
(2) Every space in F other than w is a perfect Polish space.

Except for these restrictions we can leave membership in F open—e.g., one might
take w, R, A and C to be the only spaces in F. The idea is that we put in F all the
perfect Polish spaces in which we are interested.

The members of F are the basic spaces. A product space (by definition) is any
cartesian product

X=X x - x X,
where each X; is basic. Basic spaces count as product spaces by allowing k = 1 here.
We naturally topologize X7 x --- x X} as a product, i.e., with basic nbhds of the form

N =B x-x By,
where each B; is a nbhd in X;. It is easy to verify that this topology on X is induced
by the metric

d((xl, A ,Xk), (yl, Ce ,yk)) = maximum{dl(xl,yl), RN dk(xk,yk)},
where each d; is the given metric on X;. (See Figure 1B.1.)

Two product spaces X = X7 X --- x Xy andY = Y| x --- x Yj are equal if k =1
and X| = Yi...., X; = Y. We then define products of product spaces by going back
to the basic factors, i.e., if

X=X X+ XX
and
Y=Y x---xY,
then (by definition)
AxY=Xix--- XX xY x---xY,.
Thus
AXQYxZ)=XxY)xZ=XxYx Z.

We call the tuples in these product spaces points and the subsets of these spaces
pointsets.

If x =(x1.....x,) and y = (y1,..., ;) then (by definition)

(x,y) = (X1, X5 V1e e V1)
As with products of product spaces, this pairing operation is associative,

(x. (r.2)) = ((v.»).2) = (x.p.2).



1B] 1B. THE BOREL POINTCLASSES OF FINITE ORDER 15

J°p X
F1GURE 1B.2. Projection along w.

We think of pointsets as sets or as relations with arguments in the basic spaces. Both
points of view are useful and we will use interchangeably the customary notations for
these, i.e., for P C X,

x€P = P(x).

Of course we will not be studying individual pointsets so much as collections of
pointsets, call them pointclasses. Thus a pointclass A is a collection of sets such that
each P in A is a subset of some product space X . For example, we may have

A = all open pointsets
= {P: P C X for some product space X and P is open.}
In definability theory we typically start with a small pointclass A and certain oper-
ations on pointsets and then we study the sets which can be constructed by applying
(once or repeatedly) the given operations to the members of A. For the Borel sets of

finite order we start with the open sets and we apply repeatedly the operations of com-
plementation or negation () and projection along w or existential number quantification

(3°).
More precisely, if P C X is any pointset, put
For a pointclass A, let
-A={-P:PcA}

be the dual pointclass.
Similarly, if P C X x w for some X, let

3P = {x € X : forsome n, P(x.n)}
={xeX:(3n)P(x,n)}
and for a pointclass A put
FA={3”P: P A,P C X x w for some X'}

see Figure 1B.2.
The Borel pointclasses of finite order £ (n > 1) are defined by the recursion

£{ = all open pointsets,

0 ) 0.
§n+1 =3 _‘;n’
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DiaGgraMm 1B.3. The Borel pointclasses of finite order.

the dual Borel pointclasses 19 are defined by
I, = -X,:
finally, the ambiguous Borel pointclasses A" are given by!'?
Ay =X, NI
Thus, l;[? consists of all closed pointsets, é? is the class of all clopen sets, ;8 is the

class of all projections along w of closed sets, etc. Put another way, a set P is £9 if
there is a closed F C X x w such that for all x,

P(x) < (31)F(x.1).
Similarly, P is £ if there is a closed F such that
P(x) < (31)=(3s)F(x.1,s)
< (3)(Vs)-F(x.1,s),
i.e., Pis XY if there is an open pointset G such that
P(x) <= (31)(V)G(x.11.12).

Similar normal forms can be computed for the pointclasses I19. e.g.. P is I1J if there
is some open G such that for all x,

P(x) <= (V1;)(302)(V13)G (x. 11, 1. 13).

In the classical terminology, £ sets are called F, sets, I sets are G;. X9 sets are
Gs,. ng sets are F, 3, etc. It is a cumbersome notation and we will not use it, except
for an occasional reference to F,’s and Gj’s.

1B.1. THEOREM. The diagram of inclusions 1B.3 holds among the Borel pointclasses
of finite order.

Proor. The inclusions

I, cm,,
are almost immediate from the definitions. Taking » = 3 to simplify notation, if P is
x9. then
P(x) <= (3t)(V)G(x.11.12)

with some open G C X x w X w. We can rewrite this as
() P(x) < (Vs)31)(V62)G(x. 1. 1)

since the addition of the vacuous quantifier (Vs) does not affect the meaning of the
equivalence. Now define

G'(x.5.t1.1h) <= G(x.t1.1)

and notice that G’ is (trivially) open, so equivalence (*) above establishes that P is ITY.
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To prove the inclusions

0 0
;n c §n+1’

recall that in a separable metric space every open set is a countable union of closed
sets. If G C X and

G=,F

with each F; closed, define F C X x w by
F(x,t) <= xcF,
and notice that F is closed and
G(x) & @A)F(x.1).

Thus G is £9. and since it was arbitrary open,

zfcxl
Hence £ = 3”29 € 3”-xX) = £Y and inductively, £} C XY_,. This establishes

Iy C ANy
for every n, so taking negations,

I, CAy,

and the remaining inclusions in the diagram are trivial. -

Exercises

1B.2. Prove that if ¥ = X} x --- x X} is a product space with at least one factor
X; = NV and every X either w or NV, the X' is homeomorphic with \.

HiNT. Construct homeomorphisms of w x A and N/ x N with A and then use
induction on k. -

1B.3. Prove thatif X = X| x --- x X} is a product space with at least one factor X;
not w, then X is a perfect Polish space.

1B.4. Prove that a pointset P is ;8 if and only if
P = U?io ki,

with each F; closed.
Similarly, P is ITY. if and only if
P =75, Gi

with each G; open.

This is the classical definition of F,; and G; sets. These occur quite often in analysis,
for example consider the following problem.

IB.5. Let f : R — R be an arbitrary function on the line. Prove that the set
A={x e R: f is continuous at x}

isa Gs.



18 1. THE BASIC CLASSICAL NOTIONS [1B.6

HINT. Define the variation of f on an interval (a, b) by
V(a,b) = supremum{ f(x) : a < x < b} — infimum{ f (x) : @« < x < b},

where the value may be oo or —oo. The local variation of f is given by
v(x) = lim,_ o V(x -1 x4+ %)

and it is clear that f is continuous at x just in case v(x) = 0. Show that for each n,
the set

An:{x:v(x)<l}

n
isopenand 4 =, 4,. =

1B.6. Prove that if n > 3 is odd, then P is XY if and only if there is an open set G
such that

P(x) < (3t)(Ve2)(363)(Vta) - - (V1) G (X, 11, ty1).
Similarly, if 7 is even then P is £ is and only if there is a closed set F such that
P(x) <= (31)(Vty)(3t3)--- (Bt F(x. 11, ... ty1).
Find similar normal forms for the I1) pointsets.

1B.7. Prove that if X is a product of copies of w and N and P is £ with n odd,
then there exists a clopen set R such that

P(x) <= (31)(Vt2) -+ (Vt,-1) 3tn)R(x. 11, ... 1):
similarly for even n, with the last quantifier V.

HINT. If 4 C X is open, then 4 = |J, R, with clopen R, in these spaces and we
can take

R(x,n) <= x €R,. -

1C. Computing with relations; closure properties

The relational notation for pointsets is particularly convenient for putting down
compact expressions for complicated definitions. Suppose, for example, that Q C
X XN, RCXxXxN xowandlet

P(x) <= (Vao)[Q(x.a) = (Fi)R(x. . i)].

Here the logical symbols are taken with their customary meaning, as we have been
using them all along: V (for all), 3 (there exists), = (implies), & (and). V (or), =
(not).

We will also use customarily Greek variables a. 8, y, ... from the beginning of the
alphabet over N and i, j. k.l.m.n.s,t over w. This will save us having to specify
explicitly the range of the quantifiers in each definition.

One can view the logical symbols as denoting operations on pointsets. In general, a
k-ary pointset operation is a function @ with domain some set of k-tuples of pointsets
and pointsets as values.

With this terminology, conjunction & is the binary pointset operation which assigns
to every pair P, Q of subsets of the same space X the set P & Q,

xc(P&Q) +<— P(x)&0O(x).
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= X
FiGure 1C.1. Projection along ).

Of course
P&Q=PNQO.
We will however keep the symbol N for denoting the general set theoretic operation
of intersection, with 4 N B defined for arbitrary sets 4, B.
Similarly, the disjunction PV Q of two pointsets is defined when P and Q are subsets
of the same X and

PVQ=PUQ={x:P(x)VO(x)}
Negation is most conveniently regarded as a collection of operations —y, one for
each product space X, with -y P defined when P C X

“xP=X\P={x€eX:-P(x)}.

In practice we will always write =P for —x P, as X is clear from the context.
From these we can construct more pointset operations by composition, e.g.. the
implication P —> Q of P and Q is defined by

(P:>Q):ﬁPVQ

More interesting than these propositional pointset operations are the projections and
dual projections or quantifiers. If P C X x ), put

PP ={xeXx:(3y)P(x.y)}

as in Figure 1C.1.

For each fixed product space V. we call the operation 3 projection along Y or
existential quantification on'y. Clearly 3¥ P is defined when P C X x ) for some X,
in which case 3¥P C .

We have already used projection along w, 3%.

Only the projections along basic spaces are fundamental, since all the others can
be obtained from these by composition; for example, if ) = w x N, then for each
PCX xwxN,

3Yp=3°3Vp
i.e., in relational notation,
By e Y)P(x.y) <= (Fn)(Fa)P(x.n. ).

IfPC X x ), put
vp=-3Y-P
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F1GURE 1C.2. Universal quantification on ).

i.e.,
x eVVP — -3y € Y)-P(x.y)
— (Vy € V)P(x.y).

Fixing ). we call the operation V> dual projection along Y or universal quantification
on ). Again vY P is defined when P C X x ) for some X and then v p C X, see
Figure 1C.2.

In addition to the operations 3%, V. the bounded number quantifiers will prove
useful,

(x.n) € =P — (Im < n)P(x.m),
(x.n) e VEP — (Ym < n)P(x.m),
see Figure 1C.3.

Clearly 3= P, V=P are defined when P C X x w for some X, in which case both
3= P and V=P are also subsets of X x .

A pointclass A is closed under a k-ary pointset operation ® if whenever Py, ..., Py
arein A and ®(Py,..., Py) is defined, then ®(Py...., P;) is also in A. For example,
A is closed under conjunction if whenever P and Q are subsets of the same space X
and botharein A, then P& Q = PN Qisin A.

Similarly, A is closed under negation —, if =A C A, i.e., forevery P € A, P C X we
have XY \ P € A.

We say that A is closed under continuous substitution if for every continuous function
f:X —Yandevery P € A, P C Y, f~![P] € A. Here of course

xe [Pl &= f(x)eP < P(f(x)).

It is worth putting down a very useful alternative version of this closure property.

1C.1. LEMMA. Suppose A is a pointclass closed under continuous substitution, let [ :
X —=Vi...., fm: X = YV, becontinuous functions and assume that Q C Y X+ X Yy,
is a pointset in A. If

P(x) <= O(f1(x)..... fu(x)).
then P is also in A.
Proor. The functiong : X — Y x --- x ), defined by

g(x) = (fl(x)» s rfm(x))
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]
3=p

X
FiGure 1C.3. Bounded number quantification.
is continuous and
P(x) <= 0(g(x)). .
For example, suppose

P(x.y) <= 0O(y.x)&R(x.y.y).

where Q C Y x X, R C X x Y x ) and both Q and R are in some pointclass A closed
under continuous substitution and & . Then P too is in A, since

P(x.y) <= O'(x.y)&R'(x.y).

where

with
f1(x.p) =y fa(x.y) = x.

In effect, closure under continuous substitution allows us to permute or identify vari-
ables in a relation and stay in the pointclass we are working with.

After these preliminary remarks we can state concisely the elementary closure prop-
erties of the Borel classes. To prove them, we will need functions that code finite
sequences of integers by single integers.

Let

p(i) = p; = the i’th prime,
with py = 2, and for each n, put
(to, . . ty—1) =py P

By convention the empty product is 1, so that

0 =1
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and 1 is the code of the empty sequence. With this particular coding of tuples we
associate the natural decoding functions and relations

Seq(u) <= u=1oru= (ty,....t,_) forsometg..... 1, 1,

Ih(u) = n ifu={{t,...,t,—1) for some tg,....1,_1,
o otherwise,

t; ifu={t....,t,—1) forsomety,....t,_1 and i < n,
(u)i = .
0 otherwise.

It is often convenient to index a finite sequence starting with 1 rather than 0. Notice
that if

then fori < n, (u); = t;41.

1C.2. THEOREM. Each Borel pointclass £ (n > 1) is closed under continuous substi-
tution, V., & .35, V= and 3°.

Each dual pointclass 19 is closed under continuous substitution, V, & , 3=,V= andV/*.

Each ambiguous Borel pointclass ég is closed under continuous substitution. -, V, & ,
3= and V<.

PrROOF. The results about IT1) and AY follow immediately from those about £9. The
closure properties of £ are also trivial, except perhaps for closure under 3= and V=
which follow easily from the equations

3P =, {(x.n) : @m < n)P(x.m)},
V=P =, {(x.n): (Vm <n)P(x.m)}.
Assume now that £ has all the right closure properties—we will show the same for

0
;n+1'

Suppose first that Q is a typical §‘2+1 subset of ), i.e.,
0(y) < (3m)-P(y.m),

with P some );2 subset of ) X w. Assume also that /' : X — ) is continuous. Now
0(f(x)) <= 3@m)-P(f(x).m)
— (3m)-P'(x.m)
with
P'(x.m) < P(f(x).m).

Since P’ is £ by 1C.1 and the induction hypothesis, f ~'[Q]is £Y . Hence Y, is
closed under continuous substitution.
To prove closure of £%_ | under &. compute

R(x) <= (Fs)-P(x,s) & (Ft)-0(x. 1)
= (Fu)[-P(x.(u)o) &=O(x. (u)1)]
= (Fu)=[P(x. (u)o) vV O(x. (u)1)].
If P and Q are in £9, then
P'(x.u) < P(x.(u)o) Vv Q(x.(u))

is also L) by closure under continuous substitution and V. so Ris £ ;.
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This method of proof goes by the fancy name of like quantifier contraction and yields

equally trivial proofs of closure of £ ;. under v and 3”. For closure under V= we

need a slightly more elaborate contraction of finitely many quantifiers.
Suppose

R(x.n) <= (Vm <n)(3s)-P(x,m.s)
with P in £ and compute,
R(x.n) < (Ju)(Vm < n)=P(x.m. (u)n)
< (Ju)=(3m < n)P(x.m,
Again
P(x.nu) < (3m< n)P(x,m, (u)m)
is £9 by closure of this class under continuous substitution and 3=, so Ris Z9 .
Proof of closure of £, | under 3= is trivial. =

This simple argument is a good illustration of the advantage of relational (or logical)
notation, i.e., writing

R(x.n) <= (Vm <n)(3s)-P(x.m,s)
rather than
R =V=3"-P.

In fact the whole proof rested on some quantifier manipulation rules whose truth is
transparent in logical notation. We list them here for reference, but we will apply them
in the future without much ado.

(35)3)P(s.1) <= (u)P((u)o. (u)1).
(Vs)(V1)P(s.1) <= (Yu)P((u)o. (u))
(Vm < n)(3s)P(m.s) <= (Fu)(Vm < n)P(m. (u)y).
(3m < n)(Vs)P(m.s) < (Yu)(Tm < n)P(m. (u)y)

These rules are useful because they allow us to simplify the quantifier prefix of a
complicated logical expression by introducing continuous substitutions in the matrix.
To see how one can use the closure properties of a pointclass, suppose that

P(x) < (3)3s){0(x.5s) = Fu)[R(u. f (x.u).1) V S(u.x.5)]}.

where Q, R, S are );2 f is continuous and ¢, s, u range over w. We will argue that P
S0
isinX, .
First put
Q' (x.1.5) < 0O(x.s),

R'(x.t.5.u) < R(u. f(x.u).t).
S'(x.t,5.u) <= S(u, xs),
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P(x) = 3){0(x.s) = (Fu)[R(u. f(x.u).1) vV S(u.x.5)]}
— (i(ﬂt){—'Q(x, s)V (Fu)[R(u. f(x.u).t) vV S(u.x.s)]}
o 0 X0
= R
EO ‘
S R T
£, |
£, |

DiaGgram 1C 4.

and notice that Q’, R’, S’ are Y by closure of this pointclass under continuous
substitution. Now

P(x) < (31)(3s){-0'(x, V (Ju)[R (x.t.s5.u) VS (x,1.5u)]}
= (@)@ Q' (x. 1.5)V (@) T(x.1.5.u))
— @@ (. 1.5)V T'(x.1.5))
— (3)3s)T"(x.t. s)

where T. T', T" are defined by

T(x.t.5,u) <= R'(x.t.s,u)VS'(x,t.5.u),
T (x,t.5) <= Bu)T(x,t,5,u),
T'(x.t.5) <= =0 (x.t.5)VT'(x t5s).

Clearly T and T’ are £ by the closure properties of this pointclass. Hence 7" is £9 1
by 1B.1 and since —Q is also £° wats T8 X0 wi1- Finally P is ¥ | by two applications
of closure of this pointclass under 3°.

This kind of computation is so simple that we will not usually bother to put it down.
One way to make computations of this type with a minimum of writing is to use a
diagram like 1C.4 which shows step-by-step the properties of the relevant pointclasses
that we use.

Zn+l

Exercises

1C.3. Let f : R — R be a continuous function on the line. Prove that the relations

P(x.y) <= f'(x) =y
O(x) < f’(x) exists

are both IT9.
HINT. Let g, ry. ... be an enumeration of all rational numbers and put
1 1
R(x.y,s.k.m) < rp, Z20&|—{f(x+rn) — f(x)} —y| < .
I'm s +1
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y Py

x X
FiGuRe 1C.5. Uniformization.
Clearly R is a closed relation. It is easy to verify that
P(x,y) <— (Vs)(EIk)(Vm){O <l|rm| < # = R(x.,.s. k,m)}.

1
The second assertion is proved similarly, starting with the relation

S(x.s.k.m.n) < r, 20& 1, #0
&S Gt ) = F(0)} = 2 Ce ) = (0} < 7. 4

1C.4. Let CJ0, 1] be the space of continuous real functions on the unit interval and
define O C CJ0, 1] x R by

O(f.x) <= 0<x<1&f'(x) exists.
Prove that Q is ITS.

1C.5. Prove thatif P C X and Q C Y are ;2 then the product P x Q C X x YV is
.
HINT. Use closure under continuous substitution. =

For the next exercise we introduce the basic problem of uniformization."'”)

Suppose P C X x Y is a subset of the product X x ). We say that P* uniformizes
P. if P* C P and P* is the graph of a function with domain the projection 3” P.
Intuitively, P* assigns to each point in 3¥ P just one member of the section or fiber

Py ={y:P(x.y)}

as in Figure 1C.5.

It follows from the axiom of choice that each P can be uniformized by some P*; on
the other hand, it is often very difficult to find a definable uniformizing set, even if the
given set is very simple.

The next exercise solves the uniformization problem in a very simple situation, but
we will see later that even this easy result is useful.

1C.6. Prove that foreachn > 1,if P C X x w is in §2 then there is some P* also
in ;2 which uniformizes P.

HiNT. Suppose
P(x,m) < (3i)0(x.m.i)
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P*
FiGure 1C.6. Reduction.

with Qin 1% _,. Put
R(x.s) <= 0(x.(s)o.(s)1) & (V1 < 5)=0(x. (1)o. ()1).
P*(x.m) < (i)R(x, (m.i)). -

Suppose P and Q are subsets of the same space X. We say that the pair P*, O*

reduces the pair P, Q if the following hold:(16)
PTCP  0°CO
PUQ=P*UQ",
P nQO* =1.

(See Figure 1C.6.)

1C.7. Prove that for each n > 1, every pair of sets P, Q in £Y is reducible by a pair
P*, Q*inXY.
HiNT. Uniformize the set R defined by
R(x,m) < {P(x)&m =0}V {Q(x)&m = 1}. =

Suppose that P and Q are disjoint subsets of the same space X'. We say that the set
S separates P from Q if(®)
PCS, ons=40.
(See Figure 1C.7.)
1C.8. Prove that for each n > 1, every disjoint pair of sets P, Q in II) can be
separated by a set in AY.
HiNT. To separate P from Q, reduce the pair X' \ P, X'\ Q. -

1D. Parametrization and hierarchy theorems

In the most general situation, a parametrization of a set S on I (with code set I) is
any surjection
n:l—>S
on I onto S. Often we need parametrizations which are “nice”—e.g., we may want ©
to be definable or to reflect some given structure on S.
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FiGure 1C.7. Separation.

Here we are interested in the case when S is the restriction of a given pointclass I to
some product space X,

rfx={PCcx:pPerl}.
In fact we seek parametrizations of I' | X on product spaces.
IfPCYxXandye), let P, be the y-section of P,
P,={xeX:P(y.x)}

as in Figure 1D.1.
A pointset G C Y x X is universal for I' | X, if G is in I and the map

y— G,
is a parametrization of I' | X on ), i.e., for P C X%
Pcl <= forsomeyc) P=G,.

A pointclass I' is Y-parametrized if for every product space X thereissome G C Y x X
which is universal for I" | X.
Let

Ny, N1, Ny, ...
be an enumeration of a basis for the topology of some product space X and define
O CN x X by
O(E,X) <~ (Eln)[x S Ne(n)]-
Clearly O is open and each open set P C X is of the form

P=0.=J,N:

for some € € N, so that O is universal for £¢ | X. Thus Z9 is A'-parametrized and it
is trivial to prove from this that all the Borel pointclasses £ and their duals T1 are
N -parametrized. The next theorem establishes a little more.

1D.1. THE PARAMETRIZATION THEOREM FOR X For every perfect product space Y,
;? is y-parametrized.<15)

PRrROOFE. Suppose N().0),N(Y.,1),... and N(X.0), N(X,1),... enumerate bases

for the topology of ) and a fixed product space X respectively. Recall from Theo-
rem 1A.2 that there is a function ¢ which assigns to each finite binary sequence u a
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FiGure 1D.1. The section above y.

nbhd N(y, a(u)) in )V such that (i), (ii) and (iii) of 1A.2 hold. Using this ¢, define
G CYxXby

G(y.x) <= there exists a finite binary sequence u = (fo,....t,) such that
tn =0,y € N(¥.o(u)) and x € N(X.n).

It is immediate that G is open and hence every section G, C X is open. The proof
will be complete if we show that every open subset of X is a section of G, since then
G will be universal for L) | X and X was arbitrary.

If P C X is open, then there is a set of integers 4 such that

xX€EP < (An)necAd&x e NX,n).

f 0 ifned,
"1 ifng¢ A

Put

and as in the proof of 1A.3 define the sequence {y,} in ) by
yn = the center of N (V. (to.....1,)).
The properties of ¢ imply that {y,} is Cauchy, so let

Yy = lim,, o Yn-
We claim that for this y,
G(y.x) <= xcP
If x € P, then for some n we have ¢, = 0 and x € N (X, n), and by the properties
of 6.y € N(V.0(t.....1,)). so by the definition of G we have G (y. x).
Conversely, if G (y. x). then thereissomeu = ((.¢{.....t,)suchthaty € N (V.o (u))
and 1, = 0 and x € N(X.n). Since y € N(V.co(t.11.....1,)). the sequences

(to.....1,) and (¢}.....1)) are compatible by the properties of o. But binary se-
quences of the same length are compatible only when they are identical, so ¢ty =
{§s... .ty =1, =0, hence t, = 0and x € N(X.n),sox € P. —

1D.2. THEOREM. If a pointclass I is YV-parametrized, then so are the pointclasses —T'
and 3T, where Z is any product space. In particular all the Borel pointclasses X% and
their duals T1O are Y-parametrized, where Y is any perfect product space.
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Proor. If G C Y x X is universal for T [ X, then -G = Y x X \ G is obviously
universal form =" | X. Similarly, if G C Y x X x Z is universal for I’ | (X x Z),
define H C Y x X by

H(y.x) <= (32)G(y.x.z2)
and verify immediately that H is universal for 3°T" | X. -

The significance of parametrizations is evident in the next result which we formulate
in a very general setting.

1D.3. THE HIERARCHY LEMMA. Let I be a pointclass such that for every product

space X and every pointset P C X x X in T, the diagonal
P'={x:P(x.x)}

isalso inT. If T is Y-parametrized, then some P C Y is in I but not in .15

PrOOF. Let G C Y x Y be universal for I’ | Y and take P = {y : G(y.y)}. By
hypothesis P € I'. If =P € T, then for some fixed y* € ) we would have

G(y".y) &= —-P(y) <= ~G(y.y)

which is absurd for y = y*. -

1D.4. THE HIERARCHY THEOREM FOR THE BOREL POINTCLASSES OF FINITE ORDER. [f
X is any perfect product space, then the following diagram of proper inclusions holds:

0 x X
@
72 Q 72
A) T X Ay X
< G <
oy x nj|x

DiaGraM 1D.2. The Borel pointclasses of finite order.

ProoOF. We have the inclusions from 1B.1, so it is enough to prove that they are
proper.

From 1D.2 we know that £ and I19 are X'-parametrized. hence by 1D.3 there is
some PC X, PeX) P¢MY ThusAY | X C X% | X and similarly A | X C Y |

X. On the other hand. if £ | X = A%, | X. then £Y | X would be closed under —.

soIlY | X C XY | X contradicting P € £ \ ITY. o

1E. The projective sets

We now introduce a second hierarchy of pointclasses by applying repeatedly the
operations of negation and projection along .
For each pointclass A let

VA={3VP:Pc A}
={FVP:Pc A (X xN)forsome X}.
The Lusin pointclasses £} (n > 1) are defined by the recursion
i =3'm.

1 N 1
§n+1 =3 X,
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and as with the Borel pointclasses we define the dual and ambiguous Lusin pointclasses
by(11:12)
0, =-x,.
A, =X,NI,.
Thus a pointset P C X' is ;} if there is a closed F C X x A such that for all x
P(x) <= (Fa)F(x, a),
Pis X} (if thereis an open G C X x N x N such that
P(x) <= (Fa1)(Va2)G (x. 1. 2).
etc. Similarly, P is I1} if there is an open G such that
P(x) <= (Va)G(x.a).
P is 1} if there is a closed F such that
P(z) <= (Va;)3Fay)F(x.a1. ),

etc.

The pointsets that occur in these Lusin pointclasses are the projective sets, the chief
objects of our study.

1E.1. THEOREM. The following diagram of inclusions holds among the Lusin point-
classes:

x| x
& < <
Al Al
S C S
I IT;

DiaGgraMm 1E.1. The Lusin pointclasses.

Proor. The inclusions £} C II). | are proved by vacuous quantification, the same

way we showed £ C 19| in 1B.1.

If F is a closed set, then F is l:[g by 1B.1, so for some open G,
F(x) < (V1)G(x.1)
— (Va)G (x.a(0)).
Now the set G’ C X x N defined by
G'(x.a) <= G(x.a(0))
is also open since G is and the map
(x.a) — (x.(0))

is continuous, hence F is II}. Thus every closed set is [T} and then, by definition,
every X1 set is £}, from which

Z,C L
follows immediately by induction.

The remaining inclusions in the diagram are trivial. -
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To prove the closure properties of the Lusin pointclasses we need maps that allow
us to code infinite sequences of irrational by single irrationals. Put

(@) = (1 = al(i.1)).
ie..
(a); = . where (1) = a((i.1)).
There is a k-ary inverse of this function for each k > 1,
(g, ....oap_1)({i. 1)) = 0;(1) ifi <k,
(g, ....a_1)(n) =0 ifn # (i,t) forall f and i < k.
The maps
(a.i) = (a);,
(g, ...oap_1) — (Qg, ..., 1)
are obviously continuous and for each k and i < k,
({ag,....ap_1))i = a.
It is also useful to have a notation for the shift map,
o =(t—alt+1)).
Again, a — «* is continuous.
1E.2. THEOREM. Each Lusin pointclass £} is closed under continuous substitution. V.,
&, 35, V=,V and 3% for every product space .
Each dual Lusin pointclass l:[}, is closed under continuous substitution, \V, & , EIS, VS,
3” and Y for every product space ).

Each ambiguous Lusin pointclass é}, is closed under —, vV, &, EIS, VS, 3? and V°.
In particular, every pointset of finite Borel order is Al.

PrOOF. The results about IT} and A} follow immediately from those about £} and
the last assertion is a trivial consequence of the closure properties of Al.

Closure of X1 under continuous substitution follows from the closure of I1¢ under
continuous substitution.

To prove closure of ;{ under VvV, &, EIS, v< and 3 we use quantifier contractions.
For example, to prove closure under 3V , assume that

P(x.a) <= (3F)F(x.c.p)
with F closed. Then
(Fa)P(x.a) <= (Fa)3B)F(x.a. p)
= (F)F (x.()o. (Y1)

and 3V P is £! by closure of I19 under continuous substitution.
To take one more example, suppose

P(x.m) < (3B)F(x.m.p).
Then
(Vm <n)P(x.m) < (Vm < n)(3B)F(x.m,p)
= (3))(Vm <n)F(x.m, (y)m)

and again V=P is £| by closure of I1? under continuous substitution and V<.
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4

o )1
& < &

AplX Ay X
< & <

L1 | x

=

DiaGgraMm 1E.2. The Lusin pointclasses.

Closure of £} under 3* follows immediately from the equivalence

(31)(30)Q(x.1.0) <= (3)Q(x.7(0).7%).
For every product space ). there is a continuous surjection
7N =Y
of N onto Y by 1A.1. Thusif P C X x Y, then
(3y)P(x.y) <= (Fa)P(x.7n(a))
and closure of X! under 3% follows from closure under continuous substitution

and 3V,
Finally, to prove closure of £} under V. suppose

P(x,t) <= (Fa)F(x.t.a)
with F in II9. Then
(V1)P(x.1) < (Vt)3a)F(x.t,a)
— (I)V)F (x.1.(p),).
so V” P is £| by closure of IT1Y under continuous substitution and V.

The closure properties of £} for n > 1 follow by induction, using the same quantifier
manipulations that we used for the case of £1. =

In addition to the obvious quantifier contractions
(3)(3p)P(e. f) = (3)P((7)o. (W1).
(Va)(VB)P(a. ) <= (¥7)P((7)o. ()1).
we also used in this proof the equivalence
(Vt)(3a)P(t.a) <= (Iy)(Vt)P(1.(y),).
This expresses the countable axiom of choice for pointsets. The dual equivalence
F)(Va)P(t.a) <= (vy)3)P(t.(y):)

looks a bit mysterious at first sight. We prove it by taking the negation of each side in
the countable axiom of choice.

Theorems 1D.1-1D.4 and 1E.1 yield immediately the following result.

1E.3. THE PARAMETRIZATION AND HIERARCHY PROPERTIES OF THE LUSIN POINT-
CLASSES. For each n > 1 and for each perfect product space Y, the pointclasses L\,
I} are Y-parametrized. Hence they satisfy the diagram 1E.2 of proper inclusions (on
the following page). where X is any perfect product space.'?)
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In the classical terminology the £} pointsets are called analytic or A-sets. They
include most of the sets one encounters in hard analysis. The I} sets are coanalytic
or CA-sets, the £} sets are PCA-sets. the I1} sets are CPCA-sets, etc.

Exercises

IE4. If f: X — Y, let

Graph(f) = {(x.»): f(x) = y}.
Prove that if f is continuous, then Graph(f) is closed.

1E.5. Prove that if f : X — Y is continuous and P is a );.}, subset of X, then
SIP1={f(x): P(x)}isEL.
1E.6. Prove that for every pointset P C X,
Pis¥L] <= P = f[N]for some continuous f,
Pis ;},H < P = f[Q] for some 13,11 set O C N and some continuous f.

HiNT. For the first assertion, suppose P is the projection of some closed subset C of
X x N. Consider C as a metric space with the metric it inherits from X x N: it is easily
separable and complete, so by 1A.1, there is a continuous surjection /' : N'— C. Now
P is the image of A under f followed by the continuous projection function. -

We cannot replace A/ by an arbitrary perfect product space in this result, because
of the next exercise. However, see 1G.12 for a related characterization of 1.

1E.7. Prove thatif f : R — X is continuous and F is a closed set of reals, the f[F]
is £9.
HiNT. R is a countable union of compact sets. -

Practically every specific pointset which comes up in the usual constructions of
analysis and topology is easily shown to be projective—in fact, almost always, it is £
or IT}. We only mention a couple of simple examples here, since we will meet several
interesting projective pointsets later on.

1E.8. On the space C[0, 1] of continuous real functions on the unit interval, put
O(f) <= f isdifferentiable on [0, 1].
R(f) <= f is continuously differentiable on [0, 1],

where at the endpoints we naturally take the one-sided derivatives. Prove that Q is IT}
and RisZ!.

1F. Countable operations and the transfinite Borel pointclasses

A countable pointset operation is any function ® with domain some set of infinite
sequences of pointsets and pointsets as values. We will often use the notation

®;P; = D(Py. Py, Ps....).
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The most obvious countable operations are countable conjunction, /\”, and countable
disjunction, \/”. Here A\ P; and \/{ P; are defined when all the P; are subsets of the
same space X and

xe NP < N, Pi(x) < foralli € w. Pi(x).
x e\ P < \,Pi(x) < forsomei € w, P;(x).
In set theoretic notation
N Pi=Pi. V7 Pi=U;Pi
whenever all the P; are subsets of the same space.

A pointclass A is closed under a countable operation @, if whenever Py, Py, ... are
all in A and ®; P; is defined, then ®; P; is also in A.

1F.1. THEOREM. Let I be an N -parametrized pointclass which is closed under contin-
uous substitution. If T is closed under 3°, then it is closed under \|” and if T is closed
under N, then it is also closed under )\ .

PRrROOF. Suppose P; C X, P; € I',let G C N x X be universal and choose irrationals
€; such that

Pi=G,={xeX:G(e. x)}
Now pick € so that for every i,
()i =&
and set
x €P < (3)G((e). x).

Clearly P € T by closure under continuous substitution and 3 and P = | J, P;.

The argument about V* is similar. o
1F.2. COROLLARY. Each XY is closed under \/” each T1° is closed under \* and all
XL 1}, AL are closed under both \|” and \*.?) o

If @ is a k-ary or countable set operation and A is a pointclass, put
OA = {®(Py, Py....): Py, P1,--- € Aand ®(Py, Py, ...) is defined}.

We have already used this notation in connection with 3” and V.
It is trivial to verify that if A is closed under continuous substitution, then
I?A C VYA,

i.e., every projection along w of a set in A can be written as a countable union of sets
in A. This together with 1F.2 give us a new inductive characterization of the finite
Borel pointclasses,

;? = all open sets,
Lo =V L.
Now the class of all pointsets of finite Borel order is closed under 3 but it is not
closed under \/; for example, choose G, C A to be in £9 \ IT% and verify that
G=U{na):acG,}

is not in any X£9. This suggests an extension of the finite Borel hierarchy into the
transfinite as follows.
Take

£{ = all open pointsets
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and for each ordinal number & > 1, let

§2 = \/w _‘(Uﬂ<§ 22)
Unscrambling this, P is in );2 is there are pointsets Py, Py, ... with each P; in some
§2, n < &, such that
P = Ui(X \ P i)~
We call ;2 the Borel pointclass of order &. The dual and ambiguous Borel pointclasses
are defined in the obvious way, (8:9)

HO _ 0
[; =-X;.

0 _ 0 0
A =X NIl

For finite & this definition yields the pointclasses ;2 as we know them, so there is no
conflict in notation.

It is very easy to extend the basic properties of the finite Borel pointclasses to all
Borel pointclasses and we will leave this for the exercises. We only state here the basic
characterization of the pointclass B of Borel sets,'®)

B=J: L

1F.3. THEOREM. For each product space X the class B | X of Borel subsets of X is
the smallest collection of subsets of X which contains the open sets and is closed under
complementation and countable union; similarly, B | X is the smallest collection of
subsets of X which contains the open (or the closed ) sets and is closed under countable
union and countable intersection.

Proor. If P is Borel, then P is in ;2 for some &, so -P = X\ P € );2“, in
particular, =P is Borel. Also, if P; is Borel for every i, P; C X, then P; C };2 for
some &;, 50 =P; € £? | and taking

& =supremum{¢&; +2:i=0,1,2,...},

we have P € £?, since

P=; Pi = (X\ (X\ P)).

Thus the class of Borel subsets of &’ is closed under - and \/“.
Conversely, if S is any collection of subsets of X which is closed under — and \/*,
then S clearly contains all open subsets of X and an easy induction on ¢ shows that

PCX.Perl= PeS.

For the second assertion, notice first that B | X is easily closed under countable
intersection, since
N Pi= X\ (U (X \ Py)).
Conversely, if S contains all the open subsets of X and is closed under both countable
union and countable intersection, then each P C X which is either );2 or ljg isin S
by a trivial induction on &; because closed sets are countable intersections of open sets
and in general

P€§2:>P:UiPi witheach P; €I, 7 <&
P€g2:>P=ﬂ,-P; with each Pi€§2,= ni <& 4
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It is immediate from the definition of the Borel sets and the closure properties of A |
that B C A}. Actually,
B=Al
This is one of the central results of the theory—we will prove it in Chapter 2.

Exercises

1F.4. Prove that each Borel pointclass );2 is closed under continuous substitution,

VvV, &. 35, VS, 3” and \/“. State and prove the natural closure properties of the
pointclasses [IY and AY.

HiNT. Use induction on &. One way to arrange the computations is to show the
following lemmas, for A’s which contain all clopen sets:

(1) If A is closed under continuous substitution, V and & . then \/” —A is also
closed under these operations and \/“.

(2) If A is closed under continuous substitution, V, & and \/, then A is closed
under 35, V< and 3¢,

(3) If Ag € A; C --- is an increasing sequence of pointclasses, each closed under
continuous substitution, V and &, then Ui A; has the same properties. —

1E.5. Prove that
_ 0
B = U§<N1 ;‘f’
i.e., every Borel set occurs in some Borel class of countable order.

1F.6. Prove that for each countable &, ;2 is M-parametrized. Infer that
ALTN CEL TN CAL, TN,
so in particular no Borel class ;2 of countable order exhausts the Borel sets.

HiINT. The result is known for finite &, so we proceed by induction. Choose &, &1, ...
so that the supremum{¢; +1:i=0,1,...} = & and let G; C N x X be universal for
};% I X. Put

G(a, X) < \/i -G; ((Ck),', X)
and show that G is universal for ;2 | X by verifying that each P in ;2 [ X satisfies
P(x) <=V, ~Pi(x)
with each P; in £? . 8

In the exercises of the next section we will extend this result to show that each ;g is

Y-parametrized for each perfect product space ).

1F.7. Suppose Ry, R, - - - are all subsets of the same space X and we take
R(x,s) < R,(x).
Prove that if each Ry is in );2 then so is R.
HinT. For each i, put
Pi(x,s) <= Ri(x)&s=1i
and notice that each P; is );2 by the closure properties of this pointclass. Now
Pi(x.s) <\, Pi(x.s). -
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Recall the definitions of parametrization, reduction and separation given in the
exercises of 1C.

1F.8. Provethatforeach¢é > 1,if P C X x wisin };2 then there is a P* also in ;2
which uniformizes P.

HinT. We follow the same argument as in 1C.6, but now we deal with infinitary
. W - . . 1]
operation \/* instead of projection on w, 3”. If
P(x.m) < \/; Qi(x.m).

where each Q; is in some l;[g_ with & < &, put

Ri(x) <= Q) (x.(5)0) & A,y =), (x. (1)o)
and check that each Ry is in l;[gl_, so that by the preceding exercise,
R(x.s) <= R(x)
isin £2. Take

P*(x,m) < (Fi)R(x, (m,i)). -

1F.9. Prove that for each & > 1, every pair of sets P, Q in ;g is reducible by a pair
P*. Q*in£2.119

1F.10. Prove that for each & > 1, every disjoint pair of sets P, Q in l;[g can be

separated by a set in ég.“@

1G. Borel functions and isomorphisms

Let A be a fixed pointclass and let
f:x-Yy

be a function. We say that f is A-measurable, if for each basic nbhd Ny C Y, the
inverse image f ~![N,]isin A. This notion is due to Lebesgue.!?)

Here we are mostly interested in Borel measurable or simply Borel functions. A Borel
isomorphism between two spaces is a bijection

f:xX—>»)Y

such that both /" and its inverse are Borel measurable.

The main result of this section is that every perfect product space is both Borel
isomorphic with A/ and the continuous one-to-one image of some closed subset of
N. We will also show that the Lusin pointclasses are closed under Borel substitution.
Thus in studying projective sets we can often simplify proofs by assuming that the
space under consideration is NV

We will leave for the exercises some very interesting results about §g—measurable
functions.

Let us first dispose of the easy result.

1G.1. THEOREM. If f : X — Y is a Borel function and P C Y is in any of the
pointclasses B, AL, £} I}, then f~'[P] is in the same pointclass.

In particular, the collection of Borel functions is closed under composition.
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PROOF. A simple induction on ¢ shows that if f is Borel and P is £2, then f ~'[P]
is Borel. Thus B is closed under Borel substitution. Also, if f : X —- Y, g:)Y — Z
are both Borel and 4 : X — Z is the composition,

h(x) = g(f(x)).

then for each open set P C Z,
h='P1= /" g P

so h~![P]is Borel and /4 is Borel measurable.
For the rest, notice that

fx)=y <= ADenN, = f(x)eN]
so that the graph of f

Graph(f) = {(x.y): f(x) =y}

is Borel. Now for any P C ),

P(f(x) <= @IPy)&f(x)=y]

= (W)IPY)V f(x) # »].
These equivalences, the fact that B C Al and the closure properties of the pointclasses
Al £l 1} imply immediately that if P is in one of them, then so is f ~![P]. -

We now go to the transfer theorems which often allow us to study just subsets of
N instead of arbitrary pointsets. The first of these is a more refined statement of
Theorem 1A.1.1%)

1G.2. THEOREM. For every product space X there is a continuous surjection
TN —»X

and a closed set A C N such that n is one-to-one on A and n[A] = X. Moreover, there
is a Borel injection

f:X =N
which is precisely the inverse of m restricted to A, i.e., for all o € A, f(n(a)) = « and
forallx € X, f(x) € Aandn(f(x)) = x.

Proor. To begin with, let

pN—»X
be the surjection defined in the proof of 1A.1 and for x € X, put

g(x) =,
where

a(n) = least k such that d (x, ;) < 27" 2.

It is very simple to check that for all x € X, p(g(x)) = x. so g is an injection.
Moreover, if we put

B = g[X].
then g is precisely the inverse of p restricted to B, since

a€B=— a=g(x) forsomex,

= g(pla)) = g(ﬂ(g(X))) =g(x)=a.
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If g(x) = o, then
aln) =k <= d(x.r) <27"2& Vs < k)[d(x.ry) >27"72).
Thus if
B, ={a:a(n) =k},
each g~ '[B, ] is a Borel subset of X. It follows that for each basic nbhd N = {« :
a(0) = ko, ....a(n—1) =k,_1} in N, the set
g ' INI=¢ ' [Bogd N---Ng ' [Bai, ]

is Borel and g is a Borel function.

Now, easily

0 €B = (Vn)|d(p(). o) <272

& (Vk < a(n))[d(pa).ri) > 2*”*2]},

so B is a IT) subset of A/. We must refine the construction a bit to get 7 and 4 with
the same properties, with A4 a closed set.
Put B in normal form

a € B < (Vn)(3s)R(a.n.s).
where R is a clopen pointset by 1B.7 and define 4 C N x A by
(a.f) € 4 < (Vn)[R(a.n.f(n)) & (Vk < f(n))-R(a.n.k)].

Clearly A is closed. Moreover, the projection o : N x N — N, o(a. f) = o takes 4
onto B and is one-to-one on A, since

(o, B) € A = B(n) = least k such that R(a, n. k).

Hence the composition 7 = p o g takes 4 onto X’ and is continuous, one-to-one.
It is trivial to check that the inverse of 7

f(x)= (g(x), n — least k such that R (g(x). nk))

is Borel. The proofis completed by carrying 4 to N via some trivial homeomorphism
of N with N x N, e.g.. the map

no.ni.na. ... — ((ng.na.ng....). (ni.n3.ns....)). 4

The function f of this proof is an example of an interesting class of functions. Let
us temporarily call a function

f X =Y
a good Borel injection if
(1) f is a Borel injection,
(2) there is a Borel surjection
g:Yy—»X

such that g o f is the identity on X, i.e.,
g(f(x) =x (x € X).

We refer to any such g as a Borel inverse of f.

It will turn out that every Borel injection is a good Borel injection. This is a special
case of a fairly difficult theorem which we will prove in 2E and again in Chapter 4.
Here we only need show that enough good Borel injections exist.
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Notice that if ' : X — ) is a good Borel injection, then
yefIX] <= f(gly) =y

with g any Borel inverse of f, so f[X] is a Borel set. Moreover, if P is any Borel
subset of X, then

ye fI[P] < ye flX]&g(y) e P.

so that f[P]is Borel. Thus the image of a Borel set by a good Borel injection is Borel.
It is also immediate that the class of good Borel injections is closed under composi-
tion.

1G.3. LEMMA. For every perfect product space X, there are good Borel injections
[ X — N,
h:N— X.

ProOF. We have already constructed f in 1G.2.
To construct /2, define first 4, : N — C by

(o) = B.
where

0 if = ,
[)’(n) _ 1 Oé((l’l)()) (n)l
1 ifa((n)) # (n):.
It is trivial to verify that /4 is a Borel function, and

BemIN <= (vm)[B(n) = B(((m)o. ()]

& (9n) (9K) [[[(n) = 0& (k) = 0& (m)o = (K)o] => () = (k)]
& (¥n) (3O)IB((n. k)

0].
so that /1;[AV] is Borel. Define now g; : C — A by

(§) = the constant function 0 if g ¢ h[N],
SV a if B € MmN,
where
a(n) = the unique m such that f((n,m)) =0

and verify easily that g; is a Borel inverse of /11, so that 4, is a good Borel injection.
Now let

n:C— X

be the continuous injection constructed in 1A.3 with 9t = X’. Since C is compact
and 7 is a continuous injection, we know that z[C] is compact; in any case, we can
compute z[C] using the function ¢ of 1A.2,

x €n[C] <= A, V,[u=(t.....t,_1) forsome tg.....1,_1 &x € Ny(,].
For an inverse to =, take
(x) = the constant 0 function if x ¢ =[C],
P = the unique o € C such that n(a) = x if x € =[C].

If
B={a:a(0) =ko,....aln) =k,}
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h

TN

Xo

h[No]

No= N ~_ 7 x=x
Nyt = fhIN,] / Xyt = hf[X,]

DiaGram 1G.1.

is a typical nbhd in C, then
p(x) € B <= p(x)(0) =ko& - & p(x)(n) = k.
so to prove the p is Borel it is enough to show that for each n, the relation
Py(x) <= p(x)(n) =0

is Borel. This is true, since

Py(x) <= x ¢ a[CIVV, [u=(to.....tn_1)

for some 9. .... 1,1 &1, 1 = 0& x € Nyl
Now h = 7 o Iy is a good Borel injection of A/ into X. -
1G.4. THEOREM. Every perfect product space is Borel isomorphic with N'.('®

Proor. Recall the classical Schroeder-Bernstein Theorem, whose proof constructs
from given injections 4 : N »— X and f : X — N a bijection g : N »— X. We
will verify that if /2, f* are good Borel injections, then the resulting bijection is a Borel
isomorphism. Define the sequences of sets Ny, NV, ..., Xp. &1, ... recursively by the
equations

./\/() = /\[ X() = X
Nn+1 = fh[Nn] X1 = hf[X,].

see Diagram 1G.1. An easy induction shows that
N 2 f[Xa] 2 N1,
Xy 2 W[N] 2 Xy,
so that
N=No2 fIM] 2N D 4] DN D f[Aa] 2.
X=X 2 fINM]2X 2 fIM] 24 2 f[N2] 2 -
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Put also
N =N X =,
and notice that
X =, X 2N, AN 2 N, X1 = X7,
and since / is an injection,
hIN™] = k[N, Nul = N, hINa] = X~
Thus & gives a bijection on A* with X*. On the other hand,

N =WNo = fIX%D U (f[X%] —M)UW — fTIAD U (fTX]—N2) U--- UN®

X = (X — h[NoD) U (h[No] — X1) U (X1 — M) U (NI ] = ) U - - U X

where the sets in these unions are disjoint. Moreover, 4 is a bijection of NV, \ f[X;]
with A[N,] \ X,1. since A is an injection and f[X,] C N, so that

h [Nn \f[Xnﬂ = h[Nn] \ hf[Xn] = h[-/\/;’l] \ XnJrl,

and similarly, f is a bijection of X, \ h[X,] with f[X,]\ NV.11. So we have a bijection
of N with X,

(@) = h(a) ifa e N*ora € N, \ f[X,] for some n.
sl = fHa) ifad¢ N*and a € f[X,]\ N, for some n.

It remains to verify that g is Borel.

Recall that good Borel injections map Borel sets onto Borel sets. This implies
that all the sets NV,, X, are Borel, hence N'*, X* and all the differences NV, \ f[X,].
SIX,1\ Nyy1 are Borel. From this it follows immediately that g is Borel. -

Exercises

Let us start with a very simple representation of Borel sets which comes out of 1G.2.

1G.5. Prove that every Borel set is the continuous, injective image of a closed set
of irrationals; i.e., if P C X is Borel, then there exists a continuous 7 : N’ — X and a
closed B C N such that  is one-to-one on B and n[B] = P.

HINT. Let C be the class of all P C X which are continuous, injective images of
some closed B C N.

Every closed P isin C: justlet 7 : NV —» X, let 4 be as in 1G.2 and take B =
n~![P]N A. If P is open, then the same B is the intersection of a closed and an open
set, which makes it [[g; we can now use the trick in the proof of 1G.2 to replace it by
a closed set.

For each finite sequence k. ..., k,_1, let

N(ko,...,k”_l) = {a . 04(0) = ko,...,a(l’l — 1) = kn—l}-

Each N (ko, . ...k,_1) is trivially homeomorphic with V.
Suppose P = | J, P,. each P, € C. and

n#m=—P,NP, =0
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We may assume then that there are closed sets B, C N(n) and continuous maps
7, : N(n) — X such that z,[B,] = P, and &, is injective on B,. Take

B ={a:a* e By}

with o* = (1 — a(t + 1)) and n(a) = 7, (a*).
Suppose P = (), P, with B,. 7, again as above. Let (a); be defined as in 1E and
put

Clearly B is closed. Let
n(a) = mo((@)o)
and verify that 7 is one-to-one on B and n[B] = (), P,.
Now let D be the class of all P C X such that both P and X'\ P are in C. We have
shown that D contains the open sets, and it is certainly closed under complementation.
If each P, € D, then ), P, € C. as above, and if we let 0, = &'\ P, then

X\, P =U, 0 =U, (2 \Us, @) €c.

since the sets 0, \ U, Qi are in C and pairwise disjoint: thus (", P, € D.
Finally, since D contains the closed subsets of X and it is closed under complemen-
tation and countable intersection, it contains all the Borel sets. -

We will prove in 2E.7 and 2E.8 that this is actually a characterization of the Borel
sets, 1.e., every continuous injective image of a closed set is Borel. In 4A.7 we will also
give a very different proof of this result.

By our basic definition, a function f : X — Y is £2-measurable if /~'[P] is in
;2 for each open P C Y. Clearly, the L{-measurable functions are precisely the
continuous functions.

1G.6. Supposethat f : X — V. g:Y — Zand h : X — Z is the composition of
S and g,
h(x) =(go f)(x) =g(f(x)).
Prove that if one of the two given functions is continuous and the other is );2-
measurable, then 4 is );g-measurable.

HINT. For the case when g is continuous, use the closure of ;2 under continuous

substitution. =
1G.7. Prove thatif f : X — Y is gg-measurable and Pis a );2 subset of ), then
—1 )

Pl EY,,.

HinT. Use induction on #; notice that & 4 # denotes the ordinal sum of & and # so
that

supremum{¢ +#; : i =0,1,...} =&+ supremum{y; : i =0,1,...}. o

1G.8. Prove thatif / : X — Yis )Qg-measurable andg:Y — Zis gg-measurable,
then the compositiongo f : X — Z,
(go f)x)=g(f(x))

isX% -measurable.
~ S+77
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With each function
f:X =N
we associate the “unfolding” function
ff1XxXx0w—w
defined by
f(eon) = f(x)(n).

1G.9. Prove that for each X and each countable &, f : X — AN is gg-measurable if

and only if the associated function f* : X x w — w is gg-measurable.

1G.10. Prove that for each perfect product space X there is a £5-measurable sur-
jection
f:X >N
of X onto Baire space.
HINT. Let o be the function on binary sequences associated with X in 1A.2 and put

P(x,n,w) S \/u[u = (Z(),Zl,...,l‘(n%w))&l(n‘w) =0&x € N(X,O’(u))]
V /\u /\k[(u = (19, .. '»t(n,k))&l@,k) = O) = x ¢ N(X,a(u))]

Clearly P is £ and for each x, n there is some w such that P(x,n,w). Consider P
as a subset of (¥ x @) x w and choose a ;g set P* which uniformizes P by 1C.6.
Now P* is the graph of a £}-measurable function f/* : X X w — o, so the associated
f:X - N,

f(x)=n—f"(x.n)

is also £9-measurable. To show that /" is onto AV, given « let

0 ifs = (n, a(n)) for some n,
Bls) = <. (n))
1 otherwise

and take x = n(f8), where 7 is the canonical injection of C into X defined in 1A.3. It
is easy to check that f(x) = a. -

1G.11. Prove that for each countable £ and each perfect product space ), );2 is

Y-parametrized. Infer that for each countable £ and each perfect X ,“S)
ASTXCELT X CAL, A
HiNT. By induction on &. For limit & use 1F.6, 1G.7 and 1G.10, and for £ =5 + 1
use the fact that £, .| = 3II, which follows from 1E.7. 8
1G.11 also yields an alternative characterization of X | sets which is worth pointing
out.

1G.12. Suppose X is perfect and P C Y. Prove that P is £} if and only if there is a
X9-measurable f : X — Y such that P = f[X]. Similarly, P is £} if and only if P is
the projection of some 19 subset Q of ) x X.

In particular, every X! set of reals is the projection of a G; set in the plane.

HinT. For the first assertion use 1G.10 and 1E.6. For the second assertion, let
C C Y x N be closed with projection P, let f : X — N be E5-measurable and take

0={rx):Crs)}. |
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1G.13. Prove that the function f which we defined in the proof of 1G.2 is actually
X9-measurable.

1G.14. Prove that for each perfect product space X’ there is a bijection
[N —>X

such that both / and its inverse are £ . | -measurable.

1G.15. Prove that a function f : X — ) is Borel measurable if and only if it is
L?-measurable for some countable ordinal £.

1G.16. Prove that for each perfect product space X, for each product pace ) and for
each countable ordinal &, there exists a function f : X — ) which is gg-measurable

but is not )-measurable for any 5 < .10

HINT. Choose a subset P of X which is A? but not £} for any 7 < &, let yo and
be distinct points in Y and take

oy )y ifxeP
f(x)_{yl ifx¢P. =

A function f : X — Y is of Baire class 0 if it is continuous; it is of Baire class 1 if it
is not continuous but it is £)-measurable. Proceeding inductively, for each countable
ordinal ¢ > 2, a function f : X — ) is of Baire class & if it is not of Baire class y < ¢
and there exists a sequence [, f1.... such that each f, is of Baire class < ¢ and

f =1lim,_o fn (pointwise),
1e., foreach x € X,
f(x) =lim,_oo fn(x).

1G.17. Prove that if f : X — Y is of Baire class &, then f is };gﬂ-measurable.(lo)

HinT. Useinduction on &, taking cases on whether £ is a successor or a limit ordinal.
The key equivalence is the following, where f = lim,,_,, f, and the typical open ball
P is written as a countable union of closed balls with the same center,

P = U,‘ Fi;
f(x)e P = (V)VIA, ) 2(x) € F]. 5

We first establish the converse of this elegant characterization in the simple cases
when YV is w or N.
1G.18. Prove thatif /' : X — w is ggﬂ-measurable, then f is of Baire class < &.

HiNT. Useinduction on &. Given some ;2 . 1-measurable function f with{+1 > 3,
we clearly have
f(x) =W < \/n /\m[x € Pymuwl
where each Py, is £)) for some 7; < &. Put

gs(x) = the least 7 such that (Vm < s)[x € P(;), (1), ]-
fs(x) = (gs(x)),

and verify easily that /' = lim,_,, ;. Now each f is easily );2 ,1-measurable for

some 77 < £, so by induction hypothesis, each f; is of Baire class < &; hence f is of
Baire class < &. -
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1G.19. Prove thatif f : X — N is §2+1-measurable then f is of Baire class < £.

HiNT. Use 1G.9 above and the corresponding result for functions of Baire class &.
1G.20. Prove thatif / : X — Y is £?, -measurable then f is of Baire class < &.(1%)
HiNnT. Put
P(x.n.i) < d(f(x).r;) <271
where rg, ry.... 1s the fixed dense set in ) and notice that P is a ;2 41 subset of

(X x w) x w. By 1E.8, choose P* to uniformize P, P* also in §2+1 and notice that
P* is the graph of a function g* : X x w — w. Put

glx)=nw g*(x.n).
so that both g and g* are £ ,-measurable, and check that

~eql
f(x) =n(g(x)).

where 7 is the canonical continuous surjection of A on ) defined in 1A.1. Finally,

verify that the collection of functions of Baire class < & is closed under composition

with continuous functions and apply 1G.19. -

If ¥ = N or Y =R, we can extend this characterization of ;2 H-measurability to

;g. We only state here the result for the case X = N, since it can be established easily
by the methods we have been using.

1G.21. Prove that a function f : N — ) is £9-measurable if and only if there is a

sequence [, /1. ... of continuous functions on A to . such that /' = lim, . /.19
HinT. Use the method of 1G.18, together with the fact that every closed subset of
N x w is a countable intersection of clopen sets. -

1H. Historical and other remarks

IThe early papers in descriptive set theory were all concerned with sets and functions
in real n-space. It was quickly recognized, however, that most results generalized easily
at least to Polish spaces, and soon two tendencies developed: one was to stick with
the reals or the irrationals and prove the strongest possible results, the other to aim
for the widest context in which the basic facts can be established.

2Lusin works in the irrationals in his classic [1930b] and Sierpinski [1950] gives a
brief exposition of the theory for the reals. Among the general books in set theory and
topology which cover descriptive set theory, the three best references are Hausdorff
[1957], Sierpinski [1956] and Kuratowski [1966]. Kuratowski’s book is by far the most
comprehensive of the three and serves as the standard reference for the classical theory.

3In this book we are mostly interested in the theory of definable sets of real numbers.
To study this, however, we must consider the irrationals and finite products of copies
of R, M and w:; as it happens, it is no harder and a bit neater to develop the theory for
finite products of perfect Polish spaces and copies of .

“There is no real restriction in taking the basic spaces perfect, since every Polish
space X is a closed subset of the perfect Polish space X x N and results about X can
be easily read off the results about X x A/. On the other hand, there are some definite
technical advantages to our convention, particularly in the effective theory which we
will study starting with Chapter 3.
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>We should point out that a large part of the theory can be developed in a very general
context, in fact many of the basic results have been extended recently to nonseparable
and even nonmetrizable spaces.These extensions are important and significant for the
applications of descriptive set theory to set-theoretic topology. functional analysis and
potential theory. The interested reader should consult Christensen [1974], Hoffmann-
Jorgensen [1970] and the further references given there.

%In citing classical references, we will not always specify the context in which the
results were first proved or give credit for the subsequent generalizations, unless these
involved genuinely new ideas.

7As we mentioned in the introduction, the earliest notions of descriptive set the-
ory were Baire classes of functions on R" to R, defined in Baire [1899] and studied
extensively in Lebesgue [1905].

8Lebesgue [1905] also introduced the class of Borel measurable sets and defined the
first hierarchy on B. According to Lebesgue, a set P C R” is open of class & if there is
a function f : R” — R of Baire class ¢ and an interval (a, b) in the line, such that

P=f"Yab)={x:a< f(x)<b}

a set is closed of class & if its complement is open of class & and a set is of row ¢ if it
can be written as a countable intersection of sets which are closed of class < & and is
not itself of class < &. Lebesgue then proved (in our notation) that

0

Pisopenofclass <¢ <= PisX:,,

for limit &, Pisof row < ¢ <= Pis [l?

?0Our own approach of taking the classes ;2 and 1:[2 as the basic notions traces back
to Hausdorff [1919]. We mention the Lebesgue definitions here because they were
often used in early papers, through the 1920’s. Another notion often taken as basic is
that of set of Baire-de la Vallee- Poussin class < &, ég .1 setin our terminology.

10T ebesgue [1905] defined the general notion of A-measurability and established
that the Baire functions coincide with the Borel measurable functions, as well as the
step-by-step characterization of 1G.17, 1G.20 and 1G.21 with X = R", Y = R. The
more general result about arbitrary Polish spaces is due to Banach [1931]. It appears
that the hints to these exercises outline a new proof of Banach’s result—whether new
or not, it is a simple proof which illustrates the value of having the trivial space w
available as a factor in our product spaces.

" Analytic (£1) sets were introduced in Suslin [1917]. Suslin’s definition was in
terms of the operation & which we will study in the next chapter, but he characterized
the analytic sets in R as precisely the projections of Borel (or Gs) sets in the plane. He
also proved the key result that there are analytic sets which are not Borel measurable,
as well as all the simple closure properties of analytic sets, including closure under
projection. In a companion note, Lusin [1917] (essentially) characterized X! sets of
reals as the images of R by );.g-measurable functions (1G.12) and proved that every
Borel set is the continuous, injective image of a closed set of irrationals (1G.5).

12 projective sets were introduced by Lusin [1925a], [1925b], [1925¢] and (apparently
independently) by Sierpinski [1925]. The main result in both these papers is the
hierarchy property for the Lusin pointclasses on the reals. Somewhat later, Sierpinski
[1928] showed the closure of these classes under countable unions and intersections.

3The finite Borel pointclasses were not studied separately from the transfinite ones
in the classical theory, so it was not noticed that they can be defined using projection
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on w in a manner analogous to the definition of projective classes. Our approach here
derives from the work of the recursion theorists, Kleene [1943] and Mostowski [1946].

14 Another major difference between the approach to the subject in the early papers
and the present theory is our heavy use of the operations of logic both in stating and
in establishing the closure properties of the various pointclasses. A good many of
the quantifier rules and logical transformations which we used in 1C and 1E were
first applied in the fundamental papers Kuratowski and Tarski [1931] and Kuratowski
[1931], where the connection between descriptive set theory and logic was first noticed.
The use of codings of finite sequences and continuous substitutions to prove closure
properties is essentially due to Kleene.

15 Universal sets were introduced by Lusin [1925d], who credits them to Lebesgue
[1905]. The reference is not entirely accurate, as Lebesgue had what we called in 1D
parametrizations (on collections of functions) rather than universal sets, although he
certainly initiated the use of the diagonal method to prove hierarchy results. Many
papers were written on universal sets, proving their existence for various pointclasses
in diverse spaces or constructing specific universal sets which appeared somehow to
be “natural.” On the other hand, the simple construction in 1D.1 and its Corollar-
ies 1D.2, 1E.3 and 1G.11 seem to have been missed—the strongest result mentioned
in Kuratowski [1966] is that the Borel and Lusin pointclasses are A/-parametrized.
Sierpinski [1950] has a general hierarchy lemma, very similar to our 1D.3.

161t is not entirely clear who introduced first the notion of separation for sets,
probably Lusin. The separability of disjoint [[2 sets by a ég set was apparently
first proved in Sierpinski [1924] and independently by Lavrentieff [1925]. Kuratowski
[1936] defined the reduction property and showed that ;‘.2 sets can be reduced by );2
sets.

"The more fundamental uniformization property was introduced in Lusin [1930a].
Lusin established there some difficult uniformization theorems and introduced the
difficult problem of uniformization of I} sets. Of course, the question of uniformizing
subsets of X' x w was not considered in the classical theory, since they never studied
the trivial space w. It comes up naturally in the effective theory and we will come
back to it in the sequel. Notice how useful the trivial 1E.8 is in proving 1F.9, 1G.10
and 1G.20.

8There is a large number of transfer theorems like our 1G.2 and 1G.4 some of them
stronger than the simple ones we have established. Kuratowski [1966] is an excellent
source for results of this kind and for references to the original sources.

PFinally, a word about the “logical” notation of the £’s, IT’s and A’s which we
have adopted for the Borel and the projective pointclasses. This was introduced by
Addison [1959a] and Shoenfield [1961] and was quickly accepted by the logicians,
though not by all the topologists and set theorists who were working in descriptive set
theory. No other comprehensive system of notation has gained wide acceptance and
it seems that all the reasons given by Addison [1959a] for adopting this one are still
valid today.



CHAPTER 2

k-SUSLIN AND /-BOREL

One of the chief motivations for studying projective sets is that we can settle for them
many questions which seem intractable for arbitrary sets. The hierarchy of the Lusin
pointclasses is important because it is often the case that a simple observation about
open sets turns into a deep theorem about X! sets, an elegant generalization about £}
sets and a very difficult problem about £} or ! sets.

For example, consider the central question of set theory, the continuum problem:
must each uncountable pointset be equinumerous with R? Godel and Cohen have
shown that both answers are consistent with the currently accepted axioms of set the-
ory, but it is still open whether the question may be settled on the basis of generally
acceptable properties of sets. In any case, we can try to settle it for specific point-
classes, preferably large pointclasses that contain most sets encountered in traditional
mathematics.

One of the first important results of descriptive set theory was that every uncountable
X! set is equinumerous with R. More recently, this has been extended by Solovay and
Mansfield to £! and X! sets respectively, granting some strong set theoretic axioms
that are unprovable in Zermelo-Fraenkel set theory. The situation is a bit murkier for
the higher Lusin pointclasses, but there are (very strong) plausible hypotheses which
imply that every uncountable projective set is equinumerous with R.

The same situation occurs with several other regularity properties of sets. For
example, every X1 set is absolutely measurable and has the property of Baire. There
are again suitable generalizations of these results to higher Lusin pointclasses, if we
assume strong set theoretic hypotheses.

The central classical result of the theory is Suslin’s Theorem: every Al set is Borel.
More than a regularity property, this is a construction principle, since it yields a reduc-
tion of the complicated projection operator (in this simple instance) to an iteration of
the more elementary operations of countable union and complementation. A some-
what weaker construction principle is Sierpinski’s Theorem that every £} set is the
union of N; Borel sets.

In this chapter we will establish some of the basic classical structure results about
X! and X! pointsets.

Actually we will work with the wider classes of x-Suslin sets, where & is any in-
finite cardinal number—this will ease extension of this theorem to the higher Lusin
pointclasses. The X} sets are precisely the Ro-Suslin sets and every X set is X;-Suslin.

49
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2A. The Cantor-Bendixson Theorem

For any set 4, let
card(A4) = the cardinal number of A4.
By 1G.4, every perfect Polish space 9t is equinumerous with A/, hence
card(9M) = card(W\) = 2™,

A pointset P C I is perfect if it is closed and has no isolated points—so that if
P +# (), then P is a perfect Polish subspace of 9t and again card(P) = 2%. (We will
often say “perfect” to mean “perfect, non-empty”, when the non-triviality condition
is clear from the context.)

The next result settles the continuum problem for closed sets.

2A.1. THE CANTOR-BENDIXSON THEOREM. If A is a closed pointset, then
A=PUS

where P is perfect, S is countable and P NS = (. Moreover, there is only one such
decomposition of A into two disjoint sets, one perfect the other countable.

PROOF. A point x is a condensation point of A if every nbhd of x intersects 4 in an
uncountable set. Put

P = {x : x is a condensation point of 4},
S=A4\P

Since condensation points are clearly limit points and A is closed, we have P C A4, and
by definition PNS =0, 4 =PUS.

We will show that S is countable, P is perfect and if A = P’ U S’ with P’ perfect, S’
countable and P’ NS’ =, then P' =P, S' = S.

To each y € S we can assign some basic nbhd N such that N7 N 4 is countable.
Since there are only countably many basic nbhds altogether, there is a countable
sequence N, N!, ... such that

S CUico(N'N4)

with each N N A countable, so S is countable.

To prove that P is closed, let x be a limit point of P, N any nbhd of x. Then some
x" € NN P,so N is also a nbhd of x’ and it contains uncountably many points of 4;
hence x € P. To prove P perfect, if x € P, then every nbhd of x contains uncountably
many points of 4 of which only countably many can be in S—hence at least two are
in P.

Finally, assume that 4 = P’ U S’ with P/, S" as above. If x € P’ and N is any nbhd
of x. choose some nbhd N; of x with N; C N and check that N; N P’ is a perfect
subset of NN P’ C N N P’ so NN P isuncountable and hence x € P; this proves
P’ C P. On the other hand, if y € S’, then there is some nbhd N of y such that
N NP =0, since P’ is closed; hence NN 4 =N NS’ ie., NN Aiscountable and
yes. -

In this canonical decomposition

icw

A=PUS

of a closed pointset, we call P the (perfect) kernel and S the scattered part of A.
It is worth putting down explicitly the corollary about the size of closed sets.
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2A.2. COROLLARY. Every uncountable closed pointset contains a non-empty perfect
subset and hence has cardinality 2% —

We can think of the Cantor-Bendixson Theorem as a construction principle, since
it gives us a method of building up the closed sets from the apparently simpler perfect
sets and countable sets.

Exercises

2A.3. A point x is an isolated point of the pointset 4 if x € 4 and x is not a limit
point of A. Prove that a pointset has at most countably many isolated points.

2A.4. Define the derivative A’ of a pointset A by
A" = {x € A : x is a limit point of 4}.
For fixed closed 4. define by transfinite recursion the sets
Ay = A,
Aepr = (4e).
A; = ﬂg*<,z A if A is a limit ordinal.
Prove that cAe=4; for a countable ordinal /, that 4; is perfect (perhaps empty),

and that 4 \ A4, is countable. (This is an alternative proof of the Cantor-Bendixson
Theorem.)

2B. k-Suslin sets

Let x be an infinite cardinal number. A pointset P C X is s-Suslin if there is a
closed set C C X x “k such that

P = pC = the projection of C along “x,

i.e.,
xe€P «— (3f €?k)(x. f)eC.

Here we naturally topologize ®« with the product topology, taking x discrete, the
typical nbhds being determined by finite sequences from &,

N(o.....&) ={f €k : f(0) =&..... f(n) =&}

This makes “k into a metric space which is perfect but of course not separable if
k > Ro. The set of ultimately constant f* € “k is dense and has cardinality .

It is immediate from the definitions that the £! pointsets are precisely the Ro-Suslin
or simply Suslin sets. Many of their properties can be proved just as easily for x-Suslin
sets with k > Xy and there are applications of these more general results.

In this section we will establish the elementary properties of x-Suslin sets, start-
ing with the equivalence of the definition above with two very useful and seemingly
unrelated conditions.(">

Let us take up first the representation of x-Suslin sets in terms of a pointset opera-
tion. A k-Suslin system is a mapping

uw— P,
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FIGURE 2B.1. The operation &

which assigns to each finite sequence u = (&.....¢,—1) from & a subset P, of some
fixed product space X'. The operation & * is defined on such systems by

S Py :Ufmnpf[n’
where f varies over “x (cf. Figure 2B.1). Thus
X € .S?/fpu <— \/f /\n[X € Pf[”].

It turns out that the k-Suslin pointsets are precisely the sets of the form &/, P,,, where
each P, is closed. This is easy enough to prove directly, but we might as well take up
the third condition we will need and prove the equivalence of all three round-robin
style.

A norm on a pointset P is any function

@ : P — Ordinals

which assigns an ordinal number ¢(x) to every x € P. If for every x € P we have
o(x) < A, we call ¢ a A-norm.
A semiscale on P is a sequence

Y= {Son}nEw

of norms on P such that the following limit condition holds: if x¢, x1, x2,... are in P
and lim; _, o, x; = x and if for each n the sequence of ordinals

on(x0), u(x1). on(x2). ...

is ultimately constant, then x € P.
We call g = {¢, }new @ A-semiscale if every norm ¢, is a A-norm.
A k-Suslin system u +— P, is regular if the following conditions hold:
(i) Each P, is the closure N, of some basic nbhd. perhaps N; = ().
(ii) If the sequence u is an initial segment of the sequence v, then P, D P,.

(iii) Ifu = (&.....&,_1) is a sequence of length n and P, = Ny, then radius(Ny) <
27n+1'
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2B.1. THEOREM. For every infinite cardinal k and every pointset P C X, the following
conditions are equivalent.

(i) P is k-Suslin, i.e.,
P=pC={x:(3f €’k)C(x. f)}
with a closed C C X x k.
(ii) P admits a k-semiscale.
(ili) P = &P, where the k-Suslin system u — P, is regular.
(iv) P = &/F P, with a k-Suslin system u — P, where each P, is closed.1-%)
ProoF. (i)==(ii). For each x € P, choose some f, € “x such that (x, f) € C
and put
QD,,(X) = fx(n)'
To prove that the sequence @ = {©, }ncew Of k-norms on P is a semiscale, assume that
X0, X1, ... are in P, that lim; _, ., x; = x and that for each n and all large i,

on(xi) = fr,(n) =&,
Let
f(n) =¢&,.
Clearly
lim; oo (x7. fr,) = (x. f)
and since for each 7, (x;, f'y,) € C and C is closed, we have (x, ) € C,ie.. x € P.
(il)==(iii). Let ® = {®, }ncw be a k-semiscale on P. Choose a bijection

MK OXEK
of k with all pairs of integers and ordinals below «,
(&) = (m(&). m(&)).

For convenience in notation let
N(s) = N,

be the s’th basic nbhd of the space X in which P lies.
Define now

Py oo )= {x :N(m(&)) 2N (m1(&1) 2+ 2N (m (&)
&fori=0.....n— 1,radius(N(n1(fi))> <27
&for some y € N (m1(&,—1)).y € P and

wo(y) = m(&).o1(y) = m2(&1). -+ o1 (¥) = ma(&uy)
&xeN(m&)}

sothat P, . ) iseither ) or N (m;(&,—1)) and the system u — P, is clearly regular.
We will show that
P =P,

Suppose first that x € P. Choose closures of nbhds N (sg) 2 N(s;) D - -- of x such
that radius(N (s,-)) < 271 and for each i let & be the ordinal below x such that

ﬁl(fz‘) =S, 712(51‘) :Soi(x)~

We obviously have x € P . ) foreveryn,sox € &FP,.
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Conversely, assume that there is a sequence &y, &, ... of ordinals such that x €
., for every n. By the definition then,

N(m(&)) 2N (m(&) 2.

x € N(m1(&,—1)) for each n, the radius of N (7(&,—)) shrinks to 0 as n — oo and for
every n we have some y, € N (m(&,—1)) such that po(yy) = o.....@u—1(yu) = Euer.
In particular, lim, ., ¥, = x and for n > i, ¢;(y,) = &;. so by the basic property of
the semiscale we have x € P.

(iii) = (v) is trivial.
(iv)==(i). Assume P = & P, with each P, closed and put
Clx.f) < NA,x€Prpl

[N

Clearly C is closed and
x €pC <= 3f)C(x. [f)
< (3f)(Vn)[x € Psp]
< x€eP -

Suslin’s original definition of analytic sets was via the operation & ,
o =N
and the essential content of the equivalences (i) <= (iii) <= (iv) was already
announced in the basic papers Suslin [1917], Lusin [1917].
Let S(k) = S, be the pointclass of all k-Suslin sets, so in particular
S(R) = Zi.

2B.2. THEOREM. For each cardinal k > Xy, the pointclass S, is closed under Borel
substitution, 3 for every product space Y. countable conjunction, N?. disjunction of
length k. \/", and the operation /.

Moreover, if .. < k, then S; C Sy: in particular every £} pointset is k-Suslin.

Proor. Closure of S, under continuous substitution is immediate, so we can use it
in the arguments below.
To prove closure under IV, suppose C C X x N x “k is closed and

P(x.a) <= (3f)C(x.a. f).
so that
(Fa)P(x,a) <= (Fa)3f)C(x.0. f).
Let
n(&) = (m(&). m(8))
be a bijection of xk with w X « as in the proof of 2B.1 and notice that the mapping
p(g) = (g1.82)

where

gi(n) = 711(8(”)),

g(n) = 712(8(”)),
is a homeomorphism of ?k with “w x “k = N x k. Thus if we define

C*(x.g) <= C(x.g1.£2).
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the set C* isclosed in X x “x and
(Fa)P(x.a) < (Fg)C*(x.g).

so 3V P is k-Suslin.

We can now prove closure of S, under 3” using closure under 3V and the fact that
every ) is a continuous image of AV.

If P: = pCe for each ¢ < &, put

Clx.f) <= Crpx. f7).
where by definition
f(n) = f(n+1).
Clearly C is closed and
Vicw Pe(x) = V., (3f)Ce(x. f)
= (V,)Cro(x. f*)
= (3f)C(x. f).

hence \/? P; is k-Suslin.
Similarly, if P,, = pC,, for each m € w, put

Clx. f) <= Ny Cunlx. fm).
where
fm(n) = f((m.n))
and notice that C is closed and
Ao P(x) = N\, (3f)Cin(x. f)
= 3f)N\, Cn(x. fn)
= (31)C(x. f).

so that A} P,, is k-Suslin.
To prove closure of S, under the operation &*, suppose u — P, is a k-Suslin system
where for each u,

P,(x) <= (3g)Cu(x.g).
with C, closed. Then
x € Py = (V,)(\)Prin(x)
= (V,)A)Eg)Crralx. g)
= (V,)32)A,)Crnlx. gn)

where (as above) g, (m) = g({n, m)). Now the set
Clx.f.g) <= N, Crin(x.gn)
is obviously closed in X X “k x “k, and
x €47 P, = (3f)(3Fg)C(x. f.g).

We can easily find a closed C* in & x “k, such that &P, = pC* using the obvious
fact that “k x “k is homeomorphic with “«.

If 2 < k, then every A-semiscale on a pointset P is also a k-semiscale. Hence every
A-Suslin set is k-Suslin.
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Closure under Borel substitution follows immediately, since if /' : X — ) is Borel
and P = &/F P, with each P, closed, then
STIPY =5 7P
with each f~![P,] Borel, hence x-Suslin. Thus f~!'[P] is k-Suslin by closure un-
der &/%. -

Since every perfect product space is Borel isomorphic with A/, the closure of S,
under Borel substitution reduces the study of this pointclass to the study of xk-Suslin
sets of irrationals. This is often a useful reduction, especially because of a simple
characterization of such sets in terms of rees which we will establish in the next
section.

Exercises

2B.3. Suppose u — P, is a k-Suslin system such that

(i) if u is an initial segment of v, then P, D P,.
(ii) if u. v are distinct sequences of the same length 7, then

P,NP,=0.
Prove that

Hivt If x € N, U, e, P
sequence u of length n such that x € P, and by (i) there is some f € “k so that this
u=f1n. -

)- then by (ii). for each n there is exactly one

.
----- En—1

2B.4. Suppose & is a cardinal of cofinality > w, i.e., if &), &;, ... are all < k, then
supremum{¢&, : n = 0,1,2,...} < k. Prove that a pointset P C X is x-Suslin if and
only if

P = Ué<n Pi=
where each P; is A-Suslin for some cardinal 1 < x (Martin [1971]).
HiNT. Suppose
P(x) = (3f €“6)C(x. f)
with C closed and for each & < &, put
Pe(x) <= (3f €“E)C(x. f).

Clearly P = | ., Pe. using cf(k) > w. On the other hand, letting 2 = card(¢) and
7 : A & any bijection, the set

Ce(x, f) < C(x,n — n(f(n)))
is obviously closed in & x “4 and Pz = pC¢, so that P is A-Suslin. =
Despite this result, it is often useful to consider x-Suslin sets with « of cofinality > w.

2B.5. Prove that if n > 2, then the pointclasses L., IT}, A} are all closed under the
operation & = & (Kantorovitch and Livenson [1932]).(®)
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FiGURE 2C.1. A tree.

HINT. It is easy to check that if each P, is £}, then &/, P, is £} (n > 2). Assume
that each P, is I},
P,(x) <= (Va)Qu(x.a)  (QuinX,_.n>2)
and let
Px) = #Py(x) = (V,)(A)(Va) O (x. )
so that
P) = AV, (Ea) Qg (x.a).

Now, only countably many «’s are needed to verify the right hand side for any particular
x (at most one for each finite sequence 8 | ), and hence

—P(x) <= (3a)(Ap(V,)(Em)= Oy (x. (@)m).

From this the result follows easily, by verifying that the relation

O'(x.a.p.t.m) <= —=Qpy(x.(a)m)
is 1! .

~n—1"

2C. Trees and the Perfect Set Theorem

The main result of this section is that the continuum hypothesis holds for £} sets—in
fact every uncountable X! set has a non-empty perfect subset.

For our purposes, a tree on a (non-empty) set X is a set 7" of finite sequences of
members of X such that if u € T and v is an initial segment of u, thenv € T'.

We often call the members of T nodes or finite paths. By definition, the empty
sequence () is a node of every non-empty tree—we call it the root. The terminology is
motivated by the standard picture of a tree, see Figure 2C.1.

A function f* € ®X is an infinite branch (or path) of a tree T . if for every n,

fin=(f0)....f(a-1)eT.
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We let
[T]={f € “X : f is an infinite branch of T'}
be the body of T, the subset of ®X naturally associated with 7.
We are particularly interested in trees of pairs, where we take
X=wXkK
with some infinite cardinal x. There is an obvious bijection of ®(w x k) with “w x “k
=N x “k which sends g € “(w x k) to (a, /'), where

() g(n) = (aln). /(n)).

Let us agree that when 7 is a tree on w X k for some «, then we will take the body of
T to be the obvious subset of N x “k,

[T] = {(a,f) - for all , ((a(O),f(O)),..., (aln—1). f(n— 1))) c T}.

One could raise a pedantic objection to this ambiguous use of the symbol [T], but it
will cause no problems. It will always be clear from the context when we consider 7'
to be a tree of pairs.

We will simplify notation further by denoting an arbitrary sequence

((t(]a 50)9 ce (tl’lfla fnfl))
inw X k by
(ZO: 505 e tnfl-, 5n71>
There is no point to putting down all these parentheses. Thus if 7" is a tree on w X k,
[T] = {(a. f) :foralln, (a(0). f(0).....a(n—1). f(n—1)) € T}.
2C.1. THEOREM. For each non-empty set X, put the product topology on “X, taking
X discrete; then a set C C “X is closed if and only if there is a tree T on X such that C
is the body of T,
C =I[T].
Similarly, for each cardinal & > Ry, a set C C N x ®k is closed if and only if there is a
tree T of pairs on @ X k such that
=[T]={(a. f) :foralln, (a(0). f(0).....an—1). f(n—1)) € T}:
hence a set of irrationals
PCN

is k-Suslin if and only if there is tree T on w X k such that

P=p[T]={a:(3f)(Vn)[(a(0). f(0).....a(n—1). f(n—1)) € T]}.
ProoE It is enough to prove the first assertion, from which the second follows
immediately, by the definition of x-Suslin sets and the obvious fact that the map
g — (a. 1) defined by (*) above is a homeomorphism of ®(w x k) with N X k.
Suppose T is a tree on X and f ¢ [T]; then for some n,

(fO).....f(n=1)) ¢ T.
so that the basic nbhd {g : g(0) = f(O), ....gn—=1) = f(n—1)} of “X is disjoint
from [T'] and hence the complement of [7] is open.
Conversely, if C C “X is closed, put

T = {( ....,f(n—l) feC}
clearly C C[T]and C isdensein [T], so C = [T]. —|
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FiGure 2C.2. The truncation of a tree.

Two finite sequences # and v from X are compatible if they have a common exten-
sion—i.e., if there is some w such that both u and v are initial segments of w. This
simply means that either # = v or one of u and v is an initial segment of the other.

For each tree T on X and each finite sequence u from X, let (cf. Figure 2C.2)

T, = {v € T : v is compatible with u}.

Evidently T, is always a tree, the result of pruning all the side branches of 7" below u.
In particular,

Ty=T
Notice that if u = (xo.....x,_1) is a sequence of length 7, then
[T ]=[TIN{f €“X: f [n=u}
= UXGX[TuA(x)]’

where of course for each x € X,

u(x) = (x0.....x0—1) " (x) = (x0,....%p—1.X).

In connection with projections of trees of pairs, notice that if

u=(t0.%o, . tn—1.%n—1)

is a finite sequence from w x &, then

[T.] = Uz<w.g’<n[TuA(z,5)]"
so that
p[Tu] = Ut<w.é<m p[Tu’\(z.i)]'

We could prove the next result by an adaptation of the topological argument we
used to establish the Cantor-Bendixson Theorem 2A.1. It will be more informative,
however, to extend the argument of 2A.4. The use of trees is not essential in this
instance, but they do make the proof neater.

2C.2. THE PErRFECT SET THEOREM (Suslin, Mansfield). Let  be an infinite cardinal
and assume that P is a k-Suslin pointset with more than k elements. Then P has a
non-empty perfect subset.’)
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PrOOF. Suppose we know the result for every subset of A and P is a k-Suslin subset
of some perfect product space X'. Let

7N —» X

be the continuous surjection of N onto X guaranteed by 1G.2 and such that for some
I1Y set A C N, m is one-to-one on 4 and n[4] = X. Take P’ = n~'[P]N A. Now
P’ is a k-Suslin subset of A/ with more than & elements, so it has a perfect subset Q.
This Q must contain a non-empty perfect compact set Qp—to see this apply 1A.3 with
M = O, considered as a subspace of . Hence n[Qy] is a perfect subset of P, since
the continuous one-to-one image of a perfect compact set is easily perfect.
To establish the result for subsets of A, let P C N be k-Suslin and choose a tree T
on w X & such that
P=p[T]1={a:(3f €r)le. f) €[T]}.
Define by transfinite recursion the sets 7¢ C T,
T° =T
T = {u e T¢ : p[T¢] has more than one (irrational) element}.
T" =, T¢.  if Zisalimit ordinal.
It is immediate that each T¢ is a tree and
n<&=T"DTE.

There are at most x nodes in T, so there must be some ordinal A of cardinality x
(A < k™) such that

T2+1 — T)..
Choose the least such 4 and put
S=T"
The heart of the proof is the following simple lemma about S..

LemMA. S # 0.

ProOOF. Assume S = (), towards a contradiction.
For each o € P = p[T] choose f € “k so that (o, ) € [T] and notice that there
must exist some & < 4 such that

(. /) € [TIN[T']:
this is because (c.. f) & [T*] and for limit {,
(. ) € [T, ally < = (a. f) €[T°].
It follows that for some n,
u=(a(0). £(0).a(l). f(1).....aln = 1). f(n = 1) ¢ TS,
i.e., by definition
p[Tf ] has at most one element.

Thus we have shown that
P CUpITE] ¢ <due T\ T}

which is absurd since the set on the right is the union of at most x singletons and P
has cardinality greater than «. - (Lemma)
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Ifu=(t0.¢0.....th—1.¢n—1) and v = (s50.%o.. ... Sm—1.Cm—1), call u and v incom-
patible in the first coordinate just in case t; # s; for some i < n, i < m. It is immediate
that every u in S has extensions u’, u”” which are incompatible in the first coordinate—
otherwise p[S,] would have at most one irrational initand u ¢ T+ = T* = S.

We now imitate the proof of 1A.2. For each u € S, let [(u), r(u) be extensions of

u in S which are incompatible in the first coordinate and for each f € “2 define the
o f

sequence i . uj ,... of nodes in S by the induction
ul =0,
o {z(u{) if /() = 0.
n+l — 1

r(ul) if f(n) =

Let J be the set of all initial segments of all sequences ul f € ®2. Clearly J is a
tree, J C S and every two distinct infinite paths in J are incompatible in the first
coordinate. The set [J] is perfect (and compact) in N' x “« and since the projection
mapping p is continuous and one-to-one on [J], p[J] is perfect—this is the desired

perfect subset of P = p[T]. a
2C.3. COROLLARY (Suslin). Every uncountable £\ pointset P has a non-empty perfect
subset (and so Card(P) = 2%).(7) -

We will see in Chapter 5 that this result cannot be extended to X} sets (or even
I} sets) in the context of Zermelo-Fraenkel set theory. On the other hand, there are
better results that follow from strong set theoretic assumptions, as we mentioned in
the introduction to this chapter.

In classical terminology, a pointclass A has the perfect set property (or property P)
if every uncountable pointset in A has a non-empty perfect subset; so for any «, the
class of x-Suslin pointsets (and in particular £1) has the perfect set property. We will
not use this notion, since we will prove several refined “Perfect Set Theorems” which
go beyond establishing property P for a pointclass.

Exercises

2C.4 (AC). Prove that we can decompose the reals into two disjoint sets
R=AUB,

such that both 4 and B are uncountable and every non-empty perfect set intersects
both 4 and B. In particular, 4 is an uncountable set which has no perfect subset other
than (.

HINT. You need the axiom of choice for this. First argue that there are exactly 2%
non-empty perfect sets. Wellorder R = {x; : & < 2%} and the collection of non-empty
perfect sets 2 = {P: : ¢ < 2%} and define by transfinite recursion surjections

fei&r> Az ge:&— B: (A:. B: CR)
suchthatAéﬂBgz(Z), Aéﬂpé#@, Béﬂpg#@, and
n<&= fy,C fe & C g
SetA:UEAé,B:R\A:_)UéBg. a
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2C.5. Prove that if P C X and Q C Y are Borel sets such that
card(P) = card(Q). card(X \ P) = card(Y \ Q).

then there exists a Borel isomorphism f : X »» ) such that f[P] = Q.
HinT. Use 2C.3 and the method of 1G.3. -

2D. Wellfounded trees

A tree T on X is wellfounded if [T] = (), i.e., if T has no infinite branches. The name
comes from considering the relation of proper extension of finite sequences from X,

u >~ v <= uisaproper initial segment of v.

Clearly T is well founded if and only if the restriction of > to 7' has no infinite
descending chains.

Here we discuss briefly proof by (backwards) bar induction and definition by bar
recursion on a wellfounded tree, which we will need in the next section. We will also
introduce rank functions on wellfounded trees and use them to prove that £} pointsets
are Nq-Suslin.

Let T be a wellfounded tree on X and suppose P is a relation on the finite sequences
from X such that:

(%) if P(u”(x)) holds for every u”(x) € T then P(u) holds.

It follows that P(u) must hold for every sequence u € X; otherwise there is some ug
such that =P (up). hence there is some xo with 1~ (x) € T and =P (19" (x¢)). hence
there is some x; sith 1™ (xo.x1) € T and =P (uy” (x0. x1)). etc.. so we get an infinite
branch ug " (x¢, x1. X2, ...) in T contradicting [T] = @. This method of proof'is called
backwards or bar induction on T .

In the same way we can justify definition by backwards or bar recursion on a well-
founded tree T': in order to define F (u) for every finite sequence u from X, it is enough
to show how to compute F (u) if we know F (1" (x)) for every u”(x) € T.

Formally, a function F (u) is defined by bar recursion if we are given an equation of

the form
F(u) = G(u, {(xF(uA(x))) cu”(x) € T})

with G a given function. We then put
R(u,z) <= there is some function f such that u € Domain(f) & f(u) = z

& (Vu'. x)[[u" € Domain(f) &u'"(x) € T] = u'"(x) € Domain(f)]

& (Vu' € Domain(f)) {f(u') = G(u', {(x f (u'A(x))) cu' " (x) € T})}
and show by bar induction on T that for every u there is exactly one z such that
R(u. z), so we can set

F(u) = the unique z such that R(u. z).

This clearly satisfies the given equation. Another simple bar induction shows that no
other F’ can satisfy the determining equation.

A rank function for atree T on X is any mapping p defined on all the finite sequences
from X, with ordinal values, such that

ifu(x) € T. then p(u) > p(u"(x)).
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The next result is trivial but useful enough to deserve billing as a theorem.

2D.1. THEOREM. A tree T on X is wellfounded if and only if it admits a rank function.
Morveover, if card(X) = & and T is wellfounded, then T admits a rank function p such
that for every u,

p(u) < k© = the least cardinal > k.

Proor. If T admits a rank function p, then 7 is obviously wellfounded since any
infinite branch

f = (x0.x1.x2....)
in 7 would define the infinite decreasing sequence of ordinals
p(x0) > p(x0.x1) > p(xo. x1.2x2) > -+ .
Conversely, if T is wellfounded, we can define p on T by bar recursion,
pu) =0 if u is terminalin T oru ¢ T,
p(u) = supremum{p (u”(x)) + 1 :u"(x) € T} if u is not terminal.
Actually the second equation suffices if we adopt the useful convention
supremum() = 0.

It is immediate that p is a rank function on 7.
Fix now this canonical p associated with a wellfounded tree T # (. A trivial
induction on & shows that

if p(u) = ¢, then for every { < & there is some v which extends u such that
plv) = (.

Thus the range of p is an initial segment of ordinals, i.e., p is onto A = p()) + 1. For
each ¢ < 4, choose some u; € T such that p(u:) = ¢. Now the map

¢ ue
establishes a one-to-one correspondence of 4 with a subset of 7', which has cardinality
Kk,sothat A < k™. -
We will sometimes distinguish the rank function p associated with a wellfounded
tree T in this proof and call it the rank function of T,
p=p".
The length of T is defined by
|T| = supremum{p” (u) : u € T}.

If T # (), then clearly |T'| = pT ().

The notion of a wellfounded tree gives an alternative way of putting down the
characterization of k-Suslin sets of irrationals of 2C.1. If T is a tree on w X &, and
a €N, put

T(a) = {(Co.....&n1) s ((0).S0, .. (n = 1), &, 1) € T}

Evidently T («) is a tree on &. It isimportant to notice that with this notation, whether
(&o.....&u—1) isin T (o) or not depends only on the first n values of o, i.e.,

aln=p1n=[.....61) € T(a) = (&.....&-1) € T(B)].
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2D.2. THEOREM. Let k be an infinite cardinal and P C N a set of irrationals. Then
P is k-Suslin if and only if there is a tree T on w X k such that

P(a) <= T(a)is not wellfounded. -
We now put these two results to good use.

2D.3. THEOREM (Shoenfield). ) Every X! pointset is Ry -Suslin.

PrOOF. By 2B.2, it is enough to show that every I} set of irrationals is R;-Suslin.
Assume then that T is a tree on w X @ and

P(a) <= T(a)is wellfounded
<= T(a) admits a rank function into N;.
By 2D.2 and 2D.1 every I} set P C N can be represented in this way. The idea of the
proof is to define a tree S on @ x N; such that every infinite branch of S(«) codes a

rank function of T (a).
Let ug, uy, up, ... be an enumeration of all finite sequences from w such that

length(u,) < n.

This is easy to arrange. For each n then, u, = (s, ..., Sx_1) with some k < n. We call
u=(So.....50_1) T-compatible with ty. ..., t,_1.if

k < mand (. so. tg—1.5¢—1) € T.
Put

(t0.80.. ... ty_1.&n1) € S < foreveryi,j <n.ifu;. u; are
T -compatible with (. ....#,—1) and u; is
an initial segment of u;, then &; > &;.

Easily S is a tree on w x X;. The claim is that
P(a) <= S(a)isnot wellfounded.
Notice that for any fixed o and u = (s, . ... 8k—1).
u is T-compatible with (a(0).....a(n — 1))
—= k< n&(a(O).,so,...,a(k — 1),sk_1) eT
— k<n&ucT(a).
Using the condition length(u,) < n we then have

(o.....é1) €Sla) <= (a0).&,....a(n—1).&,1) €S

< forevery i, j < n.ifu;, u; arein T (a) and
u; is an initial segment of u;, then &; > ¢&;.

This observation implies immediately that if (&, &;....) is an infinite branch of
S(a), then the mapping
up — ¢
is a rank function on T'(a), so that T(«) is wellfounded. Conversely, if T (o) is
wellfounded, let p be a rank function on T (a). put & = p(u;) and check immediately
that (&, &1.. .. ) is an infinite branch of S(a). so that S(a) is not wellfounded. =

We will prove later much better representation theorems for IT! and X! along these

lines. However this result already implies that a £} set with more than X, elements
has a perfect subset.
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FiGURrE 2E.1. Separation.

2E. The Suslin Theorem

Fix a space X and an ordinal A > w. A collection C of subsets of X is a A-algebra if
() € C and C is closed under complementation and unions of length less than 4, i.e..

< dandforalln <é. 4, €eC=J,_-4, €C.

h<é
If o < 4 < Ny, this simply means that C is closed under complementation and
countable unions, and in this case we say that C is a o-algebra.

The collection B, [ X of A-Borel subsets of X is the least A-algebra on X'which
contains all open sets and B, is the pointclass of A-Borel pointsets in all product
spaces.

Clearly, B, is the pointclass of Borel measurable sets as we defined them in 1F.
Also, B,+1 = By,. and in general, if 4 is not a cardinal, then B, = B;+. It will be
convenient to have B; defined for all A > w.

Let B’ be the collection of all A-Borel pointsets P C ), such that for every Borel
function f : X — Y, f~![P]is A-Borel. Clearly B} contains all open sets and is closed
under — and unions of length less than . hence B} = B; and B; is closed under Borel
substitution. We will leave for the exercises the remaining easy closure properties of
B;. Here we want to concentrate on the Strong Separation Theorem and its corollary,
the Suslin Theorem which is the chief construction principle of classical descriptive
set theory.

Recall from 1C that a set C separates A from Bif A C C, BN C = (0 (see
Figure 2E.1).

2E.1. THE STRONG SEPARATION THEOREM (Lusin). Suppose  is an infinite cardinal
and A, B are disjoint k-Suslin subsets of some perfect product space X. There exists a
(k + 1)-Borel set C which separates A from B.®

PrOOF. We may assume that 4, B are subsets of AV, since X is Borel isomorphic
with A/ and both S,, and B, are closed under Borel substitution.

The key to the proof is the following simple combinatorial fact about separating
sets. Suppose

A= Uiel Ai. B = UjeJ B;



66 2. k-SUSLIN AND A-BOREL [2E.1

are unions of sets, where the index sets /, J are quite arbitrary, suppose that for each
i €1,j e J thereisaset C;; which separates 4; from B;. Then the set

C= Uie] ﬂje] Ci-./'
separates 4 from B. To prove this, notice that for each i, j, 4; C C;;, hence
A; € Njey Cij.hence 4 = J;c; 4i € U;e; Ny Cij = €. On the other hand, for
eachi, j. B; C N\ Ci;. hence B =J;; B; C U, ;W'\ C;;) and since this holds
for arbitrary i,
B C ﬂiel U_/eJ(N\ Ci,j) = ﬂiel(/\[\mjel Ci,j)
= N\ Uiel ﬂjej Ci,j = N\ C

Suppose now that 4 and B are disjoint x-Suslin sets of irrationals, so there are trees

T and S on w x k and
A =p[T]. B = p[S].

We give two proofs of the result—first a simple argument by contradiction and then a
constructive proof which actually exhibits a (x -+ 1)-Borel set C that separates 4 from
B

Proof by contradiction. Assume that 4 cannot be separated from B by a (k4 1)-Borel
set. Since

A=p[T]= Ute(u,g“<n p[T(I-f)]’
B = ]J[S] = Usew.n<n p[S(N?)]’

by the remarks above there must be some ¢, o, $o. 70 such that p[ 7}
cannot be separated. This implies that 7y = s, or else we can take

C ={a:a(0) =1}

which surely separates these two sets. Hence (¢, &) € T, (t.170) € S and P70l
PLS(4,.00)] cannot be separated by a (k + 1)-Borel set.

Proceeding recursively, we find #y. 1, t5. . . .. o, E1, &2, .. ., 0. 1. 2, - - . such that for
each n,

tmi())] and p[S(SoJ?o)]

u= (107601""1‘?1—115"—1) e T U= (tosnoa"'stn—larln—l) e S,

and p[T,]., p[S,] cannot be separated by a (x + 1)-Borel set. However this is absurd,
since then o = (¢, #1....) is in both 4 and B and these sets were assumed disjoint.

Constructive proof. Define the tree J/ on w X k X k by

((t0.&0.m0). - ... (ta—1. &1 Mu=1)) € J
= (t0.&o..... ta1.&u1) € T &(to. 10, -+ - tu—1.Mn—1) € S.
We will omit the parentheses in writing the nodes of J as we have been doing for trees
of pairs,
(10.20.70- - -+ - tu—1. En—t1.1tu—1) = ((t0.Z0.70). - - .. (tu—1. En1.71w—1))-

Any infinite branch (19, &.70. 1. ¢1.71....) in J would determine infinite bran-
ches (t9. 0. t1.¢1....) in T and (t9.70. 1. 71, ...) in S with the same irrational part
a = (t).1....), so that @ € 4N B contrary to hypothesis. Hence J is a wellfounded
tree.

To simplify notation, assign to each sequence

u=(to.£0.70. .. tn—1.En—1.Mn—1)



2E.1] 2E. THE SUSLIN THEOREM 67

from w X k x k the two sequences that it determines in w X &
t(u) = (t0. o - o ta1.En1)s
o(u) = (to. 10, - - ty—1.Mn—1)-
By the usual convention,
(0) = a(0) = 0.
Now
J={u:t(u) e Tando(u) € S}.
If v is a sequence from w x & put
Ay = p[T,]. B, = p[S,].
We will define by bar recursion on the wellfounded tree J a function
u— C,
such that for each sequence u in w X K X k,
(a) C,is (k + 1)-Borel,
(b) C, separates 4., from B, ).
This will complete the proof, since 4.y = Ayp = 4 and B,y = By = B, so C = Cj

will be the required set.
We have for each u

Ary = pTew)] = Ul<weé<n Af(u)’\(,_g)’

BO'(“) = p[SU(M)] = Us<w,}7<ﬁ Ba'(u)/\(v;y)
hence by the remarks at the beginning of this proof, it is enough to define sets D, ¢,
such that

(¢) Dy sy is (k + 1)-Borel,
(d) D, ¢, separates Ar(u)A( ) from Ba(u)/\(“?), since then the set

C“ = Ul<w é<k mv<w n<k DI.E 8.1

will surely be (x + 1)-Borel and separate 4., from B, ,).
Ift=sandu (t,f,n) € J. we can take

Dl.f,s.n = Cu/\<t’f’“”)t
since by the induction hypothesis of the bar recursion we can assume that CMA< én)
has been defined, it is (k + 1)-Borel and it separates 4 e from B ) " (sn)" Hence

it is enough to define D, ¢, when t # s or t = s but u”(z, é 77) ¢J.
If ¢ # s, take
Dieyy ={a:an) =1}
where 7 is the length of the sequence u, so that

acA ):>a(n):t;

tu) (1
clearly A 1~ € {a : a(n) =t} while

B ey M a(n) =1} =0.

a(u)
Ift = sbutu™(¢,&,9) ¢ J, there are two cases.
Case 1. t(u)"(1.&) ¢ T. In this case A e = = () and we can take D, ¢, = 0.

<) ¢
Case 2. a(u)"(s.n) ¢ S. In this case B e = = () and we can take D, ¢, = N .-
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The constructive argument in this proof is somehow more satisfying, since it actually
shows us how to build a separating set C from the trees 7" and S that determine the
given sets. More than that, there is additional information about C that is implicit in
the proof and which we will extract and utilize later on.

2E.2. THE SUSLIN THEOREM. Let k be an infinite cardinal. If a pointset A C X and
its complement X \ A are both k-Suslin, then A is (k + 1)-Borel.

In particular, a set is Borel if and only if it is A1.®)
ProoF is immediate from 2E.1, taking B = X"\ 4. -

The theorem of Suslin is the standard construction principle . the result we always try
to imitate or extend to more general situations. It reduces the fairly complex operation
of projection along A to an iteration of complementation and countable union; this,
of course, only in the special circumstance when we know that both the given set A
and its complement can be defined by projecting closed sets. It will become clear as
we go on that projection along N applied to more complicated sets is a very complex
operation. In the general situation, it produces sets much more difficult to understand
than those we apply it to.

Exercises

2E.3. Prove that for each ordinal A > w, the pointclass B is closed under continuous
substitution, -, &, V, 3, V” and \/*. A\ for every & < /.

2E.4. Prove thatif f : X — Y and Graph(f) = {(x.y): f(x) = y}isE]. then f
is Borel.
Hint. Compute:
f(x) €Ny = )f(x)=y&y € N]
= (WIf(x) =y =y eN] .

2E.5. Suppose f : X x Y — R is a Borel function and for each x € X there is
exactly one solution y of the equation
f(x.y)=0,

so that this equation determines y as a function of x,

y=g(x).
Prove that g is a Borel function.
In particular, if / : X ~ ) is a Borel bijection of X with ). then f ~! is also Borel.
so f is a Borel isomorphism. )

HINT. g(x) =y < f(x.y) =0. =

In general, it is not true that every (x + 1)-Borel set is x-Suslin. This extra fact
allows much stronger results to be proved in the case kK = Ny.

2E.6. Let 4y, 4. ... be a sequence of pairwise disjoint £| subsets of some perfect
product space X. Prove that there exists a sequence Cy, Ci,... of pairwise disjoint
Borel subsets of X such that 490 C Cy, 4; C (., ...
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HINT. Choose C) to separate Ao from | J, ., 4,. then choose C; to separate 4; from
Co U J,>, 4n. then choose C, to separate A, from Co U Cy U |, 4. etc. -

We can use this extension of 2E.1 to establish a very important theorem apparently
due to Lusin and Suslin.

2E.7. Suppose f : X — Y is continuous, 4 C X is Borel and f is one-to-one on
A: then the image f[A] is Borel.?)

HINT. By 1G.35, itis enough to consider the case /' : N' — Y, with 4 a closed subset
of M. As before, let

N(ko,...,kn_l) :{OéIOé(O) :ko,...,a(}’lfl) :kn—l}

and put

A(k(), e >kn—1> = f[A N N(k(), e >kn—1>]-
Each A(ko, ..., k,—1) is ! and these sets are pairwise disjoint for fixed n since f is
injective on A; hence by 2E.6 there exist Borel sets B(kg. . ... k,_1). pairwise disjoint

for each fixed n, so that
A(k(), . ,knfl) - B(k(), o ka—t).

Let us get a better separating sequence by putting

B*(k) = B(k) n A(k).
B*(k(),kl) = B(ko,kl) ﬂA(ko,kl) n B*(k()),
and in general
B*(ko, .. .,kn> = B(k(),. .. ,kn> ﬂA(ko,. .. ,kn> N B*(ko,...,knfl).

Easily,

and it is not hard to check that
Sf1A]l = S, B*(u):

this is because if x € ), B*(a(0).....a(n — 1)), then & € 4 and x = f(a
Moreover, the system u — B*(u) satisfies the conditions of 2B.3, hence &/, B*(u)

).
is
Borel. 4

Together with 1G.5, we now have Lusin’s favorite characterization of Borel sets:

2E.8. Prove that a set P C X is Borel if and only if P is the continuous, injective
image of a closed set in V.

The result in 2E.7 extends easily to Borel functions.

2E.9. Prove that if /' : X — )Y is a Borel function, 4 C X is a Borel set and f is
injective on A, then f[A] is Borel.*

HINT. Theset B = {(x,y):x € A&y = f(x)}is Borel and f[A] is a continuous,
injective image of B, via the projection (x, y) — y. -

In Chapter 4 we will prove by an entirely different method some important general-
izations of 2E.7-2E.9.

2E.10. Prove that every Borel injection is a good Borel injection (in the sense
of 1G).©)
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2E.11. Suppose f : X x Y — R is a Borel function such that for each x, there is at
most one y such that f(x, y) = 0. Prove that the set

D ={x:(3y)f(x.y) =0]}

is a Borel set and there exists a Borel function g : X — ) such that for x € D,<9>

f(x.g(x))=0.

HINT. The set A = {(x,y) : f(x.y) = 0} is Borel and the map (x, y) — y is an
injection of 4 onto D, so D is Borel by 2E.7 Now define g so it has Borel graph and
use 2E 4. -

2F. Inductive analysis of projections of trees

The chief result of this section is that £ sets can be expressed as both the union and
the intersection of N; Borel sets. This will be an easy corollary of a general structure
result about projections of trees.

In 2D we associated a canonical rank function p = p” with every wellfounded tree
T on some X. It is convenient to have a rank function for 7" even when T is not
wellfounded—we will simply put p(u) = oo if u is not in the wellfounded part of T.

To be precise, if T is a tree on X, the wellfounded part of T is defined by

WF(T)={u:u ¢ T oru € T but there is no infinite sequence xy, xi. . . .

such that for every n, u"(x¢,....x,_1) € T}.
Putting into WF(T') the sequences outside T is of course only a matter of convenience.
Now WF(T) is not a tree, but it is clear that we can define functions by bar recursion

on WF(T) exactly as we do on all the sequences from X when T is wellfounded. In
that case, of course,

WF(T) = {u : u is a sequence from X }.
Put then

() = supremum{p (u”(x)) + 1 :u"(x) € T} ifu € WF(T),
PR = 00 ifu ¢ WF(T).

where oo is assumed greater than all ordinals in the situations below. If there is need
to identify the tree with which we are working we write

p(u) = p"(u) = p(T.u).
It follows exactly as in 2D.1 that if card(X) = x and T is a tree on X then
u € WF(T) = p(T.u) < k.

2F.1. TurOREM (Sierpinski’s projection equations). ') Let k be an infinite cardinal,
let T be a tree on w x k and put

A=p[T]. B=N\A4.
For each sequence u = (&, ....E,_1) from k and each A < k™, put

Bl = {a:p(T(a).u) <2}
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Then
B) =N {a: (20).&.....a(n—1).&_1.a(n).&) ¢ T}.
¢ .
Bij = mé<f; UC<,{ Bu/\(g") lf;\, > 0,

and

B=Uc B
ProoOE. We compute:
a€B) « p(T(a).u)=0
(V«: <K (&) ¢ T(a)]
(V¢ < k)[(a(0).&.....a(n—1).&1.a(n).&) ¢ T).
For /2 > 0,
a € B — supremum{ p (T (a). u ( )+ 1) u" (&) eT(a)} <A
= (V<r) B <{u" (&) eT(a) = p(T(a).u"(&)) <}
= (V< k) <) [p(T(a).u"(&)) <]
— (VE<r)(F < e e BEA@].
The last assertion follows from 2D.2 since
o € B« T(a)is wellfounded
<« p(T(a).0) is defined
= p(T(a).0) <s™. -

2F.2. THEOREM. If k is an infinite cardinal and A is a k-Suslin pointset, then

A= LJ/1<;€+ C/l = mi<fi+ Dl{’
where the sets C;, D; are (k + 1)-Borel. In particular, every ;% set is both a union and
an intersection of R, Borel sets.1?)

PRrOOF. It is enough to prove the result for 4 C N. If A = p[T] with T a tree on
o X kand B = N\ A. then by 2F.1

B = L.J)u</c4r BV/}’
hence
A= (o W\ B)).
This shows that A4 is the intersection of x*sets which are (x + 1)-Borel, since it is

evident from 2F.1 that every B} is (k + 1)-Borel.
With the same notation and for 4 < k™, put

E;={a:p(T(@).0) <2}U{a:@u)[p(T(a).u) =]}

where u varies over all sequences from k. Again by 2F.1, each E; is (x + 1)-Borel,
since

E; = Bj UU,[Bi\ U.., Bf]-
We claim that
B = m,1<,€+ E).;
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proof of this claim will be sufficient, since then
A=U;ep W\ E).
Assume first that o € B so that T («) is wellfounded. The mapping
u— p(T(a).u)

takes the sequences from x onto the initial segment of k™ bounded by p(T(a), Q)).
Thus for each 4 < s, either p(T(a).0) < A or 2 < p(T(e).0). in which case
4= p(T(a).u) for some u. In either case, o € E;.

In the other direction. assume towards a contradiction that o € (,_,. £, but
a ¢ B. Now T'(a) is not wellfounded so p(T(a).0) < 4 is false for every 4. hence
for every / there must be some u; with p(7 (a).u;) = A. This establishes a mapping
u; — A from the sequences of x onto x* which is absurd. -

The result implies that £} sets can also be written as unions of &, Borel sets.

2F.3. THEOREM (AC, Sierpinski). 19 For each X! pointset P there are Borel sets B,
& < Ny, such that

P = U5<N| Be.
PrROOF. There is a I} set Q such that
P(x) <= (30)Q(x.a).
and by 2F.2 there are Borel sets C: such that
O(x.a) < (I <X)Cs(x. ).
Thus
P(x) <= (Fa)(3¢ < Ny)Cs(x, )
< (3¢ < V) (3a)C:(x. a).
Now put
D: = {x:(3a)C:(x,a)}
and notice that for each &, D; is £1. Hence by 2F.2 again
De = U,, Ee,
with each E¢, Borel and
P = Ug“<k~t1 Un<m Ee,.

This expresses P as a union of N; Borel sets. (Notice the use of the axiom of choice in
this argument, to select for each & < X; a function # — E¢,.) -

This is as far as results of this type can go, even if we go to set theories stronger than
Zermelo-Fraenkel. One of the exciting modern results is the theorem of Martin that
with strong hypotheses, I1} (and hence L) sets are unions of X, Borel sets!

Theorems 2F.2 and 2F.3 are trivial if one assumes the continuum hypothesis, that
2% = Ny, since then every subset of A is the union of X; singletons (which are Borel
sets) and the intersection of ®; complements of singletons (which are Borel sets). If,
on the other hand we think of 2% as very large compared to ¥;, then 2F.3 can be
considered a construction principle for £1. Because surely Borel sets are very simple
compared to X} sets and we need just a few (X;) of them to build up any given X} set.
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Exercises

Let us first use Theorem 2F.2 to get a simple characterization of X,-Suslin sets for
n=12....

2F.4 (AC). Prove that a pointset P C X is X,-Suslin (n > 1) if and only if
P = Ug“<}t,Z P
where each P; is Borel (Martin [1971]).

HINT. One way comes directly from the closure properties of k-Suslin sets. For the
converse suppose first P is N;-Suslin; then by 2B.4,

P = U5<N1 Pé’

where each Py is Rg-Suslin, i.e., £ each P; in turn is the union of R; Borel sets by 2F.2,
so P is the union of N; - X} = N; Borel sets. The result follows by induction on #.
(Notice the use of the axiom of choice in this proof.) -

The next two exercises outline a different and interesting proof of the Strong Sepa-
ration Theorem. !

Suppose B C N is the complement of some x-Suslin set 4 = p[T], where T is a
tree on @ x k. For each set C C B and each u = (ko.&.....k,—1.&n—1). put

Index(C. T, u) = supremum{p (T (a). (&. ....&n—1))

ca€e C&al0) =ko.....,a(n—1) =k, 1}
and let
Index(C, T) = Index(C. T, 0).

2F.5. In the notation just introduced, prove that if ™ is regular and C is a k-Suslin
subset of B, then
Index(C. T) < ™.
HINT. Assume towards a contradiction that
Index(C. T.0) = ™

and
C = p[S].
where S is a tree on @ X k. Now
Index(C. T.0) = supremum{p (T (a).0) : v € C}
and, foreacha € C,
p(T().0) = supremum, {p(T(a). (&) + 1: (&) € T(a)}
= supremum, {p(T(e). (&) +1: ((0).¢) € T},
from which we easily get
Index(C, T.0) =

supremumg’n{supremuma{p(T(a), @) +1l:aecC&al0)= n}}
Now using the assumption that x* is regular, we infer that for some 7, &y

supremum{p (7 (a).(&)) +1:a € C&a(0) =ny} ="



74 2. K-SUSLIN AND A-BOREL [2F.6

which implies
Index(C. T. (ng. &)) = &*.
Also
C = Uy PLSn)]-

so for some fixed (m19. 7).

Index (P[S )] T (n0. o)) =

Argue that we must have my = ny, so that

Index(p[S(no),?O)], T, (n(), fo)) = h:+,
and then repeat the construction to obtain ng, ny, ..., &, &1, . ... 0,91, . . ., so that for
each k,
Index(p[S(,,O_,m_M,,k_]_,7,(_])], T, (n(), éo, NN (T ékfl)) =xt.
Now let
o = (ng,nl,...)

and notice that a € p[S]Np[T] = A N C, contrary to the hypothesis that C C B.

Note. We assumed that k™ is regular to avoid appealing to the (full) Axiom of
Choice, which is needed to prove this for every infinite x. For the classical case with
k = Ny, of course, only the Countable Axiom of Choice is needed to show that R, is
regular. —

2F.6. Prove that if k" is regular and B C X is the complement of a x-Suslin set A4,
then

B = LJ/"V<NJr B/:
where each B” is (k + 1)-Borel, and if C C B is x-Suslin, then C C B* for some A.

Use this to get a different proof of the Strong Separation Theorem (with the additional
hypothesis on £ ).

2G. The Kunen-Martin Theorem

One can easily prove by classical methods that every X} wellfounded relation has
countable length; in particular, there cannot be a X| wellordering of the continuum.
We will prove here a much more general recent result due independently to Kunen and
Martin.

One of the consequences of the Kunen-Martin Theorem is that £} well founded
relations have length less than R; in particular, if there is a £} wellordering of R,
then the continuum hypothesis holds. This was proved by Martin (before the general
result) in one of the first spectacular demonstrations of what modern set theoretic
techniques can do for the classical theory.

We will give Kunen’s proof of the Kunen-Martin theorem since it is very simple and
in the spirit of the methods we have been using in this chapter.

With each binary relation R(x, y) on a set S we associate a strict part <g,

X<ry <= R(x,y)&-R(y,x).
Of course it may be that <g= R if R is already strict. i.e., if
R(x,y) = —R(y.x).
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We call R wellfounded if every nonempty subset of S has a <g-minimal element, i.e.,
PCACS=—forsomex € dandall y € 4,—y <g x.

It is easy to verify that this is equivalent to the condition that there are no < g-infinite
descending chains, 1.e., there is no sequence

X) >R X] >R X2 >R .

It is common to study wellfounded relations with various additional properties, like
transitivity or reflexiveness—see the exercises for a statement of these conditions. Many
results, however, go through without such restrictions and it is convenient to prove
them in this generality. Since only the strict part of a relation comes into the definition
of wellfoundedness, we often restrict attention to strict, wellfounded relations which
we denote by symbols like <, <, etc.

We may justify proof by induction and definition by recursion on a wellfounded
relation exactly as we did for wellfounded trees in 2D. In particular, each well founded
relation R on S admits a rank function

p:S—>i=|R

s

where p is determined by the recursion

p(x) = supremum{p(y) +1:y <g x}
and |R| = | <g | is the length of R,
|R| = supremum{p(y) +1:x € S}.
Notice that
p(x) =0 < forevery y,—y <g x.
It will be convenient for the proof of the Kunen-Martin Theorem to introduce the
notion of a good semiscale.
A sequence ¥ = {@y}new Of k-norms on a pointset P is a good k-semiscale if
whenever xg, x1, ... are in P and for each fixed n the sequence of ordinals
@n(x0). o (x1). @u(x2). ...
is ultimately constant, then there is some x € P such that lim; ., x; = x.

2G.1. LemMA. If k is an infinite cardinal and a pointset P admits a k-semiscale, then
P admits a good k-semiscale.

PrOOF. Let

T:KXW—K
be a bijection of k x w with x and for each x, choose ¢(x, i) such that
X € Nyxi) radius(N,(, ;) <27

Here of course
Ny. Ny, ...

is a basis for the open sets in the product space X which contains P.
Given a s-semiscale @ = {©, }nce On P, put

a(x) = 7(pulx). g (x. n)).
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Vo | Vi v2 W3
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DiaGram 2G.1.

If xo. x1.... are in P and for each n, y,(x;) is ultimately constant, then clearly for
each n the sequences

q(x0.n).q(x1.n).q(x2,n), ...
on(x0), n(x1). n(x2). ...

are ultimately constant. In particular, for each n the sequence xy, xi. ... is ultimately
trapped in some fixed nbhd N;, = Ny(,, ) of radius < 27", so there is a point x to
which xg, x1, X2, ... converges. Now the fact that @ is a k-semiscale on P implies that
X € P,soW = {Wn}new 1s a good k-semiscale on P. .

Ifu=(xg.....x,—1) and v = (yp. ..., yu_1) are sequences in some set X, put
u > v <= uisa proper initial segment of v
— n<mand xo=yp,....,Xp_1 = Vn_1.
2G.2. THE KUNEN-MARTIN THEOREM. Let k be an infinite cardinal, suppose < is

a strict wellfounded relation on a subset P of some perfect product space X, suppose

further that (as a subset of X x X), < is k-Suslin. Then the length of < is less than
n+.(12)

Proor. Consider the tree 7 on X defined by
T = {(xo,xl,...,x,,_l) 1 Xg > X > ~~~>Xn_1}.

Clearly T is well founded. If p is the rank function of <, it is easy to check by induction
on x € P that

(X0, xp1.x) €T <= p(x) = p(T. (x0.....Xn_1.X)).
where p(T, u) is the rank of # in T'. Hence
| < | = supremum{p(x) +1: x € P}
= supremum{p(7.x) +1:(x) € T}
= p(T.0).

ie.,
| < | =|T|=thelength of T

and it is enough to prove that |T| < ™.
The method of proof'is to define a wellfounded tree S on x and a mapping

c: T — S
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wo(xy, x7).
wo(xg. x1). wo(xf. x3). wi(xf. x3). wi(xg, x}),
wo(x3. x3). wo(x?. x3). w1 (x2. x2). w1 (x3. x3). wo(x2.x2). . ...

Di1AGrRAM 2G.2.

which preserves the relation of proper extension on finite sequences,
u=v < olu) o).
In these circumstances it is immediate by bar induction on 7" that
p(T.u) < p(S.0(u)):

hence |T'| = p(T.0) < p(S.a(0)) < p(S.0) = |S| and |S| < &* by 2D.1 since S is a
wellfounded tree on «.

To define S and o let W = {w, }»ew bea good k-semiscale on the set {(x, y) : x > y}.
Here this means that if xo > yg, x; > y1, ... and if for each n the sequence of ordinals

W (x0. 30). W (x1. 01). . ..

is ultimately constant, then lim; ., x; = x, lim; . y; = y for some x, y and x > y.
We now define ¢ directly—S will be the set of all initial segments of sequences o (1)
with u in T'. Put

and in general for n > 2,

U((x0~ R xﬂ)) = U((XO, e :xnfl))/\(l//o(xnfla xn): l/’l (xnfla xn): ceey
Wit (Xn—1. Xn). W1 (Xn—2. Xp—1). W1 (Xn—3. Xn—2). . ... wn—1(x0. X1)).

Theidea is to includein o ((xo. .. .. x,)) all ordinals w; (x;. x;41) for i < n. j < n. The
sequence in which we do this is clear from Diagram 2G.1.
It is immediate that o preserves the relation of proper extension on finite sequences,

so it will be enough to verify that the tree
S ={v:forsomeuinT,v > a(u)}

is wellfounded.
Towards a contradiction assume that in some sequence

o ((xg.x7)) = o ((xg. x1. %)) = o ((x5. x7. x3. x3)) = -

each term is a proper initial segment of the next, where of course we have x{ > xJ.
x¢ > x! > x}, x2 > x} > x2 > x1. etc. Then in Diagram 2G.2, each column consists
of identical ordinals. Hence for each fixed j and each fixed » the sequence

W (X0 X0 ) wa (e fox ) wan (X7 X7,
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I exists, call

is ultimately constant, so by the limit property of {y, },cq, each lim;_, o, x ;

it x;, and we have
Xg> X1 >Xp >0
which is absurd. -

This is the key tool for computing the length of wellfounded projective relations
and it will be used again and again in the sequel. Here we only draw the conclusions
mentioned in the beginning of this section.

2G.3. COROLLARY. Every strict £1 wellfounded relation has countable length.'

2G.4. COROLLARY (Martin [1971]). Every strict £} wellfounded relation has length
less than ¥y. In particular, if 2% > Ry, then there is no X} wellordering of the
continuum.'?

Proor. Use 2D.3 and the Kunen-Martin Theorem. -

Exercises

2G.5. Prove that a binary relation R(x, y) on a set S is wellfounded if and only if
there are no infinite <z-descending chains.

HINT. If 4 # () and 4 has no <gz-minimal element, then we can successively choose
xg € Ay, x1 <R Xo. X2 <R X1, ... ,and get an infinite <g-descending chain. =

Consider the following conditions on a binary relation < on a set S..

(a) =<is transitive,ie., x < y&y <z = x < z.

(b) =<is reflexive,ie. forallx € S, x < x.

(c) =isantisymmetric,ie., x 2y &y = x => x = y.
(d) =is connected, ie.,forevery x,y € S, x < yory =< x.

(e) =iswellfounded.

There are various names attached to relations that satisfy some of these conditions
and we put them down here for the record.

(1) =isa partial ordering if it is transitive, reflexive and antisymmetric.

(2) =isa ordering if it is a connected partial ordering.

(3) =isa wellordering if it is a wellfounded ordering.

(4) =isaprewellordering if it is transitive, reflexive, connected and wellfounded—i.e..

if < has all the properties of a wellordering except for antisymmetry.
The strict part of a £} relation need not be 1. so corollaries 2G.3, 2G.4 do not

apply to arbitrary wellfounded relations. The best we can do here is state the trivial
consequence of these results for A} and A} relations.

2@G.6. Prove that every Borel wellfounded relation has countable length and every
A} wellfounded relation has length less than X,.

There is a simple but useful characterization of the rank function implicit in its
definition.

2G.7. Let R be a wellfounded relation on S with rank function p, and let ' : S —
Ordinals be any order-preserving function, i.e.,

x<ry=f(x) < f(y).
Prove that for every x in S, p(x) < f(x).
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A norm ¢ on a set S is regular if ¢ : S — 1 1s onto some ordinal 4, i.e.,
p(x) =& &n < & = for some y, p(y) = 7.
With each norm ¢ on S we associate the binary relation <%,
x <Py = ox) <o)

2@G.8. Prove that a binary relation < os a set S is a prewellordering if and only if
there is a norm ¢ on S such that <= <¥. Moreover, if < is a prewellordering, then
there is a unique regular ¢ on S such that <= <%.

HinT. Given =, take ¢ = p to be the rank function of <. —

2H. Category and measure

We have proved that not every ;% set is Borel. There are times, however, when it is
useful to know that a pointset P is approximately equal to some Borel set P*, in the
sense that the symmetric difference

PAP*=(P\ P )U(P*\P)

is small. We establish here a general, set theoretic result about approximations of
x-Suslin sets by (x+1)-Borel sets modulo a given s-ideal. This will imply, in particular,
that £ sets are Lebesgue measurable and have the property of Baire.

Fix a perfect product space X. A collection J of subsets of X is a k-ideal (k an
infinite cardinal) if J is closed under subsets and unions of length . i.e.,

ACB&BecJ = A€c/J
foreach¢ <k, 4: € J = e, A: € /.

If k = Ny, instead of Ny-ideals we talk of g-ideals.

Suppose C is a fixed A-algebra of subsets of X. We say that P C X is in C modulo
J if there is some P* in C such that P A P* € J. In particular, P is (k + 1)-Borel
modulo J if P A P* € J for some (x + 1)-Borel P*.

Recall that a pointset A4 is meager if A = |J, A, with each A4, nowhere dense, i.e.,
such that the closure 4,, contains no open set. The collection M of all meager subsets
of X is obviously a o-ideal.

Suppose u is a o-finite Borel measure on X, i.e., a countably additive function on
the Borel subsets of X with values real numbers > 0 or oo and such that we can write

X =U, A,

with 4, € B, u(A4,) < oo for each n. Let Z, be the collection of null sets or sets of
measure 0 (in the completed measure), i.e.,

A € Z, <= there exists a Borel set B such that 4 C B and u(B) = 0.

Again it is clear that Z,, is a o-ideal.
These are the two standard examples which we want covered by the approximation
theorem. They satisfy an additional hypothesis which will be crucial to the proof.
Suppose again J is a k-ideal on X and C is a (k + 1)-algebra of subsets of X. We
say that J is regular from above relative to C if for every P C X there is some P € C
such that (see Figure 2H.1)

(1) PCP.



80 2. K-SUSLIN AND A-BOREL [2H.1

O

=

AeC= A¢cJ

FIGURE 2H.1. Regularity from above.

(2) ifACP\Pand A cC.thend € J.

We will outline proofs in the exercises that the g-ideals of meager and null sets are
regular from above relative to the Borel sets.

2H.1. THE APPROXIMATION THEOREM (AC for k > Ny). Let k be an infinite cardinal,
suppose J is a k-ideal on some perfect product space X, assume that J is regular from
above relative to some (k + 1)-algebra of sets C. Then the collection of sets which are in
C modulo J is closed under complementation, unions of length k and the operation /" .

{n particular, every k-Suslin subset of X is (k + 1)-Borel modulo J . taking C = By, |
X. 13)

Proor. If P: A P;f e J forall £ < k, then

(Uf<n Pf)A(Uf<n P;) < Ué<ﬁ(Pf APE) el
Similarly, if P A P* € J, then (X \ P) A(X \ P*) = P A P* € J. Thus the collection
of subsets of A which are in C modulo J is closed under complementation and unions
of length k.
Assume now that
P="P,
where each P, is in C. For each sequence u = (&.....&,—1) in k, put
Qu = %:QPUAU - Uf m" P(fo ----- &umt) fln®

so that

Qp=P.
and for each u,

Qll g Pu-
Notice also that by the definition,

Qu = Ug"<n Qu"(é)'

Since J is regular from above, we can choose in C sets Q;; such that (see Figure 2H.2)

(i) 0.C 0}

(i1) ifACQ;\Q,isinC,then 4 € J.
We may also assume that

(iif) 0: C P,

since in any case the sets Q;F N P, are in C and satisfy the crucial properties (i), (ii).
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F1GURE 2H.2. The Approximation Theorem.

We now claim that
05\ P €U, (0 \Usey 00,
To prove this by contradiction, assume that
xeQy\P
but for every sequence u in &,

x ¢ QF orforsome & < K, x € Q;‘A@.

Taking u = (), this means that there is some & so that

X e Q(fo)'
Taking u = (&y) now, there must be some &; so that
X € Qqe):
and proceeding inductively, we define some f € “k such that
xe), OF -
Since Q_’/i n C Py},. we thus have
X € ﬂn Pf [ne

so that x € &/, P, = P contradicting x ¢ P.
For each u, clearly O;; \ U._, Q;‘A< ) isin C and

Q: \ Ué<n Q;A(@ g Q; \ Uf<n Qu/\(@ = Q; \ Q“’
so that Oy \ U:.,, QZA(O € J. Since there are only  finite sequences of elements of x,

U (i \ U Q:A@)) € Jandhence PAQj = Q5 \ PeJ.
This argument proves that if P = &/ P, with each P, in C, then P isin C modulo J.
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For the more general assertion, assume that
P=3dFP,
with each P, in C modulo J and choose sets P;; in C such that
P,AP; € J
To prove that P is in C modulo J. it is enough to show that
(iv) HEP,NSAFPEC ], (P, A PE)

since the set on the right is the union of x setsin J.
Assume then that
x € AP, \ AP,
ie.,
F/)n)Py1a(x) & (V1) (Fn)=P7, ().

and choose f so that (Vn)P/,(x). Then there is some n such that —P; 1 (x), so with
u=f [ nwehavex € P,\P;. Asymmetricargumentshowsthatifx € &P\ P,,
then for some u, x € P; \ P,. Thus (iv) is established and the proof is complete.

Exercises

2H.2 (The Baire Category Theorem). Prove that in a complete metric space no
open ball is meager.

HiNT. Assume B C |, A,, where each A, is closed and nowhere dense. Choose
an open ball B; so that B; C B\ 4; and radius(B;) < 1. choose an open ball B, so
that B, C By \ 4, and radius(B,) < 1. etc. Show that if x € N, B,. then x ¢ (J, 4,.
which is absurd.

A pointset P has the property of Baire if there is some open set P* such that P A P*
is meager.

2H.3. Prove that every Borel pointset has the property of Baire.

HINT. Open sets clearly have the property of Baire. If P is closed, let P* =
Interior(P) = {x € P : for some nbhd N of x, N C P}. Show that P\ P* is nowhere
dense, so P A P* is meager. Notice that (P’ A Q) = (P A Q’), where ’ denotes the
complement, and use this to show that if P has the property of Baire, so does P’.
Show finally that if each P, has the property of Baire, so does | J, P,. —|

2H.4. Prove that for every pointset P C X, there is an F, set P O P such that if
A C P\ Pis any Borel set, then 4 is meager.

HinT. Let
D(P) = {x : for every nbhd N of x, N N P is not meager}.

Show that D(P) is closed and that P\ D(P) is meager, so P\ D(P) C W for some
meager F, set W. Take P = D(P)UW. If A C P\ P = (D(P)U W) \ P and
A is Borel but not meager, choose an open N such that N \ 4 = V is meager, so
NCAUV C(D(P)UW)\PUV C (D(P)\ P)UY, where Y is meager. Now
NNP C Y,soNNPismeager, hence NND(P) = 0, hence N C Y which contradicts
the Baire Category Theorem. -
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2H.5. Prove that the collection of pointsets with the property of Baire is closed
under the operation #: in particular X! sets have the property of Baire.13)

2H.6 (AC). Prove that there are sets of real numbers which do not have the property
of Baire.

HiNT. This needs the axiom of choice. One way to do it is by a construction similar
to that of 2C.4.

First argue that there are exactly 2™ pairs (G, F), where G is open and F is a meager
F,. Wellorder R = {x: : ¢ < 2™} and the set of these pairs, {(Ge, F) : & < 2%},
You want to construct a set 4 such that the inclusion

ANG: = (A\ G:)U(Ge\ 4) C Fe
fails for every ¢. Define by recursion bijections
fgv:fh»Aéandgé:ﬁH»Bé
such that

S<n=SfcCfy g Cg
and (4 \ G¢) U (G: N B:) C Fe fails. At the £’th step, either R\ (G: \ F;) is
uncountable, hence of cardinality 2% and we can throw in A some element of this
set; or R = G U F{ where F; is meager, F, and F! D F¢, hence G \ F is uncountable
and has cardinality 2% and we can throw in B an element of this set. =

2H.7. Let u be a o-finite Borel measure on some product space X'. Prove that the
g-ideal Z, of sets of measure 0 is regular from above relative to the Borel sets.

HINT. Suppose first that P is contained in some Q with u(Q) < oo and put
x = infimum{x(Q) : Q Borel, P C Q}.

Choose a decreasing sequence 01 2 0, 2 --- of Borel sets, 0, O P, such that
lim, o #(Q,) = x and take P = (), Q,. If P is large. let X = | J, 4, with each 4,
Borel, u(A,) < oo and A, N A,, = () for n # m, and use the result on each P N A4,,. -

A set P C X is measurable relative to a o-finite Borel measure ¢ on X if there are
Borel sets P and Q such that P A P C Q and u(Q) = 0. We let u(P) = u(P) for any
P with this property—u(P) is obviously independent of the choice of P.

A set P C X is absolutely measurable if it is measurable relative to every o-finite
Borel measure u on X.

2H.8. Prove that the collection of sets measurable relative to a o-finite Borel measure
u of X contains all £} and I} sets and is closed under complementation, countable
unions and the operation &/, and so the collection of absolutely measurable subsets of
X has the same properties.!)

Recall that if A is a set of reals, then the Lebesgue outer measure of A4 is defined by

oo

¥ (A) = inﬁmum{Z(bi —a;j): AC Ufo(a[,b;)},

i=0
where of course (a;,b;) is the open interval from a; to b;. We call A Lebesgue
measurable if for every closed interval [a, b]

(ANfa. b)) + A ([a.b]\ 4) = b — a.
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It is a standard result of real analysis that the collection of Lebesgue measurable sets
contains all open sets and is closed under both complementation and countable union;
in particular every Borel set is Lebesgue measurable. Moreover, u* is a measure on the
class of Lebesgue measurable sets, the Lebesgue measure. In particular, the restriction

4= B(R)

of A* to the Borel setsis a (o-finite) Borel measure on R. The definition of measurability
we gave above for arbitrary o-finite Borel measures is consistent with this definition
of Lebesgue measurability, cf. 2H.11.

2H.9 (AC). Prove that there is a set of reals 4 contained in the unit interval [0, 1]
such that u*(A4) = u*([0, 1]\ 4) = 1. In particular, 4 is not Lebesgue measurable.

HinT. This is one more construction by transfinite recursion and choice. First argue
that there are 2™ open coverings G = {(a;.b;) : i € w} with >°:°(b; — a;) < 1 and
wellorder them {G; : & < 2%}. Now build A¢, B; so that 4:NB; = ), card(4:) < 2%,
card(B:) < 2% and each [0, 1]\ G intersects both A: and B; as in 2C.4. The key
observation is that each [0, 1]\ G; has cardinality 2™. -

We will see later that these results about category and measure are best possible
in the context of Zermelo-Fraenkel set theory. One cannot prove in this theory that
Al sets of reals have the property of Baire or are Lebesgue measurable. There are,
however, natural strong axioms of set theory which imply that all £} sets have these
regularity properties and still stronger axioms which allow us to to establish that all
projective sets are Lebesgue measurable and have the property of Baire.

By the basic definition of A-measurability is Section 1G, we call f : X — Y
Baire measurable if for every basic nbhd Ny C ), f~![N,] has the property of Baire.
Similarly, if u is a -finite Borel measure on X, then f : X — ) is u-measurable
if each f~'[N,] is measurable relative to u. We say that f : X — Y is absolutely
measurable if f is u-measurable relative to every ¢-finite Borel measure ¢ on X'.

These functions come up often in the applications of descriptive set theory to
analysis. Here we will confine ourselves to a simple but useful remark about them.

2H.10. Prove that if f : X — ) is Baire-measurable, then there exists a G5 set
P C X which is comeager (i.e., X \ P is meager) and such that the restriction f | P of
f to P is continuous.

Similarly, if / : X — ) is u-measurable relative to a o-finite Borel measure u, then
there exists an F, set P C X and a Borel function f* : X — Y, such that X' \ P has
measure 0 and

x€P= f(x)=f*(x).
HinT. For each basic nbhd Ny C ), choose an open set G, in X such that

f~UN,] A G, is meager, choose a meager F,-set Q, in X such that f~![N,]A G, C
O, and take Q = |J, O,. P = &'\ Q. The argument for measure is similar. -

2H.11. Prove that for every Lebesgue measurable set 4 C R, there is a Gs-set A*
such that A*(4* \ 4) = 0; it follows that A(4 A 4*) = 0, and if B C (4* \ A4) is Borel,
then A(B) = 0.

HINT. Choose for each n > 0 an open set O, such that 4 C O, and A*(0,\ 4) < %
and let A* =, O,. =
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A function f : R — )Y is Lebesgue measurable if for every basic nbhd Ny C ), the
inverse image f ~'[N,] is Lebesgue measurable. The next problem is an immediate
consequence of 2H.10 and 2H.11,

2H.12. Prove that f : R — ) is Lebesgue measurable if and only if there is a Borel
function f™* : R — ) which is almost everywhere equal to £, i.e., the set

{xeR: [(x)# f(x)}

has Lebesgue measure 0.

21. Historical remarks

'As we have already noted, the operation & = %™ was introduced in the basic
paper Suslin [1917], although some similar ideas can be found in Alexandroff [1916]
and Hausdorff[1916]. Suslin [1917] and Lusin [1917] also contain, at least implicitly,
the characterization of X! sets of reals as projections of closed sets in R x A

>The more general operation & for any cardinal x was introduced by Maximoff
[1940], who also defined what we have called here A-Borel sets. Maximoff worked
in large, non-separable spaces and defined “x-Suslin” to be the sets obtained via the
operation &/ applied to Suslin systems u — P,. where each P, is (x + 1)-Borel; this
is a much larger class of sets than our x-Suslin sets. Stone [1962] studies the present
notion of k-Suslin, but he relates these to the usual Borel (X;-Borel) sets, again in
non-separable spaces.

30ur own approach here has been to use these general notions of x-Suslin and
A-Borel sets as tools for obtaining specific information about projective pointsets.
There is some anticipation of this in Sierpinski [1927], where he shows that his “hyper-
borelian” sets of reals must have cardinality < ®; or 2%; these turn out to be precisely
the N;-Suslin sets, although Sierpinski defined them differently. The modern approach
is due to Mansfield [1970] who used trees and especially Martin [1971] who saw most
clearly its potentialities.

4Semiscales are quite modern and come from the scales introduced in Moschovakis
[1971a] to study uniformization problems. We will look at these closely in Chapter 4.

3In Chapters 6, 7 and 8 it will become obvious why we developed here the theory
of k-Suslin sets rather than concentrate on the classical | sets. The proofs for the
special case are no simpler than the ones we gave. A hint for the kind of applications
in the sequel shows in 2D.3, the fact that £} pointsets are R;-Suslin. This important
result is implicit in Shoenfield [1961].

5The closure of the projective classes X!, IT}, Al under the operation & (2B.4) was
established by Kantorovitch and Livenson [1932] and later, (by the simple proof we
gave) by Addison and Kleene [1957].

"The Perfect Set Theorem 2C.2 is due to Mansfield [1970] in its full generality, but of
course there were several similar earlier results. The specific application to X} sets is
due to Suslin—it was announced in Lusin [1917]. The proof we gave is due to Solovay.

8Suslin [1917] announced the Suslin Theorem (2E.2, for k = X, of course) but gave
no hint of its proof. The first published proof is in Lusin and Sierpinski [1918]—
this is the argument outlined in 2F.4 and 2F.5. Another proof was given in Lusin and
Sierpinski [1923]. Lusin [1927] established the more general Separation Theorem 2E.1,
but the proofs in the preceding two papers could certainly have been used for this too.
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Lusin [1930b] gives both the argument by contradiction and a constructive proof, as
we did.

9 Among the immediate corollaries of the Suslin Theorem, perhaps the most signif-
icant are 2E.5, 2E.8, 2E.9, 2E.10 and 2E.11. The characterization of Borel sets as
the continuous, injective images of closed subsets of  is already stated (in somewhat
different form) in Lusin [1917]; Lusin says that it can be proved “using a method of
Suslin,” so it is quite likely a joint result. The same is probably true of 2E.5, 2E.9,
2E.10 and 2E.11 which were considered particularly important, since they showed
that the claims of Lebesgue [1905] about implicitly defined functions were correct,
even though Lebesgue’s proof was wrong. These results were all treated in detail in
Lusin [1927].

0L usin and Sierpinski [1918] established that IT} sets are unions of X; Borel sets
and Lusin and Sierpinski [1923] proved the same representation for X| sets. This
representation for £} sets (2F.3) is due to Sierpinski [1925] who also established the
elegant equations of 2F.1 in his [1926].

""The exercises of 2F are directly from Lusin and Sierpinski [1918]. There are many
applications of the so-called Lusin-Sierpinski index which we will study in Chapter 4,
in a general setting.

2L ogicians interested in descriptive set theory often refer to “the classical result”
that £} wellfounded relations have countable length. This was apparently never put
down on paper, but it is certainly easy to show by classical methods. Martin showed
in 1968 that £! wellfounded relations have length below X, (2G.4) by a sophisticated
argument, using forcing. The more general and simple Kunen-Martin Theorem 2G.2
was proved independently in 1971 by its two authors and was not published until
Martin [1971].

BB According to Kuratowski [1966]. the Approximation Theorem 2H.1 is due to
Szpilrajn-Marczewski who published it in Polish in 1929. The specific corollaries
were established earlier as follows: X| sets have the property of Baire (Lusin and
Sierpinski [1923]); the collection of sets with the property of Baire is closed under the
operation & (Nikodym [1925]); 1 sets are Lebesgue measurable (Lusin [1917]); the
collection of Lebesgue measurable sets is closed under the operation & (Lusin and
Sierpinski [1918]).

“The fact that the collection of u-measurable sets is closed under the operation
&/ (2H.8) has been extended by Choquet [1955] from measures to capacities, roughly
“subadditive measures”. A very simple and elegant exposition of this important
theorem can be found in Carleson [1967].



CHAPTER 3

BASIC NOTIONS OF THE EFFECTIVE THEORY

Our choice of basic notions in Chapter 1 was based on the implicit assumption that
open sets are somehow “simple.” They are just given at the very start, and then we
build more complicated sets from them. Let us try here to analyze this view.

Suppose G is an open set of reals, say

G =, (an.by).

where each (a,. b,) is an open interval with rational endpoints. Given a real number
x, we may attempt to find out if x € G by searching for some # such that a,, < x < b,,.
One natural way to be “given” x is via a sequence of rationals converging to it with a
known modulus of convergence, say

x = lim; o ¢;.
where for each i, .

|x —qi] <27,
We now search for some » and i such that
(%) a, +27" < g <b, —27";

if and when we find them, we will know that x € G.

We have described a semieffective membership test for G which will verify that x € G
if this is true. If x ¢ G, this procedure will not terminate—we will simply not be able
to find » and i such that (x) holds.

It seems improbable that we can discover a genuine effective membership test which
will decide by a finite computation whether an arbitrary given x is or is not a member
of G. In fact, even if G = (0,1) and it just so happens that x = 1, we will never be
able to assert with certainty that x ¢ G by looking at the approximations g;.

This argument suggests that open sets are “simple” because they are “semieffective.”

One factor we did not consider is the complexity of the function

1 (ay.by,).

Suppose, for example, that (po. qo). (p1.¢q1). ... is an effective enumeration of all open
intervals with rational endpoints and put

(ay.by) = (pn-qn) if f(n.x1....,x;) # 0 for all integers xi.. .., x.
e (0.1) otherwise.

Suppose further that £ (n.x;....,x;) = 0 is a hopelessly complicated Diophantine
equation which cannot (apparently) be solved by any of the standard methods. To
verify that a, < x < b,, we must first find out if f(n, x|.....x;) = 0 has solutions,
or else we do not even know whether (a,.5,) = (p,.q,) or (a,.b,) = (0,1). Here

87
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the “semieffective” membership test for G = J,(a,.b,) breaks down at the very
beginning—we do not know for what intervals (a. b) we should attempt to verify that
a<x<b.

Of course thisis a perverse example. The open sets that occur naturally in mathemat-
ical practice are almost always of the form | J, (@,. b,) where the function n — (a,. b,)
can be computed by some explicit or recursive procedure.

An open set G is semirecursive if G = |, (a,. b,). where the function n — (a,. by)
is computable. To make this precise, we will appeal to the Church-Turing Thesis, one
of the central discoveries of modern mathematical logic. This identifies the intuitive
notion of a computable function on the integers with the precise, mathematical concept
of a recursive function.

The semirecursive pointsets are just the effectively described open sets, those open
sets for which the procedure described above can in fact be carried out. They include
almost all open sets one is likely to encounter in analysis or topology. Starting with
them, we will define effective Borel and Lusin pointclasses and develop an interesting
and non-trivial refinement of the theory in Chapter 1.

Using semirecursive pointsets one can also introduce in a natural way, recursive
functions

f:xXx=Y)
on product spaces. Intuitively, f is recursive if we have an algorithm which given
(sufficiently close approximations to) x produces (arbitrarily accurate approximations
to) f(x). Every recursive function is continuous, but not vice versa. Again, every
special continuous function that one is likely to meet in ordinary mathematical practice
is in fact recursive.

It is obvious from these remarks that we will study recursion theory as an effective
version, a refinement of pointset topology.

One of the most fascinating aspects of this approach is that it leads naturally to
an effective descriptive set theory on the space w. Contrary to our promise in the
introduction to Chapter 1, we have said nothing about definable sets of integers. Every
subset of w is open, so the Borel and Lusin pointclasses trivialize on this space. On
the other hand, there are only countably many semirecursive pointsets and recursive
functions. It turns out that the effective Borel and Lusin pointclasses yield interesting
and non-trivial hierarchies of subsets of w.

As a matter of fact, the theory for @ was developed by Kleene in the period 1940-
1955 (roughly) entirely independently of classical descriptive set theory. Similarities
and analogies between the two theories were then noticed, particularly by Addison
who initiated the development of the unified treatment we are presenting here.

It should be emphasized that the effective theory is not only interesting in its own
right—it is also a powerful tool for studying the classical Borel and Lusin pointclasses.
Some of the most important recent results about projective sets depend essentially on
the use of recursion theoretic concepts and techniques.

The development in this chapter is brief but totally self-contained, i.e., it presupposes
no knowledge of logic or recursion theory. Consequently, the reader who is well versed
in these subjects should skip much of'it, particularly Sections 3A and 3F which establish
some of the standard results about recursion on . On the other hand, the reader with
no experience in recursion theory should go carefully over 3A and do all the exercises.
These give a stock of recursive functions which we then use constantly and without
apologies or special reference.
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3A. Recursive functions on the integers'!)

Consider the following “constructive” schemes for defining a function f with integer
arguments from given functions.
Composition. Given g1(x), g>(x)....,gn(x) and h(ny....,n,), define f by
f(X):h(gl(X),gz(X) ===== gm(x))'
Here and in the equations below x varies over o,
x = (x1.....x) € &F

and all functions take integers as values.
Primitive recursion. Given g(x) and h(u, n, x), define f (n, x) by the recursion

f£(0,x) = g(x).
fn+1.x)=h(f(nx).nx).

It is clear that f is determined by these two equations if g and / are given. One
example of primitive recursion is the usual definition of the addition function,

{f<o., m) =m,

fm+1.m)= f(n.m)+1.

One proves easily by induction on 7 that for all m,
f(n.m)=n+m.

The definition can be brought to the standard form of primitive recursion that we
listed above if we take

g(m)=m
h(u,n,m) =u+ 1.
Another example is the usual definition of multiplication from addition,
f(0.m) =0,
fm+1.m)= f(n.m)+m.

Again it is obvious that

f(n.m)=n-m
and we can put this recursion into the form above by choosing
g(m) =0

h(u,n,m) =u+m.

There is a simpler kind of primitive recursion appropriate for defining functions of

one variable,
£(0) = wy.
fn+1)=h(f(n).n).

For example the predecessor function

n—1 ifn>0,
d = ’
pd(n) {0., ifn =0
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can be defined this way,
pd(n+1) =n.

We will include this simple scheme when we talk of definition by primitive recursion.
Minimalization. Suppose g (n, x) is such that

{pd(O) =0,

for every x there is some 7 such that g(n, x) = 0.
Put

S (x) = punlg(n.x) = 0]
= the least number z such that g(n, x) = 0.
We called these schemes constructive because they give us a direct way of computing
the values of the new function f in terms of the values of the given functions. For

example, if f is defined from g and / by primitive recursion, to compute f (2, x) we
successively compute

J(0.x) = g(x) = w.
S (1. x) = h(wo.0.x) = wy.
f(2,x) = h(wl, l,x) = w3.

Similarly, if f is defined from g by minimalization, to compute f (x) we successively
compute

200, x),g(1.x).g(2,x), ...
until we find some w such that g(w, x) = 0; we set

flx)=w
for the first such w.

The intention is to call a number theoretic function recursive (or computable) if we
can define it by successive applications of these three simple schemes. Of course we
must have some simple functions to start with, and for these we choose the following
completely trivial functions.

Shn)=n+1 successor
Ch(xp.....xp) =w constant w, as a function of k arguments
PA(xp. ... x) = x; projection in the i’th component, 1 <i < k.

Of these, the projection P! would be better named the identity function, P} (n) = n.

Now, a function is recursive if it can be defined by successive applications of com-
position, primitive recursion and minimalization starting with the functions S, Cé‘},
P¥. More precisely, the class of recursive functions is the smallest collection of number
theoretic functions which contains the successor S, all constants CX and projections P¥
and which is closed under composition, primitive recursion and minimalization.

For example, to prove that addition
fn.m)=n+m
is recursive, it is enough to show that g and % are recursive, where
g(m)=m
h(u.n,m) =u+ 1,
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by the argument above. But g = P! and
h(u,n.m) = S(P;(u.n.m)).

so /& is recursive as the composition of recursive functions.
Similarly, to show that multiplication

f(mn.m)=n-m
is recursive, it is enough to show that g, / are recursive, where

g(m) =0

h(u,n,m) = u + m.
Again, g = C§ and
h(u.n.m) = P} (u.n.m) + P3(u.n.m).

so h is recursive as the composition of +, P} and P3.

The Church-Turing Thesis is the metamathematical claim that every number the-
oretic function which is intuitively computable is in fact recursive. By “intuitively
computable” we mean that there is an effective, uniform method for computing f (x)
once we are given x.

To justify the Thesis, one must make a deep and detailed study of the class of
recursive functions as well as a careful analysis of the notion of “effective method” or
“algorithm”. Books on recursion theory take great pains to do this carefully. We will
not do it here, as it would take us far afield from our central interest in the study of
pointsets.

From the strictly technical point of view, the Church-Turing Thesis is irrelevant—
one always works with the precise concept of recursiveness rather than the vague
notion of intuitive computability. After all, no one takes great pains in the classical
theory to justify starting with the open sets—it is taken for granted that these are the
simplest sets we can think of. The Church-Turing Thesis becomes important when we
attempt to draw foundational or philosophical inferences from technical results—and
in those instances one should explicitly bring it in as a consideration.

We will need to know that a great many functions are recursive. This is the point of
the lengthy list of exercises in this section. One should look at these problems much as
one looks at the basic limit theorems in Calculus—the limit of a sum is the sum of the
limits, etc. They are mostly used to prove that various functions are continuous. After
a while, one gets a certain intuitive understanding of continuity and seldom bothers to
give a detailed £-0 argument. Here too, after these exercises, we will often assert that
“obviously f is recursive” without a proof. The implication is that the recursiveness
of f can be established routinely by the methods of this section.

A k-ary relation on w, P C ¥, is recursive if its characteristic function xp 1S

recursive, where
(x) = 1. if P(x),
AP N0, it -P().
Intuitively, P is recursive if we have an effective way of deciding for each x whether

P(x) of =P (x) holds—we simply compute y»(x). Recursive relations are also a good
tool to use in proving that various functions are recursive.
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Exercises

3A.1. Prove that if g(x) is recursive, where x varies over w* and f (x, y) is defined
by

fxy)=gx).
with y varying over ', then f is recursive. (Addition of inert variables.)
Prove that if 7 is a permutation of {1,.... k} and g(x1,....xx) is recursive, then so

is f defined by
fxnox) = g0y X))
(Permutation of variables.)

HinT. Use composition and projection functions. -

3A.2. Prove that the following functions are recursive.

(*1) fle,n)=k" (=1ifk=n=0).
HinT. By 3A.1 it is enough to show that
glnk)=k"

is recursive and for this we have the primitive recursion
g(0.k) =1,
gn+1.k)=g(nk) k=h(gnk).nk).
where
h(unk)=u-k
is recursive by 3A.1, since multiplication is recursive. -
We will not bother to indicate the necessary application of 3A.1 in the hints below.

(*2) k~n= {ﬁ " ii i : (arithmetic subtraction)
HiINT.
k=0=k,
{k—(n+l):pd(k—n) H
(*3) max(xi,...,x;) = the largest of xi. ..., x.

HiNT. Use induction on k to prove that each of these functions is recursive.

max(xy, x2) = (x1 = x2) + X2,
max(xy. . ... Xg. Xep1) = max(max(xy. ..., xg). Xgp1). .

(*4) min(xi, ..., x;) = the smallest of xq.. .., x.
HINT. Asin (*3), starting with

min(xy, x2) = x1 + x» — max(xy, x»). -
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0, ifn=0
*5 _ 4 4
5) sgln) {L ifn > 0.
HINT. sg(n) =1 (1= n) =
I, ifn=0
*6 <o _ 4 4
6) sgln) {Q itn > 0.
HINT. 5g(n) = 1= n. -
(*7) |n — k| = absolute value of the difference of n, k
=(m=k)+ (k= n).

the unique ¢ such that forsome r < k,n =gk +r, ifn>k>0

(8) [n/k] = {

HINT. [n/k] = sg(k) - uq[(n - gk) = (k = 1) = 0] - 5g(k — n). -

0, otherwise.

(*9) rm(n. k) = {the unique r < k such that for some g.n =gk +r, ifn k > 0,
0, otherwise.
HINT. rm(n. k) = sg(k) -3g(k = n) - [n - [n/k]- k] + sg(k = n) - n. -
3A.3. Prove that the relations
n=m, n<m n<m

are recursive and that the class of recursive relations is closed under the operations —,
< < . . . .
& .V, =, 3=, V= and substitution of recursive functions.

HiNT. The first assertion is trivial, e.g., the characteristic function of = is
x=(n.m) =sg|n — m|.
Closure under the propositional operations is also easy, e.g., if P(x), O(x) are given
and
R(x) <= P(x)&Q(x).  S(x) <= P(x)VO(x).
then
XR(X) = XP(X) 'XQ(X),.
x5 (x) = sg(xp(x) + xo(x)).
IfpP = EISQ, so that
P(x.n) < (3m <n)Q(x.m),
define yp(x, n) by the recursion

1p(x.0) = x0(x.0).
xp(x.n+1) = sg(xp(x.n) + zo(x.n +1)).
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Finally, if
P(x) <= O(f1(x)..... fm(x))
with the f; recursive, then

1p(x) = xo(f1(x)..... fm(x)). -
3A.4. Prove thatif Pi(x)..... P, (x) are recursive relations and f(x),.... f(x).

fm+1(x) are recursive functions, then f defined below by cases is recursive.
f1(x). if P1(x).
fa(x). if =P1(x) & Py(x),
flx)=X... o
fm(x) if—\Pl(.X)&—\Pz(.X)&"'—\ m_l(X)&Pm(X),
fms1(x), otherwise.
HinT. Taking m = 1 with P = Py,
S (x) = f1(x)sgrp(x) + f2(x)sgxr(x). n
3A.5. Prove that f : w* —  is recursive if and only if the graph of /. Graph(f) =
{(x.n): f(x) = n} is recursive.

This trivial observation is a very useful tool for proving the recursiveness of functions
using 3A.3 above.

3A.6. Prove that the following functions and relations are recursive.

(*10) Divides(m,n) <= n divides m.

HiINT. Divides(m,n) <= rm(m.n) = 0. -
(*11) Prime(m) <= m is a prime number.

HiNT.

Prime(m) <= m > 1& (Vn < m)[-Divides(m.n)Vn=0Vn =1V n =m].
The relation
P(m,n) <= —Divides(m.n)Vn=0Vn=1Vn=m
is obviously recursive, hence so is Q(m, k) defined by
O(m.k) = (Vn < k)P(m.n).
Now
Prime(m) < m > 1& Q(m, m).

This is the standard way of treating restricted quantifiers which are applied simulta-

neously with various substitutions. -
(*12) p(i) = p; = the i’th prime.
HinT.

Po=2.
piv1 = un[Prime(n) &n > p; + 1]. 4
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(*13) <t09~~-stn—l> :p(t)()+1 ..... pt,,_1+1.
Recall that this is defined even when n = 0,
()=1

HinT. There are infinitely many functions here, one for each n. Show by induction
on n that each is recursive,

<to,...,l,,>=<to,...,l,,_1>'p,t1"+1. -
(*14) Seq(u) <= forsometg,....ty 1, u = {to,....ly_1).
HinT.
Seq(u) <= u>0& (Vm < u)(Vs <m)
{[Prime(m) & Prime(s) & Divides(u, m)] = Divides(u, s)}. -
(*15) Ih(u) = n, ifu= t,...,t,—1) forsomen > 1,
0, otherwise.
HinT.

Ih(u) =n <= [(u=1V-Seq(u)) &n = 0]

V[Seq(u) & u > 1 & (Vm < n)Divides(u, p,,) & —-Divides(u, p,)]. -
ti, ifu={ty,....1,—1) forsomety,...,1,_|
(*16) (u); = and0<i<n-—1,

0, otherwise.
HinT.
(u); = t <= [Seq(u) & i < Ih(u) & Divides(u, p!*!)

& —Divides(u. p/*?)] v [(=Seq(u) Vi > 1h(u)) &t = 0]. .
(*17) ult="{(uo,....(u)_1)
HiINT.
ult=z <= Seq(z)&lh(z) =t & (Vi < t)[(z); = (u);]. =
(*18) uxv = (o ....( ke -1, o (Vi) = 1)-
HiNT. Show that the graph is recursive. -

The functions in *13 — *18 allow us to deal effectively with finite sequences of
integers.
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3A.7. Suppose g(u, x) is recursive and f (n, x) satisfies the equation

f(n.x)=g({(f(0.x)..... f(n = 1.x)).x).

where for n = 0, () = | by convention, so

f0.x) =g(1.x).
Prove that f is recursive. (Definition by complete recursion.)

HINT. Define /4 (n., x) by the primitive recursion
{h(&x) = (g(1.x)).
h(n+1.x) =h(n.x) = (g(h(n.x).x))
and verify that
f(n.x) = (h(n.x)),. .

3A.8. Suppose g1, h1, g2, hy are all recursive and ', f» are defined by the simulta-
neous recursion

f100.x) = gi1(x). £2(0.x) = ga(x),
filn+1.x) =h (f1(n.x). f2(n.x).n x)
f2n+1.x) =h(f1(n+1.x), fo(n.x).n x).
Prove that both f| and f, are recursive.
HinT. Show that the function

f(n.x)=(f1(n.x). f2(n.x))
1S recursive. a

3A.9. Enumerate the rational numbers by the function
P, D1
(i)2+1

Prove that addition is recursive in this coding of the rationals, i.e., there is a recursive
f(i. j) such that

Ti H T =T
Do the same for subtraction, multiplication and division, where for simplicity
T

—=0.
0 -

3B. Recursive presentations

Suppose 91 is a Polish space with distance function d. A recursive presentation of
M is any sequence

{r(), re,... }
of points in 9 satisfying the following two conditions.
(1) The set {rp,ry, ...} is dense in OM.
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(2) The relations

E

P(i. jym k) <= d(ri.r;) < T
. m
0(i.jomk) < d(ri.r;) < T

are recursive.

Not every Polish space admits a recursive presentation—but every interesting space
certainly does. Consider first the basic examples w, R, NV, C.
In the case of @ we have the trivial distance function

. 0, ifi=j
d(i.j) = !
1, ifi #j.
Take r; = i so that

m
) < ——— =i 1<
d(l'])_kJrl — [i=jVk+1<m,

d(i, j) < — [i=jVk+1<m].

m
k+1

For the real numbers, choose any effective enumeration of the rationals, where
repetitions are allowed, e.g.,

o,
(i)2+1
Proof that this is a recursive presentation is routine by the methods of 3A.
For Baire space, recall that

ri = (-

0, ifa=p.
d(a, ) = 1 .
ifa :
wnfaln) £ py+1 107
Here we need an effective enumeration of all ultimately zero sequences of integers,
e.g.,

ri (l’l) = (l)n .
Again, the fact that this is a recursive presentation is easy.
Similarly, for the Cantor set C we take all ultimately zero binary sequences,

ri(n) = sg((i)n).
(For the definition of sg see (*5) of 3A.2.)

Recall that in Section 1B we fixed once and for all a collection F of basic spaces
including w, R, A and C. We now assume further that we are given a fixed recursive
presentation

{rém, rlm, .
for each basic space M. For w, R, N and C we take the presentations given above.

Suppose X = X; x .-+ x X} and we are given metrics dj,...,d; and recursive
presentations {rl,ri....}. {rd.r}.... }.... of the spaces Xj. ..., X;. Itis well-known
that the function

d((er,ooxg). (x1. .o xg)) = maximum{d; (xp. xq). . . .. di (X, x3) }
is a metric on X which generates the natural product topology. For each i € w, put

— (1 k.
ri = (e G, )
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we leave it for 3B.3 that {ro, |, ...} is a recursive presentation of X" with this metric.

We now have a fixed recursive presentation for each product space. If X is a basic
space, xo € X and p is any rational number > 0, let B(x. p) be the open ball with
center x( and radius p,

B(xo.p) ={x € X :d(x.x0) < p}.

Taking {ro, r1. ...} to be the fixed recursive presentation of X, put for each s € w
(s)
B, = B(X. :B( . 7)
: ( S) r( Jo (S)z + 1
Clearly By. By, ... is an effective enumeration of a basis for the topology of X'. Notice

that the empty set occurs in this enumeration. In fact, B; = () whenever (s); = 0, in
particular
By =0.

For product spaces it is easier to work directly with the natural nbhd basis for the

product topology. Foreach X = X} x --+ x X} and each s € w, put
N = N(X,S) = B(X], (S)1> X B(Xz, (S)z) X X B(Xk, (S)k)

& - &xi € B(&)k}.
Now Ny, Ny, ... is an effective enumeration of a nbhd basis for the topology of X.
Notice again,

={(x1.....x¢) : x1 € B

$)1

No=0.

In several constructions in the first two chapters we used some enumeration of a
nbhd basis for the topology of a product space. We now fix once and for all the
canonical basis of nbhds

N(X,0).N(Xx.1)....
associated with the fixed recursive presentation of X .

Sometimes we need a center and a radius for the basic nbhds, as we described and

used these in Section 1A. We naturally put

center(N,) = r; = (r(ll.)l,...,r{‘m),
where
(i = ((5)1)0 (= ((S)k)o
and
radius(N;) = maximum{pi...., pi}.
where

((5)1)1 o ((S)k)l

Plzmw...,pk—m.

There is one slight annoying technical detail we should clear up here. We have
identified each basic space X with the “product space” X = X whose only factor is
X . Now we have described two bases for the topology of X, the sequence

B(X.0),B(X.1),...
of open balls, thinking of X as basic, an the sequence
N(X,0),N(x,1),...
of “products of one factor,”
N(X,s) = B(X.(s)).
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Of course the bases are identical, but the enumeration is different as the last displayed
equation plainly shows. Notice also that
B(X.s) = N(X,(0,s)).
We need two simple lemmas to deal effectively with these codings.

3B.1. LEMMA. For any two product spaces X, Y, there are recursive functions f, g, h
such that

N(X.s) x NYV.1) = N(X x Y. f(s.1)).
N(X xY.s)=N(X.g(s)) x N(V.h(s)).
PrROOE. If ¥ = X; x--- x Xpand Y = Y| x --- x Y, then
N(X x Y.s) = B(X1.(s)1) x -+ x B(Xg. (s)k)
X B(Y1. ($)ks1) % - x B(Y. (8)ks1):
from this follows immediately that we can take
Fls.1) =(0.()1. oo (). (D1 (1),
g(s)=(0.(s)1.. ... (s)k).
hs) = (0. ()it ()i E
The second one is a bit messier.
3B.2. LEMMA. For each product space X, there is a recursive function f such that
N(X.s)NN(X.t) =, N(X. f(s.t.n)).
Similarly, there is a recursive function g, such that
Nicm N (X, ()i) =U, N(X.g(u.m.n)).

Proor. We show the second assertion first.
Let X be a basic space with the recursive presentation {rop,r;,...} and suppose
B(xo. po).....B(x,. pm) are m + 1 open balls in X. Then

x € B(xo,po) "=+ N B(Xp. pm) <= (Hi)(3k>{d(ri,x) < <k(>]§)i1
&d (xp.1;) < po — (k()]z%& e &d (X 11) < po— (k(;z%}
the implication from right to left is trivial, while if the left-hand side holds, then
A= {z 1 (3k) {d(z,x) < (k()l;)Jlr .
&d(x0.z) < po — (k()lz)—:-l& o &d (X 2) < po— (k()];)_:_l]}

is open and non-empty (since x € A), so A must contain some r;. Using this
equivalence and the definition of a recursive presentation, it is easy to see that there is
a recursive relation P(s, m, n) such that

x € B(X,s0)N---NB(X,s,) < (Fn)[x € B(X.n)&P({so,...,8m),m n)],
1.€.,
(%) ﬂigm B(X.s;) =U,{B(X.n): P((so.....8m). m.n)}.



100 3. BASIC NOTIONS OF THE EFFECTIVE THEORY [3B.3
Suppose now that
X = Xl X oo X Xk

and let Py, ..., P; be recursive relations so that (x) holds with X7, ..., X} respectively.
Using the definition of the coding, we compute:

Niam N (X @0)1) = Ny [B (X0 (001),) %+ % B(Xie (), )]
= [Nicn B (X0 (@)1),)] %+ [N B (X (@),

Now foreach j =1,....k,

i B (X5 (@)),) = U {BOG ) < Py (@) .. () )mm) }
= U, {B(X;.n): P;(u.m,n)}
with an obvious recursive Pz, hence
Ni<m N (X (w)i) = U, {BX1.7) : P} (u.m.n)}]
X oo X (U {B(Xk.n) : Pi(u,m,n)}]
=U, {B(X1.(n)1) x -+ x B(Xi. (n)i) :
Pi(u.m, (n)) & -+ &P (u.m.(n);)}
=U AN(X.n): P*(u.m.n)},
with some recursive P*. The result follows by setting

n, if P*(u,m,n),
g(u.m.n) = .
0, otherwise.

The first assertion follows immediately, taking

S(s.t.n) = g({s.1). Ln). ;

Exercises

3B.3. Prove that if {r({, r{ ....} is a recursive presentation of the space X; for j =
1,....k, then the sequence

1 2 k
ri = (o P+ i)

is a recursive presentation of X = X x - -+ x Xj.
HINT. You must show that the relation
m
P(i,joml) < d(rj,r;) < ——
Gijom.1) = d(rr)) < 72
— maximum{d(r(li)l,r(lj)l),...,d(r(kl.)k.,ré‘j)/)} < 7

is recursive, and similarly with <. See 3A.9. -
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3B.4. Let X = X; x --- X X} be a product space and let N, = N (X, s) be the basic
nbhd with code s € w. Prove that the relations

. m
P(s,m.l) <= radius(N,) < 1
O(s,m.l) <= radius(Ny) < m
[+1
are both recursive.
Prove also that
center(Ny) = 1y
where {ro, r1, ...} is the recursive presentation of X and f" is some recursive function.

3B.5. Prove that there are recursive functions g : @ —  and & : @* — o such that
ae NWN.s) < ((s)1), #0& (Vi < g(s))[ali) = h(s.i)].
HiNT. The idea is that by the definitions,
BN, 1) =10 if(£); =0
and for (¢); # 0,
BN, t) ={a:a(0) =kp.a(l) =ki,....a(l = 1) =k;_1}
with [, ko, ..., k;_; effectively computable from r—where in the case / = 0, we have
B(WN.t) = N. Write
I=1(),
ki =k(t.i)

with suitably recursive functions and take

g(s) =1((s)).
h(s.i) =k((s)1.0). .

3B.6. Find a recursive presentation for your favorite perfect Polish space, e.g.,
C[0,1] or H[0, 1], as we defined these in the exercises of 1A.

3C. Semirecursive pointsets?>)

A pointset G C X is semirecursive if
G=U,N(X.en))
with some recursive irrational €, 1.e., with an irrational € such that the function
n—en)

is recursive. Intuitively, G is semirecursive if it can be written as a recursive union of
basic nbhds.

The definition suggests that the pointclass of semirecursive sets depends on the
particular coding of basic nbhds by integers which we fixed. We will see in the exercises
that this is not so. It is obvious, however, that the notion of semirecursion depends on
the particular recursive presentations of the basic spaces which we adopted.

It is natural to consider the family of all semirecursive subsets of X" as a recursive
topology on X. It is not closed under arbitrary unions, but it has strong closure
properties, as we now proceed to show.
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IfX =X x---x X, let
T . X — X,’
be the projection function,
(X1, .o X)) = X4
A function
fX=>Y=Yx---xY]
is trivial if there are projection functions
f1: X—=Y.,....f1: X =7
such that
Sx) = (N1(x). .. f1(x).
For example, the map
(1. 22, X3, X4) — (X2, %1, x1)
of X1 x X5 x X3 x Xy into X> x X7 x Xj is trivial.
3C.1. THEOREM. The pointclass of semirecursive sets contains the empty set, every
product space X, every recursive relation on w* . every basic nbhd N (X . s) and the basic
nbhd relation
{(x.5) :x e N(X,s)}

for each X: moreover, it is closed under substitution of trivial functions, & . V. 3=,
VS and 3°.
Proor. Notice first that if
P=U{N(X.f(n)):P*(n)}
where f is a recursive function and P* a recursive relation, then P is semirecursive,
since
P=,N(X.e(n))

with

0 otherwise.

cn) {f(n) if P*(n).

This will help a little in the computations below.
Clearly

0=U,N(x.0).
X=U,N(X.n).

so both () and X are semirecursive.
By the definition of the coding of nbhds in w,

Blo. (i.1.1)) = {m:d(m.i) < 1%1} Y

hence each singleton is a basic nbhd in w*:
{(ny,....n1)} = N(a)k, <0, (n, 1,1), 000 (g, 1, 1>>)

SO R is semirecursive.
Again,
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so N (X, s) is semirecursive since the constant function n — s is recursive. To check
that {(x,s) : x € N(X,s)} is semirecursive, notice that

N(X.5) x {s} = N(X.s) x N (. (0. (s. 1, 1)))
= N(X x o, f(s.(0, (s. 1. 1>>))

using the recursive function f* of 3B.1, so that

{(x.5):x e N(X.s)} =, N(X X wf(s <0, (s, 1, 1>>))
Going to the closure properties, suppose first that
P=U,N(X.a(m). ©0=U,N(x.8m)
with both « and f recursive. Then
Uy N (X a(m)] U [U, N(X.B(m))] = U, N(X.7(1)).
where y enumerates the union of the sets enumerated by o and £,
y(2k) = a(k).
y(2k + 1) = p(k).
Similarly,
PﬂQ: [U”N(X,Oé( )] [ (Xﬂ )]
= Upm [N (X, () O N (X, p(m))]
= Uy ¥ (. 1 (aln). BOm). 5) )

where f is the recursive function of 3B.2; thus

PO =U,N (.1 (a((t0).p((00). (1):)).

and P N Q is semirecursive. This establishes closure under V and &.
To prove closure under 3%, suppose

P(x) < (Im)O(x.m)
and

0=U,N(X xw.cen):
then

P(x) < (3m)(3n)[(x.m) € N(X x w.e(n))]
= @m)En)|[x e N(X.g(em)) &m e N(w.h(en))]
where g, & are recursive by 3B.1. The relation
R(m.n) < m¢e N(w,h(s(n)))
is easily proved recursive, so we have
P(x) = @)|x e N(X.g(=(())) &R((D1.(1)s)]

and P is semirecursive.
Suppose that
fiXix o xXe =Y



104 3. BASIC NOTIONS OF THE EFFECTIVE THEORY [3C.1

is trivial, that is
S coxe) = (.. xg)
where the numbers iy, ..., i; are between 1 and k. If
Q=U,N(Y.cn)
and
P(x) <= 0(f(x)),

then:
P(xi.....x) <= (@n)[(xy.....x;) € N(V.e(n))]
< (3n) [xil € B(Xh, (6(n))1) & - &x; € B(Xi,, (6()1))1)}
For fixed j, easily
x; € B(X;.m) < (3r)[x; € B(X1.(t);) & --- &x; € B(X;.m)
& - &xi € B(Xk., (l)k)]
= (3)[(x1.....x) e N(X. f;(m.1))]
with a recursive function f';; using the argument which established that {(x.s) : x €
N(X,s)} is semirecursive, it is easy to verify that each relation
Rj(xi.....x.m.1) <= (x1.....x¢) € N(X. f;(m.1))
is semirecursive, so by closure under 3 we have
P(xi,....x) < @n)[R} (x1.....x.0)& -+~ &R;;(xl, e Xan)]
with suitable semirecursive R}, .... R}, and P is semirecursive by closure under &
and 3%.
At this point it becomes easy to combine the results we already have to prove closure
under 35, V=,
If
P(x.n) < (Fi <n)0(x.i)
with Q semirecursive, then
P(x.,n) < (Fi)[i <n&O(x.i)]
< (Fi)[R(x.n.,i)&S(x.n.i)]
where
R(x.ni) <= i<n,
S(x,ni) <= O(x.i),
are both semirecursive by closure under the trivial substitutions
(x.n.i)w— (i,n), (x.,ni)— (x,i)
and the semirecursiveness of < and Q. Now use closure under & and 3“.
Similarly, if
P(x.n) < (Vi <n)0O(x.i)
with
0=U, N(X xw.c(m)).
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< (Vi <n)(3m)[(x.i) € N(X x w.e(m))]
— (Fs)(Vi < n)[(x,i) € N(X X a),s((s),-))}

— (Fs)(Vi <n)[x e N(X. f1(s.i)) &i € N(w. f2(s.1))]
with f. f» recursive by 3B.1; thus

P(x.n) <= (3s)@Fu){(Vi <n)[f1(s.i) = ()]
& (Vi < n)[x € N(X.(u);)]1& (Vi < n)[i € N(w. f2(s.1))]}.
Now using 3B.2 and rearranging,
Plx.n) <= (B3u)(39)|@0)[x € N (X.g(u.n.1)] & R(n.s. )]
with a recursive function g and a recursive R, i.e.,

P(x.n) <= (Fu)3s){(F)3m)[m = g(u. n, 1)
&x € N(X.m)|&R(n, s, u)}

so P is semirecursive by the closure properties we have established already. -

The proof of 3C.1 was messy, because we were forced to deal directly with the coding
of nbhds. In the sequel, we will be able to give fairly simple proofs of semirecursiveness
by applying 3C.1 and the remaining results of this section.

It is worth emphasizing the usefulness of closure under trivial substitutions, which
allows us to identify, permute or introduce new arguments in relations. For example,
suppose

P(x,y.x) <= (3n){0(x.n)&R(n,y.z)}
with 0, R semirecursive; then
P(x,y.z) <= (3n){0*(x.y.z.n) & R*(x,y.z.n)}
with

O*(x,y.z,n) <= Q(x.n),
R*(x,y.z,n) < R(n.y.z)

and since both Q* and R* are semirecursive by closure under trivial substitutions, so
is P by closure under & and 3”. In Section 1C we were appealing to closure of the
finite Borel classes under continuous substitution to do this kind of computation.
We will see in 3D.2 that the pointclass of semirecursive sets is closed under substi-
tution of recursive functions on product spaces, which include the trivial functions.
Let us call a product space X of type 0 if X = w* for some k. These are the discrete
product spaces. A pointset P is of type 0 if P C w* for some k.

3C.2. THEOREM. A pointset P C o* of type 0 is semirecursive if and only if there is a
recursive relation R C o**! such that

P(x) < (3n)R(x.n).

Moreover, P is recursive if and only if both P and —~P = * \ P are semirecursive.
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PROOF. Assume first that P C w* is semirecursive,
P =J,N(of e(n)).
with e recursive. Then
P(xi.....x;) < (3n)3Bm)e(n) =m& (x1.....xr) € N(w*, m)]
so P is of the required form, since the relation
S(xt.....xe.m) <= (x1.....x¢) € N(o*, m)

is easily proved recursive by direct computation.
Conversely, if

P(x1.....x;) <= (3n)R(x1.....x¢.n).
then

P=U,{N(@".(0.{((n). 1.1),....{(n)e. L.1))) : R((n)1.....(n).(n)o) }.

so P is semirecursive.
If both P and —P are semirecursive, then

P(x1.....xx) <= (@An)R(x1.....xr.n),
—P(x1.....xx) <= (3m)S(x1.....x¢.m),
with both R and S recursive. It follows that for each xi, ..., x; there is some # such

that
R(x1,....x5,n)VS(x1,...,x¢. 1),

so that the function

is recursive. Now easily
P(xl,...,xk) < R(xl,...,xk,f(xl,...,xk)),

so P is recursive by 3A.3. =

A pointset P C X is recursive if both P and =P = X'\ P are semirecursive—Dby 3C.2
this definition agrees with the one we already have for pointsets of type 0.

When we define recursive functions on arbitrary product spaces in 3D, we will
verify that P is recursive precisely when its characteristic function yp is recursive.
These pointsets are clopen, so they are trivial in connected spaces like the reals. They
are very important in studying products of w and V.

A space X = X7 X -+ x Xy is of type 1 if each X; is either w or A and at least one
X; is V. Again, P is of type 1 if P is a subset of some space X of type 1.

3C.3. THEOREM. The pointclass of recursive sets contains the empty set, every product
space X, every recursive relation on w, the pointset

{la,n,w) : a(n) =w}

and for each space X of type 0 or 1 every basic nbhd N(X,s) as well as the basic
nbhd relation {(x s):x e N(x, s)}: moreover, it is closed under substitution of trivial
functions, -, &, V, 35 and V<.
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Proor. The closure properties are immediate from 3C.1 and so are the facts that (),
each X and each recursive relation on w are recursive.
Recall from 3B.5 that there are recursive functions g and /4 such that

ae NWN.s) < ((s)1), #0& (Vi < g(s))[ali) = h(s.i)].
This implies that
an)=w <= @s)la c NWN.s)&n < g(s)&h(s,n) =w]:

because the implication from right-to-left is trivial, and that from left-to-right is easy
to check if we choose s such that

a € NWN.s)& (VB € NN, s))[B(n) =w].

It follows that {(c, n,w) : a(n) = w} is semirecursive by 3C.1, and it is also recursive,
since

an) 4w <= @m)[m #w&a(n) =m].
Using again 3B.5,
ag NWN,s) < <(S)1)1 =0V (Fi<gls)Fw)al) =w&w # h(s.i)].
so {(a.s) : @ ¢ N(N.s)} is semirecursive and hence recursive by 3C.1. The cor-

responding set for w is trivially recursive, and then by 3B.1 and closure under &,
{(x.5) : x € N(X,s)} is recursive for every space X of type 0 or 1. -

The characterization of 3C.2 extends to pointsets of type 1.

3C.4. THEOREM. A pointset P C X of type 0 or 1 is semirecursive if and only if there
is a recursive R C X x w such that

P(x) < (3n)R(x.n).

ProOF. One way is immediate by 3C.1. For the converse, assume that P C X is
semirecursive with X of type 0 or 1, so that

P(x) < (In)[x € N(X.e(n))]

<« (Fn)3m)e(n) =m&x € N(X.m)]

< (31)[e((t)o) = (1)1 &x € N(X.(1))]
with a recursive €. Thus it is enough to show that the relation

S(x.1) <= x e N(X.(1))
is recursive when X is of type 0 or 1; it is by 3C.3, since
S(x.t) <= @m)[(t)y =m&x € N(X.m)].
=S(x, 1) <= @m)[(t); =m&x ¢ N(X,m)]. -

This simple characterization cannot be extended to arbitrary spaces, since it implies
that a semirecursive set is a countable union of clopen sets,

{x:(3n)R(x.n)} =,{x: R(x.n)}.

We list for the record some similar, simple normal forms in arbitrary product spaces
which are sometimes useful.
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3C.5. THEOREM. A pointset P C X is semirecursive if and only if there is a semire-
cursive P* C w such that
P(x) < (3s){x e N(X.s) & P*(s)}.

More generally, P C X x Y is semirecursive if and only if there is some semirecursive
P* C w? such that

P(x,y) < (Fs)@){x e N(X.s)&y e NV.t) & P*(s.1)}.

More specifically, P C w x X is semirecursive if and only if there is a semirecursive
P* C w? such that

P(n,x) < (3s){x e N(X,s)&P*(n,s)}.
PrOOF is implicit in many of the constructions we have been making, particularly

in the proof of 3C.1. To take just the last assertion, it is obvious by 3C.1 that any P
satisfying such an equivalence is semirecursive. Conversely, if

P(n.x) <= (3m)[(n.x) € N(w x X,e(m))]

with a recursive ¢, then by 3B.1
P(n,x) <— (Elm){n € N(a)g(s(m))) &x ¢ N(X,h(s(m)))}

with recursive g, /1, so
P(n, x) <— (Els){x € N(X.s)
& (Im) {s =h(e(m))&n e N(w,g(e(m)))} }

which is the required representation, since the second conjunct within the braces is
obviously semirecursive. -

Exercises

3C.6. Prove that for each X, the relation Q C X x X,
Ox.y) <= x#y

is semirecursive.
HiINT.

x#y <= (35)3t){x € Ny&y € N,
& radius(Ny) + radius(N,) < d (center(N;). center(N,)) }. =

3C.7. Prove that if X' is of type 0 and f : X — w is a function, then f is recursive
if and only if the graph of /. Graph(f) = {(x.n) : f(x) = n} is semirecursive.
HINT. If £ is recursive, use 3C.1 and 3A.5. If Graph(f) is semirecursive, then
by 3C.2
f(x)=m < (3n)R(x.m.n)
with R recursive and

S () = (nR (x. (). (n)) ) '

0

This exercise is often a useful tool for proving that specific functions are recursive.
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3C.8. Prove that a set 4 C w is semirecursive if and only if 4 = () or there exists a
recursive function f : w — @ which enumerates A, i.c.,

A={f00).£(1).f2)....}. B

Because of this result, semirecursive subsets of w are usually called recursively
enumerable.

3C.9. Let X be a product space with fixed recursive presentation {rg, ry,... }. Prove
that the relations
. m
P(x.i,m.k) < d(x.r;) < ot
Q(x 1 m,k) T k—H < d(X,Vz)
are both semirecursive.
HiNT.
m
d(x, Vl‘) < m
— (Fs) [x € N, & center(N,) = r; & radius(N,) < L}
k+1
m
d(x, V,') > m
— (3s) [x eEN,& kiﬂ + radius(N,) < d(r,—,center(Ns))] 4

3C.10. Let X be a product space. Prove that the relations
m
Plx,y.mk) < d(x,y) < T

m
Ox.y.m.k) < d(x.y) > il

are both semirecursive.
3C.11. Prove that the relation x < y on the reals is semirecursive.

3C.12. Prove that the collection of semirecursive sets is the smallest pointclass
which contains all recursive pointsets of type 0 and for each basic space X the relation
PY¥ C X x ?,
m

< —,
k+1
and which is closed under trivial substitutions, &, V. 3=, V< and 3.

HINT. It is enough to show that for each X, {(x,s) : x € N(X, s)} must belong to
every pointclass with these properties: and this holds because

xEN(X.,s) < x| € B(Xu(s)l)& &y € B(Xk’(s)k)
= P (1) (600, (6)1),)
& &P (e ((5)6) ((9D0), ((90),). .

PY(x.i.m k) <= d(r;. x)

This problem shows that the definition of semirecursive sets does not depend on the
coding of nbhds that we chose.
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3C.13. Prove that a pointset P C X is open if and only if there is a semirecursive
0 C N x X and an irrational € such that

P(x) <= OQO(e. x). -

3C.14. Prove that the pointclass of semirecursive sets is closed under 3% for every
product space ).

HINT. Suppose P C X x ) with ) basic and P is semirecursive,
P(x.y) < (3n)[(x.y) e N(X x V.e(n))]

with a recursive €. Using 3B.1, there are then recursive functions f{, f, such that

P(x.y) = (3n)[x € N(X.£1(n) &y € N(¥.f2(n)].
so that

@)P(x.y) <= @n)|x € N(X.11(n) & @) |y € N(X.12(m)]].

But

(3y)[y e N(Y. f2(n))] <= (3y)[y € B(Y. f2(n)),]

— radius(B(sz ”))1) >0,

so this relation is recursive.
Show closure under 3% for arbitrary ) by iterating closure under 3Y for basic Y.

3D. Recursive and [-recursive functions>>)

With each function
f:xXx=Y
we associate the nbhd diagram G/ C X x w of [,
G/ (x.5) <= f(x) e N(V.s).

Clearly, G/ determines f uniquely.

We say that 1 is recursive if G/ is semirecursive; more generally, for each pointclass
I, we say that f is I'-recursive if its nbhd diagram isin I'.

If f is recursive, then we can effectively compute arbitrarily good approximations to
f(x): given n, simply search for some s such that radius(N,) < 27" and f(x) € Nj.

It is clear that this notion of recursiveness is an effective refinement of continuity.
We should point out at the outset, however, that not all “simple” continuous functions
are recursive and that some of the most elementary properties of continuous functions
do not carry over to recursive functions.

Not all constant functions are recursive—only those whose constant value can be
effectively approximated to any desired degree of accuracy. It makes no sense to
ask if “f is recursive at x.” Similarly, it makes no sense to ask whether a function
f 1 R? — R of two variables is “separately recursive.”

The more general notion of I'-recursiveness is an effective refinement of Lebesgue’s
I"-measurability which we introduced in 1G. We will see in the exercises that for
suitable I, a function is I'-recursive precisely when it is ['-measurable.

To study profitably I'-recursive functions we must restrict ourselves to pointclasses
which satisfy the closure properties of the semirecursive sets. Call I' a Z-pointclass
if it contains all semirecursive pointsets and is closed under trivial substitutions, &,
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V, EIS, V< and 3°. By 3C.1 then, the collection of semirecursive sets is the smallest
Y-pointclass and we introduce the notation

39 = all semirecursive sets.

Notice the /ightface font which distinguishes ¢ from the pointclass £ of open sets.
All £2 are Z-pointclasses, as are all £, I, A,. The multiplicative Borel classes

l;[g are not X-pointclasses.
The first lemma is simple but very useful:

3D.1. LemMa (Dellacherie). Let I be a X-pointclass. A function
SiX =Y

is T-recursive if and only if for every semirecursive set P C @ x Y. the set P/ C w x X
defined by

P/ (n.x) <= P(n. f(x))
isinI.
PrOOF. Suppose first that f : X — Y is ['-recursive and P C w x ) is Z?. By 3C.5
then, there is a semirecursive P* C w? such that

P(n.y) <= (3s){y e N(V.5) & P*(n.s)}.
so that
Pl(n.x) <= @){f(x) e N(V.5s)&P*(n.s)}
— (3){G/ (x.5) & P*(n.s)}:

thus P/ is in I" by the closure properties of a Z-pointclass.
The converse is trivial, taking

P(ny) <= ye NQ.n). =
Call a sequence Py, P, P>, ... of subsets of some X' I'-enumerable if the relation
P(n,x) < P,(x)
isin I'. Then 3D.1 says that f : X — ) is ["-recursive exactly when the inverse image
WA V) A VU O
of every X{-enumerable sequence
Py, Py, ...

of subsets of ) is a ['-enumerable sequence of subsets of X
3D.2. THEOREM. Let I be a X-pointclass.
(i) A function f : X — o is T-recursive if and only if Graph(f) € T, where

Graph(f) = {(x.n) : /(x) = n}.

(i) If X isof type 0 and [ : X — w, then f is recursive in the present sense (i.e.,
XV-recursive) exactly when it is recursive in the sense of 3A.

(iii) Suppose Q C Yy x --- x Y; and
P(x) <= O(f1(x)..... f1(x)),

where each f'; is trivial or T-recursive into w. If Q is in T, then so is P.
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PRrROOF. (i) Assume first that f is I-recursive and take
R(m,n) <= m=n;
then R is in £¢ and
f(x)=m < R/ (m.x).

so Graph(f)isinT.
Conversely, for any P C o x @ in X,

P/ (n x) < P(n. f(x))
— @m){/(x) = m&Pln.m)}.

so P/ isin T by the closure properties of a E-pointclass.
(ii) is immediate from (i) and 3C.7.
(iii) To simplify notation, suppose

P(x1.x2.x3) <= 0Q(x2.g(x1.x2.x3)).
where QisinI"and g : X x A, x X3 — w is ['-recursive. Then
P(x1,x2,x3) <= (Fm){g(x1,x2.x3) = m& Q(x2.m)}

and Pisin I by (i) and closure of I" under trivial substitutions, & and 3%. -

This simple result is very useful and we will use it constantly without explicit refer-
ence. For example, if

P(x.n.m) <= (3{Q(x.(n.m)) & f (x.(n)o) = ()1}
with Q in I" and f a I'-recursive function into w, then P is also in I', since
P(x,n.m) < 3){Q'(x,n.m.t) &R (x,n,m. 1)},
with Q’, R’ obtained from Q and
R(x.nt) <= f(x.n)=t

by suitable substitutions of trivial functions and recursive (hence I'-recursive) func-
tions into w.
Recall from 1G that with each

f:X >N
we have associated the “unfolding function”
ffiXXxow—w
defined by
[ en) = f(x)(n).
3D.3. THEOREM. Let I be a Z-pointclass.

(i) A function f : X — N is U-recursive if and only if the associated f* is T-recursive.
(i) A function f : X — Y = Y| x --- x Y; is [-recursive if and only if

with suitable T'-recursive functions f1,..., f.
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PrROOF. Assume first that /' : X — A is '-recursive and take
R(u.a) < a((u)y) = (u)i.
so that ‘
R (u.x) < f(x)((u)) = ().
Clearly R is 29 and
f*(x.n)=m <= R/ ((n.m).x).
so f*is I'-recursive by 3D.2.
To prove the converse we appeal to 3B.5 according to which there are recursive
functions g and / such that
ae NWN.s) < ((s)1), #0& (Vi < g(s))[ali) = h(s.i)].
Hence for f : X — N,
G/ (x.5) < f(x)e NW.s)
= (o), #0& (Vi< g(s))[f (x)(i) = hls.i)]
= ((s)1), #0& (Vi< g(s))[f*(x.i) = h(s.0)]
so that if f* is I'-recursive, then G/ is in I by 3D.2 again and the closure properties
of I.
(ii) is trivial. .
This result gives the easiest method for proving that a function into a space of type 0
or 1 is ['-recursive.
3D.4. THEOREM. Let I be a E-pointclass.
(i) Every trivial function f : X — Y is recursive.

() If f: X — Y is D-recursive and g : Y — Z is recursive, then the composition
h: X — Z,

is I'-recursive.
In particular, the class of recursive functions is closed under composition.

ProOF. (i) is completely trivial. To prove (ii). notice that

g(/(x)) eN(Z.5) <= [f(x)e{y:g(y) e N(Z.5)}
= G*(f(x).s).
Now G¢ is X} since g is recursive and hence so is
P(s.y) <= G*(y.s).

so that G isin " by 3D.1. -
It is not always true that the I'-recursive functions are closed under composition.
For example, all );2 are X-pointclasses and the ;g-recursive functions coincide with
the £?-measurable functions, see 3D.22: these are not closed under composition for
E> 1.
It is also not true in general that a X-pointclass is closed under substitution of
recursive functions. This is a useful special fact about XJ.

3D.5. THEOREM. The pointclass X9 of semirecursive sets is closed under recursive
substitution.
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PrOOF. Suppose P C YV is XY, so
P(y) <= (3s)ly e N(V.5) & P*(s)]
with a semirecursive P* by 3C.5, let /' : X — ) be recursive. Then
0(x) <= P(f(x)) <= @S (x) e N(V.5) & P*(5)].
and this is obviously semirecursive. -
With each pointclass I we associate the ambiguous part of ',
A=Tn-T.

3D.6. THEOREM. Let I' be a E-pointclass. A set P C X is in A if and only if its
characteristic function yp is T'-recursive.
In particular, P is recursive if and only if yp is recursive.

PrOOF. On the one hand
yp(x)=m <= [P(x)&m = 1]V [-P(x)&m = 0],
soif Pisin A, then yp is I'-recursive by 3D.2.

On the other hand,
P(x) <= xp(x) =1
~P(x) < yp(x) =0,
so if yp is [-recursive both P and —P are in I" easily by 3D.2. -

With each pointclass I and each point z € Z we associate the relativization I'(z) of
I'toz: P C XisinI(z)if there exists some Q C Z x X in I such that

P(x) <= 0O(z x).
In particular, the sets in Z?(z) are called semirecursive in z and the functions which are

29(z)-recursive are called recursive in z.

A point x € X is ['-recursive if the set of codes of nbhds of x isin I, i.e., if

Ux)={s:x e N(X.s5)}
isin I'. We often call these simply the points in T, in fact we will on occasion consider
them as members of T,
x € I' < xis'-recursive.

The points in X! are called recursive, the points in £0(z) are called recursive in z.

3D.7. THEOREM. Let I be a Z-pointclass.

(i) For each point z, I'(z) is a Z-pointclass.

(ii) A point x is D-recursive if and only if for each Y, the constant function y v+ x is
[-recursive.

(iii) If x is recursive in y and y is T'-recursive, then x is I-recursive.
(iv) If f : X — Y is D-recursive, then for each x € X, f(x) is I'(x)-recursive.

In particular, if f : X — Y is recursive and x is recursive, then f(x) is also recursive.

PrOOF. (i) is very easy and (ii) is trivial, since if /" : X — ) is the constant function
y +— Xx, then

G/ (y.5) < x e N(X.5s) < s cU(x).

(i) If x is recursive in y, then U(x) is in (), i.e., thereisa X set P C Y x w

such that
s cU(x) < P(y.s):
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since y is I'-recursive, the constant map n — y is I'-recursive, so that for each
semirecursive Q, the relation
0’ (s.n) <= QO(s.y)
is in I'. The result follows by taking Q = {(s.y) : P(y,s)} so that
seU(x) = 0'(s.s).
(iv) is immediate since
seU(f(x)) = G/ (x.s)
and the last assertion comes from (iv) and (iii). =

We leave for the exercises some of the other interesting properties of these simple
notions.

Exercises

3D.8. Prove that the following functions are recursive. (We are continuing the
number from 3A.6.)

*19. fla.n) = a(n).
*20. fla.n) =a(n) = (a(0),...,a(n —1)).
HINT. @(n) = u <= Seq(u)&Ih(u) = n & (Vi < 1h(u))[e(i) = (u);].
21, flewi) = (a);.
where for each 7, (a); (1) = a((i. 1)).
*22. flo)=a*=(t — alt+1))
*23. Slag,....op_1) = (a0, ..., op_1),
where

(ag,...,op_1)({i., 1) = a;(t) fori=0,....k—1,
(g, ...op_1)(n) =0 ifn# (i,t)forallt,i < k.

24, f(i)=r

where /' : w — X and {ro, ry....} is the fixed recursive presentation of X

*25. fx.y)=x+y (x.y.eR).

*26. f(x,y)=x-y (x,y,€R). -

3D.9. Prove that a function f : X — R into the reals is recursive if and only if the
relation

P(x,uv) < (=1)wo.

is semirecursive.
3D.10. Prove that for each X, the distance function f : X x & — R,

fx.y)=d(x.y)
1S recursive.
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3D.11. Assume that I' is a Z-pointclass, g : @ x X — w is I'-recursive and for
each x, there is some 7 such that g(n, x) = 0. Prove that the function f defined by
minimalization
f(x) = un[g(n.x) = 0]

is I"-recursive.
Recall from 1C the definition of a uniformizing subset P* C P, forany P C X x ).

3D.12. Prove that if X is of type 0 or 1 and Y is of type 0, then every semirecursive
subset P C X x Y can be uniformized by some semirecursive P* C P.
Infer that with the same hypotheses on X, Y, P, if in addition (Vx)(Ei y)P(x,y)

holds, then there is a recursive function f : X — Y such that (Vx)P ( ) (The
¥9-Selection Principle.)
HintT. Use 3C.4. -

A homeomorphism 7 : X ~— ) is recursive if both 7 and its inverse 7! are recursive

functions.
3D.13. Prove that if X and ) are of the same type 0 or 1, then they are recursively
homeomorphic.

HINT. For X of type 0 the result is trivial. For type 1, take X = N and use induction
on the number of factors in ) after producing trivial homeomorphisms of w x N and

N x N with V. =
3D.14. Prove that for every product space X’ there is a recursive surjection
N> X
of Baire space onto X.
HiNnT. Use the map of 1A.1. —|
3D.15. Prove that for each perfect product space X there is a recursive function o
which assigns to each code u of a binary sequence ((u)o s (u)n_l) a basic nbhd

N, () of X such that conditions (i), (ii). (iii) of Theorem 1A.2 hold. Infer that there
is a recursive injection
n:C— X.

HiNT. Put
P(n.i,j) <= center(N;) € N, &center(N,;) € N,

& radius(N;) + d (center(N;). center(N,)) < %radius(N,,)

&radius(N;) + d (center(N; ), center(N,)) < —rad1us N,)

(
& radius(N;) + radius(N;) < d (center(N;). center(N;)).
(i

where Ny = N(X.s). Now (Vn)(3i)(3j)P(n.i, j) and P is semirecursive (in fact re-
cursive), so by 3D.12 thereis a recursive f (n) = (g(n). h(n)) so that (Vn)P(n.g(n). h(n)).
Fix some zj so that radius(N (X.z)) < 1 and put

O(u.m) < Seq(u) & (Vi < Ih(u))[(u); < 1]
&(az)[( Jo = z0& (Vi < Ih(u)) { [(u); = 0 = (2)i11 = g((2),)]
& [ = 1= ()ir = h((2):)]} & (Dinay = m].
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Clearly Q is semirecursive and with
A= {u:Seq(u) & (Vi < Th(u))[(u); < 1]}

we have (Vu € A)(3m)Q(u, m). so by 3D.12 again there is a recursive ¢ such that

(Vu € A)0(u.a(u)). -

3D.16. Prove that every integer is a recursive point, an irrational ¢ is recursive if
and only if the function # — &(n) is recursive and (xj. ..., x;) is recursive if and only
if x1, ..., x; are all recursive.

3D.17. Prove that a point x € X is recursive if and only if there is a recursive
irrational & such that

lim; o0 7o) = X
and for each i,
d(roy-re(ivn) < 271,
(Here {ro.ry....} is the recursive presentation of X.)
HiNT. The “if” part is easy. To prove the “only if” part, put
P(i.j) < d(x.r;) <2771,

show that P is semirecursive and use the Selection Principle, 3D.12. -

3D.18. Prove that a real number x is recursive if and only if

mo _(m)
{m:(—l)< ) -m<x}

1S recursive.

HiINT. Take cases on whether x is rational or not. =

3D.19. Prove that the set of recursive real numbers is a field.
HiNT. Use the characterization of 3D.18. -
Put
x <ry <= Xxisrecursivein y
«— xis X}(y)-recursive

and

x=ry <= x<ry&y<rx
The subscript 7" stands for Turing and the relations <p, =7 are often called Turing
reducibility and Turing equivalence.

3D.20. Prove that =7 is an equivalence relation on the set of all points and <y
induces a partial ordering on the set of equivalence classes of =7.

The equivalence classes of irrationals in = are often called Turing degrees.

3D.21. Prove that if a function f : X — ) is recursive in some z, then f is
continuous; conversely, every continuous function is recursive in some € € N.

3D.22. Prove thatif T is a Z-pointclass closed under countable disjunction \/“, then
the I'-recursive functions are precisely the I'-measurable functions.
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HiNT. Every I'-recursive function is trivially I'-measurable. For the converse, as-
sume that ' : X — ) is I'-measurable and P C w x ), notice that

Pl =U,({n} x 7'[Pa])
where P, = {y : P(n.y)} and show that P/ € T. -

3E. The Kleene pointclasses
We now introduce the Kleene pointclasses by effectivizing the definitions in 1B

and 1E. These are also called the /ightface classes—notice the lightface font in the
symbols we use to denote them. By analogy, the Borel and Lusin pointclasses are

often called boldface.
Put®
Z? = all semirecursive pointsets,
T =375,
IT) = -2,

Al =30 N1l.

Similarly,(s*6>

sl =3V,
Zh = 3V-5,
I, =-%,.

Al =3l n1Il.

For reasons that will become clear later, we call the pointsets in |J, = arithmetical
and the pointsets in | J, £} analytical. They are the effective versions of the finite Borel
and the projective sets respectively.

Notice the possible source of conflict between the term “analytical” and the classical
name “analytic” for £} sets. One way to avoid confusion is to observe scrupulously
the difference in suffix between these two words; people have been careless with this
pedantic distinction, especially in some early papers in recursion theory. It is prudent
to say “X|” rather than “analytic” in contexts where analytical sets are also discussed.

We can also define the relativized Kleene pointclasses ¥°(z). 11%(z), ! (z). I} (z) by
the general process we described in 3D. Again,

Ay(z) = Z5(z) NI (2),
Al(z) =2} (z) T} (2).

n

One should be careful with this notation, since it is not the case that AY(z) is the
relativization of AY to z, see 3F.9.

The sets in |J, %(z) are called arithmetical in z and the sets in | J, £} (z) are called
analytical in z. We will not always bother to state explicitly results about these
relativized notions since they are similar to those about the absolute pointclasses and
they are obtained (usually) by the same arguments.

The basic properties of the Kleene pointclasses can be established very easily, simply
by copying the proofs in Chapter 1 and substituting “semirecursive” for “open” and



3E.3] 3E. THE KLEENE POINTCLASSES 119

“recursive function” for “continuous function.” We will do this somewhat more

generally, so we will not have to repeat it when we introduce new pointclasses later on.
The normal forms for the finite Borel and Lusin pointclasses carry over to the

Kleene pointclasses immediately. For example, P is X9 if there is a 1] set F so that

P(x) < (31)F(x.1),

P is X if there is a X! (semirecursive) set G so that
P(x) <= (3n)(V2)G(x.11.12).

etc. Similarly, P is Z! if there is a I1) set F such that

P(x) <= (Fa)F(x,a).
P is X} is there is a semirecursive G such that

P(x) <= (3a1)(Var)G(x. a1, ).

etc.

These forms become a bit simpler for spaces of type 0 or 1 because of the charac-
terization in 3C.4. Thus, if P is a pointset of type 0 or 1, then P is H? if there is a
recursive R such that

P(x) < (VI)R(x.1),
P is X3 if there is a recursive R such that
P(x) <= (3t)(Vr)R(x.11. 1),
P is X} if there is a recursive R such that
P(x) <= (Fa)(VH)R(x.a.1),

etc.

The key to the closure properties of the Kleene pointclasses are the closure properties
of X given in 3C.1 and 3D.5.

To simplify statements of results, let us call a pointclass I adequate if it contains
all recursive pointsets and is closed under recursive substitution, &. V, 3% and V<.
Clearly Z(l) is adequate and closed under 3%; A? is adequate and closed under —.

Recall the notation we introduced in 1F, where for a pointclass A and a pointset
operation @,

OA = {®(Py, Py....): Py, P1,--- € Aand ®(Py, Py, ...) is defined}.

A?E.l. THEOREM. If A is an adequate pointclass, then so are —=A, 3°A, VP A, EINA,

VYA

Moreover, A°A is closed under 3°. N A is closed under Y. IV A is closed under 3%
for all product spaces Y and VN A is closed under for all product spaces Y.

Proor. The arguments in 1C.2 and 1E.2 suffice here too if we notice that the
continuous substitutions we used there are in fact recursive. We omit the details. -

3E.2. COROLLARY. All Kleene pointclasses are adequate. Moreover, 20 is closed under
3%, 1% is closed under V°, X\, is closed under V° and 3Y for all Y and 11}, is closed under
3” and VY for every Y.

Proor. Use 3E.1 and induction on n. To prove closure of £! under V* and the dual
closure of IT! under 3“ look up the proof of 1E.2. -

3E.3. THEOREM. The diagram of inclusions 3E.1 holds for the Kleene pointclasses.
Moreover, every arithmetical pointset is Al.
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= LR ! by
& < & < < <
A A ar A A,
< C < < C <

DiaGgraMm 3E.1. The Kleene pointclasses.

PrOOF. The second assertion follows immediately by the closure properties of Al.

To prove the inclusion diagrams we imitate the proofs of 1B.1 and 1E.1. The only
new ingredient we need is a proof of

) C 3.
since the proof of £ C XY given in 1B.1 does not immediately yield the lightface
version.

All recursive pointsets of type 0 are clearly in Zg (by vacuous quantification). Also,
2g is closed under trivial substitutions, &, V, 3=, V< and 3% by 3E.2; hence to show
that £} C =9 by applying 3C.12 it is enough to verify that for each basic space X the
relation "

PX(x,i.m k) <= d(r;. —
(x,i,m, k) (r; x)<k+1
is in X9. Clearly,

m’ m !

PX(x.i.m.k )3 < s & (e < d (X)) b
(x,i.m. k) <= (3m’)( )k’+l<k+l k’+l< (ri.x)) t.
and then P¥ is in £ by 3C.9 and the closure properties. -

Let us state for the record the rather obvious relationship between the lightface and
the boldface pointclasses.

3E.4. THEOREM. Let T be X0, T19, X! or TIL, let T be the corresponding boldface
pointclass, );.2 1;12 );}, or l:[}, For each product space X, there is a pointset G C N x X
in I which is universal for I | X, the class of subsets of X in I .

In particular, P C X is in T if and only if P is in T'(€) for some e € N, i.e.. if and
only if

P(x) < P*(e.x)

for some fixede € N and some P* inT.

Also for the ambiguous pointclasses, P is A (or A)) if and only if P is Al(e) (or
Al (g)) for some e.

Proor. For X, take
G(e.x) < (In)[x € N(X.e(n))].

This is obviously X! and universal for £9 | X. The result follows by a trivial induction.
The second statement is immediate from the first.
For the ambiguous pointclasses, if P C X is in ég (say), choose €1, &, and Py C
N x X, P, CN x Xin X! and ITY respectively so that
P(x) <= Piler.x),

P(x) < Pyle2.x).
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choose ¢ such that (¢); = ¢/, (¢), = &, and notice that P is A%(¢), since
P(x) < Pi((e)1.x).
P(x) < Pz((é‘)z,X). a
We leave for the exercises similar strong versions of the parametrization and hierar-
chy theorems 1D.1-1D.4.
Clearly all ¥0 are Z-pointclasses, as are all £}, TI} and AL, so we can study recursion
theory for them. The case of X)-recursion is somewhat interesting and some of the

exercises will deal with it.
Here we are interested in A%-recursion, the effective refinement of Borel measurability.

3E.5. THEOREM. (i) The following four conditions on a function f : X — ) are
equivalent:

(1) f is Al-recursive.
"is Zl-recursive.
) fisX

2
(3) Graph(f) ={(x.p): f(x)=y}isZ].
(4) Graph(f) is Al.

(ii) All the analytical pointclasses X}, T1L, AL are closed under substitution of Al-
recursive functions.

Proor. (i) (1)==(2) is immediate and (2)==-(3) follows from the equivalence
fx)=y <= (s){yeNOD.,s)= f(x) e NV.s)}.
To prove (3)==>(4) notice that

f)#y = @FHf(x)=z&2 #y}
and for (4)==(1) use
fx)eND.s) <= @){f(x)=r&yec ND.s)}
= (WH{f(x)#yVvyeND.s)}

(ii) is immediate from the equivalences

P(f(x)) <= @y){f(x)=y&P(y)}
= (V){f(x)#yVvP(y)} B

We often say “Al function” instead of “Al-recursive function.” For the moment, we
think of these as the effective Borel functions simply because Borel measurability is
the same as A |-measurability by Suslin’s Theorem. In Chapter 7 we will look at some
deeper reasons for the analogy.

We now state effective versions of the “Transfer Theorems” 1G.2 and 1G.3. These
are very important as they allow us to reduce the study of the analytical Kleene
pointclasses to the study of analytical sets of irrationals.

3E.6. THEOREM. For every product space X there is a recursive surjection
n:N—>X
and a H? set A C N such that m is one-to-one on A and n[A] = X. Moreover, there is a
Al injection
f:X =N
which is precisely the inverse of m restricted to A, i.e., foralla € A, [ (n(oz)) = «a and
forallx, f(x) € Aandn(f(x)) = x.
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PrOOF is exactly that of 1G.2. -

3E.7. THEOREM. For every perfect product space X there is a A} bijection

g:N—»X

1

whose inverse g~ is also Al.

ProOF. Asin 1G, we call an injection

JSiX—=Y
a good A} injection if there is a Al surjection
ffyYy—-x
such that
S f(x) = x.

Using the proof of 1G.4 and 3D.15 we can easily show the existence of good Al
injections
h:N— X,
f:X—N.
Define now the sets V,,, X, exactly as in the proof of 1G.4. It is enough to prove
that the four relations
aeN,, xeX, acflX] xechlN,]

are Al. From this it is immediate that the bijection g defined in the proof of 1G.4 has
Al graph and is therefore A} by 3E.5.
Let us concentrate on the relation o € N,,. To begin with, it is almost trivial that

(1) aeN, <= EP{Vi<n)[(Bis1=Sh((B)i)] &a = (B)n}.

We prove direction (=) of (1) by choosing fy. fi..... B, so that i = fh(Bo).
Bo= fh(B1).....Bs = fh(B,_1) = o and then picking S so that fori < n, (8); = p;.
For the direction (<=). choose any f which satisfies the matrix on the right of (1)
and verify by induction on i < 7 that (8);,1 € Ni;1.so that a = (B), € N,.

Equivalence (1) establishes that the relation a € A, is Z}. To show that this relation
is also I}, we need the slightly less perspicuous equivalence

(2) aeN, <= (VO{(Vi<n)[(B)i =" f"((B)i+1) &(B)n = o]
= (Vi< n)[(B)ix1 = fh((B):)]}.

where f* and h* are A} “inverses” of the good Al injections f and A.

Proof of direction (=) of (2) is by induction on n. Forn = 0, o € Ny = N and
the right hand side is vacuously true. Assume o € N1, so that for some y € N, we
have

a= fh(y)

and therefore

Any f which satisfies
Vi<n+D[(B)i=h"f*((Bi+1) & (B = a]

obviously satisfies

(Vi<n)[(B)i =h"f*((B)is1) &(B)n =7].
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so by the induction hypothesis applied to y € N,,,

(Vi< n)[(B)iv1 = fh((B)i)].
Since also
(ﬁ)ﬂ+1 == fh(y) = fh((ﬁ)n)
we have
(Vi <n+1)[(Bi1 = fh((B)i)]
and we have shown the right hand side of (2) for n + 1.

Proof of direction (<=) of (2). Given « so that the right hand side of (2) holds,
choose f o that (f)y = . (Bt = h* £ ((B)). (Bhas = b*F*((Blo1). ...
(B)o = h*f*((B)1). We then have that (Vi < n)[(B)i1 = fh((B);)] from which it
follows immediately that for each i < n, (8);41 € Ni;1.so that a = (B), € N,.

A symmetric argument establishes that the relation x € &), is Al. Finally,

a € f[X)] < a € [[X]&f*(a) € X,
= [ (a)=a&f"(a) € X,

so that a € f[X,] is Al and similarly for the relation x € h[N,]. -

The analytical pointclasses are not closed under the infinitary operations of count-
able union and intersection. Because of this, it is not obvious what is the correct
effective version of the Suslin Theorem. Actually, there is a beautiful result of Kleene
which characterizes Al as the smallest pointclass containing all semirecursive sets and
closed under “effective” countable union and complementation. This is quite difficult
and we will leave it for Chapter 7.

Exercises

3E.8. Prove that if X is of type 1, then for each n there is some pointset P C X in
O\ Y. Similarly, the differences £} [ X\ [ X, T [ X\Z9 1 X, 1L [ X\ZL [ X
are all non-empty.

HINT. Use the fact that AV x X is recursively homeomorphic with X and that some
G C N x X in X} parametrizes £ | X. 8

3E.9. Prove that if ) is a perfect product space, then for each X there is a X0 set
G C Y x X which is universal for £ | X.
Similarly with 20, =} in place of .

n>

Infer that for each perfect product space X the differences £ | X\ Y | X,
S AN [ XL [ X\E [ XTI, [ A\ E) | X are non-empty.
HinT. Follow the proofs of 1D.1-1D.4 and 3D.15. -

3E.10. Prove that for each n > 1, every XU set P C X’ x w can be uniformized by
some X0 subset P* C P.

HiNT. See 1C.6. -

3E.11. Prove that for each perfect product space X, there is a £3-recursive surjection
f:X >N

HinT. See 1G.8 and 1G.10. -
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We will see in 4D.10 that 1E.6 does not have an effective version—it is not true that
the X! subsets of a space X are precisely the recursive images of A/. Similarly, only
part of 1G.12 holds for Z}.

3E.12. Suppose X is perfect and P C ). Prove that P is £} if and only if P is the
projection of some I1) subset of Y x X
In particular, every X! set of reals is the projection of a Hg subset of the plane.

HINT. See the hint to 1G.12. .

Call a function f : X — Y of effective Baire class 0 if it is recursive, of effective
Baire class 1 if it is X9-recursive but not recursive and, inductively, of effective Baire
class n + 1 > 2 if it is not of effective Baire class < n and there exists a function

groxX =),
of effective Baire class » such that
f(X) = hmm—»oo g(m, .X).
3E.13. Prove that a function f : X — ) is of effective Baire class < n if and only

w0 .
ift f/is X, |-recursive.

Hint. Study the proofs of 1G.16-1G.19. -

3E.14. Prove that a function f : N — Y is Zg—recursive if and only if there is a
recursive g : w x N'— Y such that
fa) =lim, o g(m. a). B

This last result holds also for functions f : X — R.

Itis worth putting down a few exercises on the relativized Kleene pointclasses, 0 (z),
I19(z). etc. Their theory is very similar to that of the absolute Kleene pointclasses X¥.
119, etc.

3E.15. Prove that if z is recursive in w, then for every Kleene pointclass I', I'(z) C
I'w).
HINT. If z is recursive in w, then the constant function x +— z is 9(w)-recursive.

The next result is completely trivial but very useful and we often tend to use it
without citing.

3E.16. Prove that if the singleton {xo} is Z}(z), then xo is in AL(z) (ie., xo is
Al (z)-recursive).
HiNT. Let {xo} = P C X. Then
X0 EN(X,s) <= (3x)[P(x)&x € N(X.s)]
> (Vx)[P(x) = x € N(X.s)]. —|

3E.17. Prove thatif x is Al (z, y)-recursive and y is A} (z)-recursive, then x is A} (z)-
recursive.

HINT. We have ! relations P and Q and IT! relations P, Q’, so that
X €Ny, & P(z,y.5) < P'(z.p.5).
YyEN, & Q(z,1) — 0'(z.1);
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now

x €Ny, < (F)NH{V)[y € Ny= Q(z,1)]&P(z,)'.s)}
= (VN €N = 0(z.1)] = P'(z.y".5)}. .

3F. Universal sets for the Kleene pointclasses'!)

Itis almost obvious from the definitions that there are only countably many recursive
functions. Here we will prove the much stronger result that 2 is w-parametrized.

The reader with some knowledge of basic recursion theory will want to skip this
section, after he peruses the final results 3F.6 and 3F.7.

Let us go back to the definition of the class of number theoretic recursive functions
in 3A and analyse it.

A recursive derivation is a sequence

of (number theoretic) functions such that each f; is the successor function S. one of
the constants CX or the projections P¥ or else can be defined by composition, primitive
recursion or minimalization from functions preceding it in the sequence fo,...., f.
We can think of a recursive derivation as a proof that f', is recursive.

3F.1. THEOREM. A function [ : w* — w is recursive if and only if there is a recursive
derivation fy, ..., fnwith f, = f.

Proor. If fy,..., [, is arecursive derivation, then each f; is recursive by induction
on i. On the other hand, the collection of all functions which occur in recursive
derivations obviously contains S, all CX, P¥ and is closed under composition, primitive
recursion an minimalization, so it contains every recursive function. -

To verify that a given sequence of functions fy,..., f,, is a recursive derivation,
we must give a justification for including each f'; in the list—because f; is .S or f;
is defined from functions listed before it by composition, etc. We now give a formal
coding of such justifications by finite sequences of numbers.

Let a sequence fY...., f, of functions and a sequence f 0svees f n of numbers be
given. We say that fo..... f, is a justification for fo..... f,. if one of the following
conditions holds for each j < n.

Casel. fj =S and f'j =(1.1).

Case2. f; = Ckand f; = 2.k, w).

Case3. f;=PF (1 <i<k)and f; = (3.k.i).

Case 4. f;(x1.....x¢) = h(gi(x).....gm(x)) where the functions &, g1.....gn
precede f; in the list fo,..., f, and

fi={dd (hgr....6m)).
By this of course wemeanthath = f ;.81 = fj.....8m = fj, With jo. j1..... jm <
7 and
Fi= &k AL g e fin))s
and similarly for the next two cases.
Case 5(1).

[i0.x)=g(x).  fi(n+1.x)=h(f;(nx).nx).
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where g and /iprecede f; in the list and
fi={5k+1.(g.h)).
Case 5(ii).
1;(0) = wo. filn+1)=h(f;(n).n).
where /s precedes f; in the list and
fi={(51,(w.h)).
Case 6. f;(x) = um[g(m, x) = 0]. where g precedes f; in the list and

i =6.k.8).
It is now immediate that every recursive derivation has a justification and that if
fo...., fn has a justification, then f,..., f, is a recursive derivation. All we have

done is to code with finite sequences of numbers all canonical proofs that particular
sequences of functions are recursive derivations.

More than that, our coding is one-to-one in a very strong sense.

3F.2. THEOREM. Suppose fo, e fn is a justification for fo,.... fn, 80.....8m IS a
Justification for g, . ... g and for some j <n,i < mwehave f; = g;. Then f; = g;.

PrOOF is by induction on the number f ;. There are six cases to the proof corre-
sponding to the definition of a justification, but looking at just two of them will be
sufficient to give the idea.

Case 2. fj = (2, k, w) for some k, w. Then f; = C,’; and since also g; = (2, k, w),
we have g; = Ck = /.

Case 6. f'j = (6. k, z) for some numbers k£ > 1, z. Now by the definition of a
justification, it follows that f; is a k-ary function and that for some f; with / < j, f;
is (k + 1)-ary, z = f, and

Si(x) = put[fi(z.x) = 0].

Now z = (f‘,)z < f, so by induction hypothesis f; = g, and hence f; = g;. -
Put
C = {z : there exists some sequence of integers zg, ..., z, = z

which is a justification for a recursive derivation}.

It follows from 3F.2, that if z € C, then in every justification in which z occurs it
“codes” the same function, callit /.. We call C the set of codes of recursive functions.
since the map z — f', takes C onto the recursive functions, we have proved the first
main result of this section.

3F.3. THEOREM. There are only countably many recursive number theoretic functions.
_|

Our coding is such that if z € C. then f. is k-ary with k = (z);. For fixed
X1, ..., Xk, m, let us think of the number

<z, (xl,...,xk>,m>

as a code of the assertion that
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Of course this assertion may be true or false. We now construct a semirecursive set 4
such that for every z € C, A4 contains all codes of true assertions <z, (X1, 00y Xk), m>
and no codes of false assertions about f.. Notice that 4 will contain many members
of the form (z, (xi.....x).m) where z ¢ C—these will give us no information about
recursive functions.

The set A is the smallest set of integers satisfying (1)—(6), where the symbols f .8,
h are used just as variables over w.

(1) If £ = (1.1). then

foreveryn. (f.(n).n+1) e A.
(2) Iff = (2, k, w) for some k > 1 and some w, then
for every xy.....x. <f,(x1,...,xk>,w>€A.
(3) lff = (3,k,i)forsomek > 1land 1 <i <k, then
for every xi..... Xx. <f,<x1,...,xk>,x,~>eA.

4 If f = (4. k. <izg1gm>> for some &, g1.....8, and if for some xi..... x¢.
wi, ..., Wy, w we have

<g‘1, <X1,...,Xk>,w1> S A,..-,<g;11, <X1,...,xk>,wm> € A4,

<h, (wy, .. .,wm>,w> €A,

<f, <x1,...,xk>,w> c A.
(B3)If f = (5.k+1. (§f1>> for some &, & and for some xi. ..., Xt wy we have
(&.(x1.....xk). wo) € A, then

<f,(0,x1,...,xk>,w0> c A.

(5 If f = (5.k+ 1,<§,fz>> for some g, i and for some xi.....xr. w,. w. N,
(f.(n.x).,w,) € Aand (h, (w,.n.x),w) € 4, then

<f,<n+1,x1,...,xk),w> € A.

(There are two similar clauses which come from Case 5(ii) in the definition of
justifications and which we will omit here.)

(6) Iff = (6, k, g) for some g and if for some wy # 0, w; #0, ..., w,—; # 0and
some Xxi, ..., X; we have

<§,(0,x1,...,xk>,w0> EA,...,<§, (m — l,xl,...,xk>,wm_1> €A,
(8. (m.x1.....x().0) € A4,

then
<f (X1.....xk).m) € A.
(In this clause we allow m = 0 in which case the sequence wo, wy, ..., Wy_1 iS
empty.)

3F.4. THEOREM. The set A is semirecursive. Moreover, for each code z of a recursive
function f .,
fox1 . ox0) =w = <z, (x1,. ..,xk>,w> € A.
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ProoOF. We show first the second assertion, which holds only for z € C, i.e., there is
no suggestion that whenever <z, (X1, -0y Xk, w> € A, then we must have z € C.
Proof of the implication

fz(xl,...,xk) = w = <Z, <X1,...,Xk>,w> € A.

is by induction on the code z € C and it is easy. For example, if z = (6, k, ¢). then we
know that e codes a (k 4 1)-ary function f, and

f(x1oox) = pmf o (m, xy, ... x,) = 0],
Thus if f.(xi,....x;x) = m, then there are numbers wy. . .., w,,_;. all # 0 such that
Fe(0,x1,....x5) =wo. ..., fem—1,x1.....xk) = wm_1and fo(m, x1,....x;) = 0.
Now e = (z), < z. so we can apply the induction hypothesis on these assertions,
whence by clause (6) in the defining conditions for 4. (z. (x|.....xx).m) € A.

We will omit the other cases of this induction, but it is worth pointing out that in
case (5), when z = <5, k+1, (e, u>> for some k. e, u the implication

fznxioox) =w= (z.(n.x1.....x). w) € 4
is proved by induction on 7.

To prove the converse implication, notice that if v € A4, then v must be of the
form in one of the conclusions of the clauses (1)—(6) and it must satisfy the corre-
sponding hypothesis, e.g., v = <f (0, xy, .. .,xk>,w0> for some xj,...,x;, wo and
/= (5.k+1. <§fz>> and (g. (x1.....x¢). wo) € A: because if v is not of the proper
form or does not satisfy the corresponding hypothesis, then 4\ {v} satisfies all (1)—(6)
and hence 4 \ {v} D A by the definition of 4, i.e., v ¢ 4. Now the implication

<Z, <x1,...,xk>.,w> €A== f.(x1.....x¢) =w

can be proved for every code z by induction on z easily, just as the converse implication
was proved.

We now outline a proof of the first assertion of the theorem, that A4 is semirecursive.
The idea is to analyze the inductive definition of 4 in the same way that we analyzed
the inductive definition of the class of recursive functions. Thus an A-derivation is a
finite sequence of numbers

Ug, Uy, ..., Uy
which proves that u, € A. i.e.. each u; is in A either by virtue of clauses (1), (2). (3)
or by virtue of one of the remaining clauses and the fact that certain u;’s with j < i
are of a certain form. Once this is written down explicitly, it is trivial to check that the
relation

P(u) <= Seq(u) & (3n < u)[lh(u) = n& (u)y. ..., (u),_1 is an A-derivation]
is recursive. But
veEA = (Fu)3@n)[Pu)&lh(u) =n&v = (u),_1].
so that A is semirecursive. -

3F.5. TueoreM (Kleene [1943]). For each k > 1, there is a semirecursive set G C
® x o* which parametrizes the semirecursive subsets of w*.

PrOOF. Put
G(Z,X],...,Xk) = (31)[<Z,<X1,...,Xk,t>,l>EA].

Clearly G is semirecursive.
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If P C w* is semirecursive, then for some recursive R,
P(x1,....xx) <= (3)R(xy.....xx.1)
—= (@)[xr(x1.....xp. 1) = 1]
= @)[f-(x1.....x. 1) = 1].
with z any code of yz. By 3F.4 then,
P(xi.....x) <= (3)[(z.(x1.....x.1).1) € A]

= G(z.x1,....x%). -
This theorem is usually called the Enumeration Theorem for semirecursive (or re-

cursively enumerable) relations on w. It is one of the basic results of recursion theory.
From it we can prove easily the key result of this section.

3F.6. THE PARAMETRIZATION THEOREM FOR THE KLEENE POINTCLASSES. For each
product space Y, the Kleene pointclasses 22, o, x! H,ll are Y-parametrized.

n° n°
Proor. Take first the simple case )V = w. Given X, choose G C w X w to be
semirecursive and parametrize the semirecursive subsets of w and put

H(z.x) <= (3s)[x € N(X.s)&G(z 5)].

By 3C.5. H is universal for = | X.
If Y = w" for some n, take

H'(zi,....2,.x) <= H(z1,x)
with this H.
If Y is not of type 0. then ) is perfect. Choose a recursive ¢ which satisfies Lemma
1A.2 by 3D.15 for the space ). Given a space X, let G be as above and put
H(y.x) < (Ju)(3z)[Seq(u) &Ih(u) =z + 1
& (Vi< z)(u); =01&(u). =1&y € N(V.o(u))
& (3s)[x € N(X.s5) & G(z.5)]]

Clearly H is semirecursive.

Fix y € Y and suppose that for some x, H(y, x) holds. It follows easily from the
properties of ¢ that there is a unique sequence code u of the form (0,0, ....0,1) and
length z + 1 such that for all x.

H(y.x) < (3s)[x e N(X.s5)&G(z.5)].
Thus
Hy ={x:H(y.x)}
is a semirecursive subset of X'.
Conversely, if
P(x) <= (3s)[x € N(X.s5)&G(z.5)]

is any semirecursive subset of X', take u withlh(u) =z 41, u = (0,0,...,0,1), choose
any y € N(¥.o(u)) and verify easily that

H(y.x) < (3s)[x e N(X.5)&G(z.5)]
= P(x),
sothat P = H,.
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We have now shown that 2(1) is Y-parametrized for every ) and the theorem follows
by 1D.2. 4

3F.7. THE HIERARCHY THEOREM FOR THE KLEENE POINTCLASSES. For every product
space X the following diagrams of proper inclusions hold:

X X X I
+ Q Cﬁ/ =+ Q +
AT X ASTx - Al T X AT X
< RS < RS
| x mrx .. | X mrx...

DiaGraM 3F.1. The Kleene pointclasses.

ProOF is like that of 1D.4. =

Exercises

3F.8. Prove that there is a A} set of integers which is not arithmetical.
HINT. Define G, C w x o is a canonical way to be universal for 0 | » and take

H = {(n,e.t):Gyle1)}. -

3F.9. Prove that for each n, there is a set 4 C A in AY such that for every product
space Z and for every A? set Q C Z x N and for every z € Z.

A# Q. ={a: Q(Z’a)}-
Infer that the following plausible sounding conjecture is false: P is A%(z) if and only
if there is some A set Q such that P(x) <= Q(z. x).
Similarly with A}, A} in place of A9, AY throughout.
Hint. Let Q°, Q',... be an enumeration of all the A) subsets of N’ x N and take

A4={a:-0""a"a)},

where o* = t + a(t + 1). It is immediate that 4 # Q. for every A subset Q of
N x N and every €. Using a recursive surjection 7 : N’ — Z, show that 4 # Q. for
every Al set 0 C Z x N and every z € Z. -

In the case of A, this construction gives a clopen 4 C A which is not Q. for any
recursive Q C Z x N, any z. Its characteristic function y is continuous and cannot
be obtained from any recursive function by fixing one of the arguments.

3G. Partial functions and the substitution property

The notion of I'-recursion is an effective refinement of the classical notion of I'-
measurability and its basic properties can be established easily when I is a Z-pointclass,
as we saw in 3D. To obtain a smoother theory of I'-recursion which refines the classical
theory of continuous functions we must impose an additional condition on I" which
will insure (in particular) that I is closed under substitution of I'-recursive functions.
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As it turns out, the correct formulation of this substitution property involves partial
functions in a natural way.
A partial function on X to Y is simply a (total) function

f:D—=Y
with domain some subset D of X. We will use the notation
f:x=Y)y

for partial functions, and the corresponding
fx—=) f:x=)y
for partial injections and partial surjections, defined in the obvious way. We also write

f(x)| <= f isdefined at x,

so that
D = Domain(f) = {x € X: f(x)|}.
The domain of the composition of two partial functions is defined in the natural way:

f(g(x)l <= g(x)| & [if g(x) = y. then f(y)]].
In particular, if

fx) = (1), f1(x)
with fi,..., f; partial, then

f)] = filx)] & & fi(x)].

We should emphasize that when we call f : X — Y a partial function, f could be
total; but when we call f a function, then in fact f must be total, i.e., Domain(f) = X.

If f: X — Y is a partial function, D C Domain(f) and P C X x w is some
pointset, we say that P computes f on D if

x €D = (Vs)[f(x) e Ny = P(x.s)].
In the notation we introduced in 3D, we can rewrite this as
x€D=U(f(x))={s:P(x.5)} = Py.

A partial function f : X — )Y is I'-recursive on D if some P in I' computes f on
D. Most often we will be looking at partial functions which are I'-recursive on their
domain; if f is I'-recursive on D = Domain( f) and in addition Domain(f) isin I,
we say that 1" is -recursive. If T = X9, we say recursive for X9-recursive.

The class of recursive partial functions has been studied extensively on w, but in
the wider context of product spaces it is difficult to control the domains of partial
functions and the weaker notion of recursion on a set D is more useful.

It is clear that if £ : X — ) is total, then f is I-recursive (on X) in the present
sense exactly when it is T recursive in the sense of 3D.

The condition we want to impose on a pointclass I" is (roughly) that it be closed
under substitution of partial functions which are I'-recursive on some set D, at least
when we restrict these substitutions to the pointsin D. Precisely: a pointclass I” has the
substitution property if for each Q C Y in I" and for each partial function f : X — )
which is I'-recursive on its domain, there is some Q* C X in I" such that for all x € X,

[ =10"(x) <= 0(/(x))].
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X-pointclasses with the substitution property carry a very reasonable recursion
theory, particularly if they are w-parametrized (as is £¥). We will come back to this in
Chapter 7, but we will first put down here the few facts that we need in the interim.

3G.1. THEOREM. If T is a X-pointclass with the substitution property, then the collec-
tion of partial functions which are I'-recursive on their domain is closed under composi-
tion; moreover, I is closed under the substitution of T-recursive (total) functions, so in
particular, T is adequate.

Proor. The second assertion is immediate.

To prove the first assertion, suppose g : X — ), f : Y — Z are both I'-recursive
on their domains, computed by P C X x w and Q@ C ) x w respectively and let

h(x) = f(g(x)). Now if A(x)|. then g(x)|. say g(x) = y and f(y)|. Since Q
computes f, we have

(Vs)If (») € Ny <= 0(y.5)]
ie.,
(Vs)[f (g(x)) € Ny <= 0Q(g(x).s)].
Since g is I'-recursive on its domain, so is (easily) the map
(x.s) = (g(x).s):
thus by the substitution property, there is some Q* in I so that
gx)] =[0(g(x).5) = O0"(x.9)]
It follows immediately that
h(x)] = (¥s)[h(x) € Ny <= Q" (x.s)]
so that /4 is T recursive on its domain. -
Let us now verify that the substitution property is easy to establish.
3G.2. THEOREM. (i) E? has the substitution property.
(i) If T is a Z-pointclass with the substitution property, then so is each relativization
I'w).
(iii) If T is a Z-pointclass closed under N and either 3 or N>, then T has the
substitution property: in particular, £} . T1} all do.

ProOE. (i) Suppose O C ) is semirecursive, so that by 3C.5
O0(y) = (3s)ly € Ny&Q'(s)].

with a semirecursive Q’. If / : X — Y is partial and computed on its domain by some
semirecursive P C X x w, put

0" (x) < (3s)[P(x.5)&Q'(5)]:
now if f(x)], then
f(x) e Ny < P(x.s).
so that
0" (x) <= 3s)f(x) € N; & Q'(5)]
= 0(f(x)).
(ii) Suppose Q C Y isin I'(w), so that
o(y) = 0'(w.y)
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for some Q' in I" and suppose that / : X — ) is computed on its domain by some
P C X x winI'(w); again

P(x,s) <= P'(w.x.s)

forsome P’ inI". Now P’ computes on its domain the partial function ' : WxX — Y
defined by

f'(w',x)| <= forsome y,U(y) = {s: P'(w'. x. 5)}
f'(w' x)] = (Vs)[f"(w'.x) € Ny <= P'(w’.x.5)].
Notice that for the specific fixed w we have
fx)] = f'(w.x)]
fx) = f"(w.x).
The partial function
glw'.x) = (w'. f'(w'. x))

is I'-recursive on its domain, so by the substitution property for I', there is some
0" CW x X inT so that

gw'.x)| = [0"(w'.x) = O'(w'. f'(w'.x))]:
setting w’ = w then, we have
f(x)]l = [0"(w.x) <= O (w. f'(w.x))]
= [0"(w.x) <= 0(/(x))]
and we can take
0"(x) = 0"(w.x)
to satisfy the substitution property for I'.

(iii) Suppose the partial function f : X — )Y is computed on its domain by
PCXxwinT,Q C YisinT and I'is closed under V* and 3%. Take

0*(x) = (3y)[Q() & (Vs)ly € Ny = P(x.5)]].
This is easily in I" and if f(x)], then for any y,
(Vs)ly € Ny = P(x.5)] = (Vs)[y € Ny = f(x) e Nj] =y = f(x).
so that
0% (x) <= 0(f(x)).

Similarly, if T" is closed under V¥, take
0" (x) <= (vVy)[Q(y) vV (3)[P(x.5) &y ¢ N,]]. .

To appreciate the reason we use partial functions in formulating the substitution
property, one should spend a few minutes trying to prove that if a X-pointclass I is
closed under (total) I'-recursive substitutions, then each relativization I'(w) is closed
under I'(w)-recursive substitutions.
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Exercises

3G.3. Show that not every X-pointclass is adequate.

HinT. Choose a measure uy on each basic space X, with ug = Lebesgue measure
and u,, = the trivial (counting) measure, let ux be the (completed) product measure
on each product space and take

I’ = all measurable pointsets.

It is easy to check that I" is a Z-pointclass. If 4 C R is not Lebesgue measurable with
characteristic function y 4, then

B = {(x.x4(x)) : x € R}
is measurable (with measure 0) in the plane, since it is a subset of two lines. But
xX€A <= (x,1) €B,

so if I" were closed under recursive substitution then 4 would be in I, since x +— (x, 1)
is recursive. =

3G.4. Assume that I is a Z-pointclass with the substitution property and prove the
following.

(i) A partial function f : X — w is I recursive on its domain if and only if there is
some Q C X x w in I so that for every x and w,

SOl =1f(x)=w <= QO(x.w)].

(ii) A partial function f : X — N is [-recursive on its domain if and only if the
partial function f* : X X w — w is ['-recursive on its domain, where

f(xi)l = f(x)].
f) = [f"(x.i) = f(x)@)].

(iii) A partial function f : X — ) x --- x Y is I'-recursive on its domain if and
only if

with f1..... f; T-recursive on their (common) domain.

The most useful property of I'-recursion is embodied in the following completely
trivial result, which we put down for the record.

3G.5. If T is a Z-pointclass with the substitution property and f : X — ) is
I"-recursive on its domain, then for each x,

f(x)| = f(x)is I'(x)-recursive;

if in addition I1Y C T, then
f(x)l = f(x)is A(x)-recursive.

HinT. By the definitions,
SOl =U(f(x)) ={s: P(x.9)}

where P € I' computes f on its domain.
For the second assertion, the relation

O(y.s) <= y ¢ N
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isT1. hencein I. Since the partial function (x. s) — (f(x). s) is obviously I'-recursive
on Domain( f), by the substitution property there is some Q* in I so that
JEI=1/(x) ¢ Ny <= Q"(x.5)]
— U(f () = {s 0" (x5},

so that f(x) is also =I'(x)-recursive, hence A(x)-recursive. -

3H. Codings, uniformity and good parametrizations

A coding for a set A is any surjection
n:D— A

of a set D = Domain(z) onto A. If & € 4 and 7(c) = a, we call ¢ a code for o in the
coding 7.

In our case we will always have D C X for some product space X (usually \'), so
we can think of a coding in X as a partial surjection

X — A,

i.e., some partial function 7 : X — Y such that z[Domain(z)] = 4.

Let us look at some examples.

(1) The set w codes the collection of basic nbhds of a product space X by the map

n(s) = N;i.

(2) The set of integers C defined in 3F codes the collection of recursive functions
on w by the map
n(z) = f. (zeC).
(3) Suppose I' is N/-parametrized and G € N x X is universal for the I'-subsets of
X. The map
a— Gy ={x:G(a,x)}
codes the I'-subsets of X in .
(4) With T and G as above, let

C = {a: Gy,), is the complement of G,), }.
Now each a € C determines a set G,), in A, so that the partial map
77,'(04) = G(a) (Oé S C)

0

isa coding of A | X.

(5) Fix a space X and fix an open set G C A x X which is universal for the open
subsets of X'. For each countable ordinal ¢ define the set B: of codes for ;2 by the
recursion:

By ={a:a(0) =0}
B: = {a:a(0) =1&(Vn)[(a*), € Un<é B,1}.
where
o*(t) = alt +1).
Define maps
me:B: » LY X
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by the recursion

7'[()((1) = Go~,

T (O[) = U” (X \ 77,',7(”) ((a*)n))
where
n(n) =least n < ¢ so that (a*), € By.
It is obvious that each 7 is a coding for the ;g subsets of X. One can also check by
an easy induction on ¢ that

0<yp<¢=[B, CB:&mn, =m: | By]

so that the limit function

= Ug g
is a coding for the Borel subsets of X with domain
B=J,B:.

If we take I’ = X! in example (4), we get a natural coding of the A} subsets of X
In (5) we defined a coding for the Borel subsets of X', and by the Suslin theorem every
Al subset of X is Borel. We will show in Chapter 7 that the Suslin theorem holds
uniformly in the codings in the following sense: there is a partial function

N —=N
which is (£9-)recursive on the set C (in particular C C Domain(f')) and such that if
is a Al-code of A C X, then f () is a Borel code of A. This Suslin-Kleene Theorem is
one of the central results of the effective theory.
To define this important notion of uniformity is general, suppose that
T X —A4, p:Y—B

are codings for the sets A, B (n, p are partial functions), suppose R C 4 x B is a
relation on 4 x B and suppose that I is a fixed Z-pointclass with the substitution
property. We say that the assertion

(%) (Va € A)(3b € B)R(a.b)

holds T-uniformly (in the given codings 7, p) if there exists a partial function f : X — Y
which is I'-recursive on Domain(r) and such that

(1) 7()L = R(7(x). p(f(x)) ):
i.e., whenever x codes some a € A4, then f(x) gives us a code of some b € B so that
R(a.b).

In the important case I' = X0, we talk of recursive uniformity or simply uniformity.
To take a trivial example, let A = I' N =T be coded in NV as in (4) and consider the
assertion
A is closed under complementation,
i.e.,
(VP € A)(3Q € A)[Q is the complement of P];
this holds uniformly because the function

a = ((a)1. (a)o)

is recursive (and hence recursive on the set C of codes).
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For a slightly more interesting example, take the assertion “if g, Ay,..., A, are
recursive functions on w with the proper number of arguments, then the composition

f(x) = g(hl(x), s ,/’lm(X))

is also recursive.” Using the coding (2) above for recursive functions on w we can
easily show that this statement holds uniformly: i.e., there is a recursive function
u(g. le., e, fzm) so that whenever g, le, .. .,izm code (in C) recursive functions with
the appropriate number of variables, then u(g, /;1, el /3,,,) codes their composition.

We will often call any partial function f which satisfies (1) above a uniformity (which
establishes that (*) holds I'-uniformly).

Starting with the next chapter, we will meet several situations in which codings and
uniformities come up naturally and non-trivially. Here we will confine ourselves to
one simple but very useful preparatory result.

With each pointclass I" we associate the boldface pointclass I, where for P C X,

P el <= thereissome P* C N x X, P* € I"and some e € N so that
P =P ={x:P*(e.x)}
As usually
A=Tn-T.

3H.1. THE GOOD PARAMETRIZATION LEMMA. Suppose I is w-parametrized and closed
under recursive substitutions. Then we can associate with each space X aset G C N x X
in I which is universal for I | X and so that the following properties hold:

(i) For P C X,
PcTl < P =G witharecursivee € N.
(ii) For each space X of type 0 or 1 and each Y, there is a recursive function
STV =S NxX—-N
so that
GV Y(e.x.y) = GY(S(e.x).p).
PrROOF. If G C w x N x X parametrizes I' | (M x X), take
G*(e.x) < G(e(0).e".x)

with e*(¢) = (¢ + 1) and check easily that G* parametrizes I’ | X so that (i) holds.
Thus we may assume that we are given parametrizations of I in I which satisfy (i)—we
must obtain a new system of parametrizations which also satisfies (ii).

Call a space ) (for this proof) simple if ) has no initial factor of type 0 or 1, i.e., if
it is impossible to write

Y=V x

with ) of type 0 or 1. We will first construct suitable parametrizations for all spaces
of the form X x Y with X of type 0 or 1 together with a fixed simple space ).
For each space X of type 0 or 1 then fix a recursive homeomorphism

x N xX—> N

and let
VCNXxNXxNxY)
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be in ' and universal for the [-subsets of N' x A" x ) so that (i) holds. Define
GCNxXxYby
Gle.x.y) <= V(()o (). mx((€)2.x).y).
Clearly G isin T
To prove that G is universal for I’ [ X' x ). suppose that Q C &’ x YV isin I and set
0'(.p.y) = 0(px(z'(8)).7)

where
pPNXX X

is the projection map on X. Now Q' € I, so that for some e € N,
O'(a.p.y) = Vie.a.B.y)
and for any «, taking f = nx (. x) we have
O(x.y) <= Q' (a.nx(a.x).p)
— V(e.anx(ax).y)
— G((e.a,a).x, ).
Choosing a recursive «, say ¢ — 0 and €* = (g, a, ) we have
O(x.y) <= G(e*, x.y).

It is also immediate that the universal set G satisfies (i).
Fix spaces X. W of type 0 or 1; we must construct a recursive function

S NxX—-N
so that
(1) Gle.x.w.y) <= G(S(e.x). w.y)

(where of course the G on the left stands for a different relation than that on the
right—a pedantic notation here would introduce a lot of superscripts).
Put

2) Pla.py) = G((a)opx(m ((a))).pw(m (£)). )

where G is the universal subset of N' x X x W x ) we just defined and the recursive
homeomorphisms and projections 7wy, 7y, px, pyy are as above. Now P isin I, so
for a fixed recursive €*,

(3) Pla.p.y) <= Vie".a.p.y).
For arbitrary €, x, w, let
a=(enx(ex). p=nwlew):
substituting in (2) and (3) we get
Gle.x.w.y) < P((e.nx(e.x)).apw(e. w). y)
= V(e (e.nx(e. x)). mwle.w). y)
and then by the definition of the universal sets,

Gle.x.w.y) < G((e". (e.nx(e.x)).e). w. p).
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so that (1) holds with
S(e.x) = (", (e.nx(e. x)).€).

The construction is similar for spaces of type 0 or 1 ( simply skip the ) above)
and the universal sets we constructed work for the simple spaces (skip the W in the
proof). -

A system of sets G¥ C N x X in I’ which are [ -universal and satisfy (i) and (ii)
of the theorem will be called a good parametrization (in T for T'). We will often
simply say “let G C N x X be a good universal set” meaning that G belongs to a
good parametrization when I is clear from the context. We will also tend to be a bit
sloppy with notation and avoid all superscripts, so that the basic property of good
parametrization reads

Gle.x.y) < G(S(e.x).y).

Fix a good parametrization for each w-parametrized, adequate pointclass I and
consider the natural coding for I' determined by this parametrization as in (3) above,
by the map

a— Gy={xeX:Gla.x)}

The restriction of these maps to recursive a’s gives a coding for I'.
Similarly, A is coded by

o= G(Oé)o’

on the set of codes {a : G,), is the complement of G(,), }.

When we mention I'-codes or A-codes of sets, we will refer to these fixed, canonical
codings—we will do this quite frequently for £ }-codes or A}-codes, for example.

Lemma 3H.1 says that the operation of passing to a section at a point of type 0 or 1
is uniform, for an w-parametrized, adequate I': i.e., if € codes P C X x YV in I' with
X of type 0 or 1, then S(e. x) codes P, = {y : P(x.y)} in ['. But the lemma actually
implies much more.

3H.2. THE UNIFORM CLOSURE THEOREM. Suppose I is an w-parametrized, adequate
pointclass: if T is closed under any of the operations & . V., 3=, V=, 3¥. VY, then
L is uniformly closed under the same operation (in the codings induced by a good
parametrization).

Proor. Suppose for example that I is closed under &. We must show that there is
a recursive function u(a, f) such that if

P(x) <= G(a.x)
0(x) <= G(f.x).

then

P(x)&Q(x) < G (u(e. p).x).

To check this, put
R(a.B.x) & Gla.x)&G(B.x).

By closure under recursive substitution and &, R is in I', so for a fixed recursive

e* e N,
R(a.f.x) = G(e*.a, B.x)
— G(S(e*.a.p).x)
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by the good parametrization lemma. Thus we can take

u(e, f) = S(e*. a. p).
The argument for the other cases is similar. -

There is another somewhat tricky corollary of the good parametrization lemma
which can be viewed as fixed-point theorem for parametrized pointclasses. We put it
down here because we need it for an important application in the next chapter, but its
full significance will not be appreciated until Chapter 7.

3H.3. KLEENE’S RECURSION THEOREM FOR RELATIONS. Suppose I is w-parametrized
and closed under recursive substitutions and suppose R C N x X is in I'; then we can
find a recursive e* € N so that the section

R.- ={x:R(e*,x)}
has I -code €*, i.e.,
R(e*. x) <= G(e*.x)
where G is the fixed good universal set for I' | X.
ProoF. Let
Pla.x) <= R(S(a.a).x)
where S is recursive by 3H.1 and such that for all €, «, x,
Gle,a, x) — G(S(E, a),x).
Since P isin I, there is a fixed recursive gy so that
Plo, x) <= G(gp. . x)
<~ G(S(e0. ). x)
and hence for all a, x,
G(S(eo.,a), x) = R(S(a, o), x).

Now set o = &g in this equivalence and take e* = S(eg. €9). -

Exercises

We formulated 3H.1 for parametrizations in A/, since this version is most directly
applicable. However, there is a similar result for parametrizations in w, which is
occasionally useful.

3H.4. Suppose I" is w-parametrized and closed under recursive substitutions. Then
we can associate with each space X’ a set G* C w x X in I' which is universal for
' [ X and so that the following property holds: for each space X of type 0 and each
Y there is a recursive function

SV =S:0wxX—>w

so that
GV Y(e.x.y) = GY(S(e.x).y).

Moreover, for any X, if R C w x X isin I', then we can find some ¢* € w so that

R(e*.x) <= G¥(e*, x). -
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31. Effective theory on arbitrary (perfect) Polish spaces

We have developed the effective theory for recursively presented Polish spaces,
partly because all concrete Polish spaces have natural recursive presentations, but also
because (quite obviously) the proofs depend on it. The results, however, apply easily
and in a natural way to all Polish spaces, in two different ways.

First, notice the following classical version of Theorem 1G.4:

31.1. THEOREM. Every uncountable Polish space is Borel isomorphic with N'.

Proor. By the Cantor-Bendixson Theorem 2A.1, every uncountable Polish space
9 has a non-empty, perfect subset P, which is (easily) a perfect Polish space with the
induced metric, and hence Borel isomorphic with A, by 1G.4. This gives us a Borel
injection

f N —PC,
and in the opposite direction a Borel injection
h P — {a €N :a(0) =0}

which can be extended to a Borel injection 2 : 9 — A by assigning arbitrary
(distinct) values to the members of the countable, scattered part 9t \ P. Now the
proof of Theorem 1G.4 applies and yields a Borel isomorphism of 90t with V. -

So every proposition which is preserved under Borel isomorphisms is true of all
uncountable Polish spaces exactly if it is true of NV

How about theorems whose very statement involves effective notions and so are not
in any way respected by Borel isomorphisms? Consider, for example, Theorem 3E.7,
by which

any two (recursively presented) perfect Polish spaces are Al-isomorphic.

Is there an “effective” version of this which applies to all perfect Polish spaces? The
obvious answer is to formulate and derive such results by relativizing the notions and
proofs of the effective theory to some arbitrary e € N, as follows.

Recall the definition on page 114 of the pointclass £%(e) and the derived notions of
e-recursive pointsets, points and partial functions.

31.2. RELATIVIZATION PRINCIPLE. Al the results we have proved so far and those we
will prove in the sequel remain true (and by the same proofs), if we replace in their
statements “recursive” by “e-recursive”, for any fixed €.

It sounds dramatic, especially as it refers to the future, but it is really obvious: the
principle holds because we never use any properties of recursive partial functions on
w other than those we have already established in this Chapter, and these are all true
of e-recursive partial functions, for any fixed €.

We must be careful, of course, not to shift the parameter: the Hierarchy Theo-
rem 3F.7, for example, establishes the existence of 2(1) subsets of every X which are not
recursive, and its correct relativization is that, for every e, there are subsets of X which
are 2%(g) but not e-recursive—not that there is a ¥ set which is not e-recursive, for
any e, which is clearly false. On the other hand, we can combine parameters, by 3E.15,
which we restate here in a form that applies directly to the discussion:

31.3. LemMA. If e <7 &3, then every e|-recursive pointset, point or partial function
is also ey-recursive. In particular, for any €, o, every e-recursive pointset, point or partial
Sfunction is also (e, a)-recursive.
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Since all the definitions of pointclasses we have given are based on the basic definition
of 29, they all relativize directly and naturally: e.g., we replace =} by Xi(e), Al(z) by
Al(e, z), etc.—and the results relativize accordingly and they are proved by relativizing
the “absolute” proofs.

An e-recursive presentation of a Polish space 91 is any enumeration of a dense set
{ro.r1, ...} such that the relations

.o m
P(i,jom.k) < d(ri.r;) < il

.o m
Q(l,].,m,k) — d(ri’rj)<k—H

are both recursive in €. It is clear that every Polish space has an e-recursive presenta-
tion, taking e to code the relations P and Q relative to any dense set {ro. rj, ... }; and
so we can include any perfect Polish space 9t among the basic spaces of the theory, if
we relativize it to any e such that 9t can be e-recursively presented. One result we get
in this way is the following corollary of the relativization of 3E.7:

31.4. THEOREM. If 91,9, are perfect Polish spaces with presentations which are
recursive in g1 and &, respectively, then I, and M, are A% ({(e1, €2))-isomorphic.

The reader can test his understanding of relativization by giving a “detailed” proof
of this—i.e., by checking out all the places where one must replace recursive by (€1, €3)-
recursive in the proof of 3E.7 to get 31.4. The exercise will also reveal where the perfec-
tion assumption is used: it is, for example, essential in the proof of the crucial 3D.15.
Whether some—and how much—of the effective theory can be developed if we allow
uncountable recursively presented Polish spaces (or discrete spaces other than o with
its natural presentation) is an interesting problem, which we will not discuss her.

3J. Historical remarks

'The class of recursive functions on the integers was introduced and studied in
the mid-thirties in various ways and by several mathematicians, particularly Church,
Kleene, Turing, Post and (later) Markov. We will not attempt to trace its history
here since this is done in some detail in the classsical monograph on the subject
Kleene [1952a]. Our development in 3A follows very closely the approach of Kleene.

>The generalization of recursion theory to spaces of type 0 or 1 is (at least) implicit
in Kleene [1952a] and more explicit in Kleene [1952b]. Alternative approaches to this
theory were given later by Kleene [1959a] and Kreisel [1959].

3There were also several attempts to develop the theory of recursive functions on
the reals, of which the most direct and successful was Lacombe [1959]. The later paper
Lacombe [1959] is more in the spirit of what we are doing here, in fact it develops
recursion theory in a more general context. The specific definitions we gave in this
chapter are new and perhaps simpler than previous developments, but we have no
significant new results here.

“The arithmetical pointclasses on w were introduced in Kleene [1943] and later
(independently) in Mostowski [1946]. They were studied extensively in Kleene [1952a].

Taking again w as his basic space. Kleene [1955b] introduced and studied the ana-
Iytical pointclasses. The main aim of that paper was the study of the hyperarithmetical
relations on @ which had been introduced independently (earlier) by Davis [1950]
and Mostowski [1951]. These coincide with the A} relations, but the proof of this is
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quite difficult—it was first given in Kleene [1955c]. We will postpone studying the
hyperarithmetical relations until Chapter 7.

®In his original development of the theory Kleene introduced specific parametriza-
tions for the arithmetical and analytical pointclasses which he proved to be “good”
in the sense of 3H.1. The fact that good parametrizations can be constructed given
arbitrary w-parametrizations was discovered by several people independently perhaps
first by Friedman [1971].

7As we mentioned in the introduction to this book, the similarities and “analogies”
between the effective theory on w developed (mostly) by Kleene and classical descrip-
tive set theory on R were noticed first by Mostowski and Addison. The unified effective
descriptive set theory which we are studying here is the end result of a long process
of generalization and abstraction which started with Addison [1954] and [1959a] and
involved the work of many people.






CHAPTER 4

STRUCTURE THEORY FOR POINTCLASSES

We are now ready to plunge into a systematic study of the structure of IT} and £.

In many ways, this chapter is a continuation of Chapter 2; here too we will establish
various interesting properties of £1 and X1 sets, in fact we will answer several natural
questions left open there. What is new and different is that we will use systematically
the methods of the effective theory which we developed in the preceding chapter.

It turns out that this infusion of ideas from recursion theory creates a more radical
change in the flavor of the subject than one might think. It is not just the case of ob-
taining “finer” results about the lightface pointclasses with a little more computation,
as we did in Chapter 3. Even when we prove theorems which are significant only for
the boldface pointclasses, we will use recursion theory to great advantage.

The most important results of the chapter are uniformization theorems, particu-
larly the Novikov-Kondo-Addison Theorem 4E.4 and the A-Uniformization Crite-
rion 4D.4. The latter implies that in many special circumstances we can uniformize a
Borel set by a Borel set.

As in Chapter 2 we will formulate many of the results of this chapter in a general
setting, to ease extension to the higher projective pointclasses. This will lead us
naturally to the axiomatic definition of a Spector pointclass, one of the key notions
of the subject. Specifically for uniformization results, the notion of a scale will also
prove very important.

Perhaps this is the most important chapter of this book, because it is the most
characteristic of out subject. One could say that Chapter 1 was mostly topology,
Chapter 2 was set theory and Chapter 3 was recursion theory; but this chapter would
be out of place in anything but a book in descriptive set theory.

4A. The basic representation theorem for I} sets

Most of the results of Chapter 2 depended directly on the fact that X} sets are
Ny-Suslin. Here we will first formulate an effective version of this fact and then refine
it to a representation theorem for I1} sets which is the key to the structure properties
of this pointclass.

Recall from 3D.8 (*20.) that

a(n) = {a(0),...,aln —1)).
This is a recursive function of o and n.

4A.1. TaeoreM. (i) A4 pointset P C X x N (1 > 1) is 29 if and only if there is a £°
set O C X x o' such that

P(X,Oq,...,(;w) < (EIt)Q(x,al(t),...,a,(z))

145
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and
[O(x.a1(r)..... (1) &t <s] = Q(x.ai(s).....a(s)).

Moreover, if X is of type 0 or 1, then Q may be chosen to be recursive.

(ii) A pointset P C X is I1} if and only if there is a % set Q C X x w such that

P(x) < (Va)(31)0(x.alr))
and
[O(x.@(r)) &t < 5] = Q(x.als)).

Moreover, if X is of type 0 or 1, then Q may be chosen to be recursive.

Proor. (ii) follows immediately from (i).

To prove (i), take / = 1 for simplicity of notation and suppose by 3C.5 that

P(x,a) < (Fu)(Fv){x e N(X.u)&a e N(N.v)&P*(u,v)}

with P* semirecursive, so there is a recursive R such that
P(x,a) < (Fu)(Fv)@n){x e N(X,u)&a € N(N,v)&R(u,v,n)}.
By 3B.5, there are recursive functions g, 4 such that
ae NWN.v) <= ((v)1), #0& (Vi < gv))[ali) = h(v.i)].

so that whenever ¢ > g(v), we easily have

ae NWN.v) <= ((v)1), #0& (Vi< g))[(alr)), = h(v.i)].
Now put

O(x.w) <= Seq(w)
& (Elu < lh(w)) (Elv < lh(w)) (Eln < lh(w))
{x e N(X.u)&q(v) < lh(w) & (i < g(v))[(w); = h(v.i)]&R(u.v.n)}
and verify easily that
P(x.a) < (31)0(x.a@(1)).

If X is f type 0 or 1, then Q is recursive since {(x,u) : x € N(X,u)} is recursive
by 3C.3. 4

With each irrational « we associate the binary relation on @
<o={(n.m) : a((n.m)) =1}
and we put
a € LO < <, isa linear ordering
= (Vn)(Vm)[n <o m = (n <o n&m <, m)]
& (Vn)(Vm)[(n <, m&m <, n) => n = m]
& (Vn)(Ym)(Vk)[(n <o m&m <, k) => n <, k]
& (Vn)(Vm)[(n <o n&m <, m) = (n <o mV m <, n)].
a € WO < <, isa wellordering
<= «a € LO& <, hasno infinite descending chains
<~ a€LO

& (V) [(Yn)[B(n +1) <o B(n)] = Fn)[B(n + 1) = p(n)]].
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Ifa € LO, let
|| = order type of <, .
In particular, the mapping
a |
takes WO onto the set of countable ordinals and provides a coding for this set in the
sense of 3H.

4A.2. TuroREM. ) The set WO of ordinal codes is T1}. Moreover, there are relations
<n, <s in I} and £} respectively, such that

PeEWO={a<pf <= a<zf < [ac WO&|a| <|f]]}.

ProOF. That WO is I1} is obvious from the formulas above. To prove the second
assertion, take first

a <y f < a € LO&(Iy)[y maps <, into < in a one-to-one
order-preserving manner]
<= a € LO&(F))(Vn)(Vm)[n <¢ m = y(n) <z y(m)].
It is immediate that <y is 2} and for # € WO,
a<sf <= [ac WO&l|a| < |B]]
For the relation <, take
a <g f < a € WO &there is no order-preserving map of <g
onto a proper initial segment of <,
— a € WO

& (Vy)~(3k)(Vn)(Vm)[n <gm <= [y(n) <, y(m) <q k]].
where of course we abbreviate
§<qt < s<,t&s #Ht. -

4A.3. THE BASIC REPRESENTATION THEOREM FOR IT} (Lusin-Sierpinski, Kleene!!-!1).
A pointset P C X is T} is and only if there is a Al function f : X — N such that for all
x, f(x) € LO and

(%) P(x) < f(x) e WO.

In fact, if P is 1'[{, then we can choose | : X — N so that for all x. i) isa
non-empty linear ordering, (x) holds, and the relation
R(x,n,m) < f(x)(n) =m

is arithmetical; if in addition X is of type 0 or 1, then (x) holds with a recursive f .
Similarly, P is 1} if an only if (x) holds with a Borel f . or with a continuous f if X
is of type 0 or 1.
Proor. This is an effective and improved version of 2D.2, the representation of
complements of k-Suslin sets of irrationals in the form

P(a) <= T(a) is wellfounded,

where T is a tree on w X k. We might as well give here a direct proof for subsets of an
arbitrary space X.
The last assertion clearly follows from the claims preceding it.
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Assume then by 4A.1 that

P(x) < (Va)(3t)R(x.a(1))

with R semirecursive, or R recursive if X is of type 0 or 1, where
R(x.a(t) &1 < s = R(x.a(s)).
For each x, put
T(x)={(up...,uy—1): ~R(x, (ug,....u;_1))}

so that T'(x) is a tree on w and clearly

P(x) <= T(x)is wellfounded.

What we must do is replace T'(x) by a linear ordering on w which will be wellfounded
precisely when T'(x) is.
Put

(’U(), . ,U‘y_l) > (uo, cees u[_1) — (’U(), . ,U‘y_l), (uo, cees ul_l) S T(X)

&{'Uo > up Vve =up&vy > u]Vivy =ug&vy = u; &vy > up]
VeeVivp=uy&vy=u & - &vg_1 = u;_1 &s < t]}
where > on the right is the usual “greater than” in w.

Itisimmediate thatif (vo, ....vs_1), (4o, ..., u,—1)arebothin T'(x) and (v, ..., vs_1)
is an initial segment of (uo, ....u;_1). then (vy....,vs_1) > (ug,...,u,_1); thus if
T (x) has an infinite branch, then >* has an infinite descending chain.

Assume now that >~ has an infinite descending chain, say

UO =X ’Ul X ,02 >Y L .
where
vl = (vi.vi... ~a”§,-—1)>

and consider the following array:

0 = (vg,v?,...,vgo_l)
ol =(hol ol )
i i i i

The definition of >* implies immediately that
vg > vh > vg >
i.e., the first column is a nonincreasing sequence of integers. Hence after a while they
all are the same, say
’U(i) =ky fori > i.
Now the second column is nonincreasing below level iy, so that for some iy, k)
vi =k, fori>i.
Proceeding in the same way we find an infinite sequence

ko. ki, ...
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such that for each s, (k. ..., ks_1) € T(x), so T(x) is not wellfounded. Thus we have
shown,

P(x) <= T(x)is wellfounded
<= >" has no infinite descending chains.

Finally put
u<'v <= (3r<u)(3s <v) {Seq(u)&lh(u) =t &Seq(v) &lh(v) = s
&lu=vV()o.....()—1) > ((wo..... (u)l_l)”

and notice that <* is always a linear ordering, it is not empty (because the code 1 of
the empty sequence is in its field), and
P(x) <= < is a wellordering.
Moreover, the relation
Plx,u,v) <= u<‘v
is easily arithmetical for arbitrary X and recursive if X’ is of type 0 or 1.
The proof is completed by taking

f(x)(n) _ {1 lf(n)O SX (n)le

0, otherwise. —

The linear ordering <* which we used in this proof is variously known in the
literature as the Lusin-Sierpinski or the Kleene-Brouwer ordering.®'®) The (technical)
observation that </, is always a non-empty linear ordering insures that if P(x). then
for all n,

(*) | <polnl <|<pu | =supremum{| <y n|+1:n <;u) n}

this holds by definition if n <in and trivially if # is not in the field of < f(x)» since
in that case | <,(,)[ n| = 0, while | </(,) | > 0. This is used in some places to simplify
formulas.

Let us prove here just one very useful corollary of this basic result. Put

of® = supremum{|a| : @ € WO and « is recursive}.

One may think of w{¥ as an “effective analog” of the least uncountable ordinal X;:
¥ is the least ordinal which cannot be realized by a recursive wellordering with field
inw.©

in w.

4A.4. THE BOUNDEDNESs THEOREM FOR IT} (Lusin-Sierpinski-Spector!! V). Sup-
pose P C X and P satisfies the equivalence

P(x) < f(x) e WO
with some A} function f. Then P is Al if and only if
supremum{ | £ (x)| : P(x)} < o,

Similarly, suppose
P(x) <= f(x) e WO
with some Borel function f. Then P is Borel if and only if

supremum{| f/ (x)| : P(x)} < N;.
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PROOF. Assume first that for all x, if P(x) then |f (x)| < |a|, where & € WO an «
is recursive. By 4A.2 then,
P(x) <= f(x)<za

so P is ! and since it is evidently T1}, it is Al
Conversely, suppose supremum{|f(x)| : P(x)} > ot¥. Let O C w be any I}
relation on w, so by the basic representation theorem 4A.3 there is a recursive g : w0 —

N and
O(n) < g(n) € WO.
Notice that for every n, g(n) is a recursive irrational by (iv) of 3D.7. Hence
0(n) < g(n) € WO&|g(n)| < o™
= (@x){P(x)&g(n) <s f(x)}

which implies that if P is X}, then so is Q. But Q was arbitrary I1} on » and need not
be X!, so Pisnot X}
Proof of the boldface result is a bit simpler. -

Exercises

Put
i = supremum{|a| : @ € WO and a is A} }.
where o is Al if {(n,m) : a(n) = m} is Al
4A.5. Prove that 6! = 0¥, (Spector [1955].7)
HinT. It is enough to establish that
5] < supremum{|a| : a € WO, a recursive},

so assume towards a contradiction that there is some f € WO, f is Al and for every
recursive a, if & € WO, then |a| < |B|. Choose P C @ which is IT} but not Al and
by 4A.3 choose a recursive f such that

P(n) < f(n) € WO.
Now each f(n) is a recursive irrational, so the assumption above implies
P(n) <= f(n) e WO&|f(n)| < B
which via 4A.2 shows P to be A}, contrary to hypothesis. -

This result is rather surprising, as one might expect to get longer wellorderings in
the complicated pointclass Al than one gets in AY.

4A.6. Prove that if 4 is a £| subset of WO, then there is a countable ¢ such that
a€d=|al <.
HINT. If not, then every IT! relation P would satisfy
P(x) <= (Ba)la € A& f(x) <z o]
with a Borel f and would be Al. 8

The next exercise is an effective version of 1G.5.
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4A.7. Prove that for each A} pointset P C X thereisarecursive functionn : N' — X
and a H(l) set A C N, such that 7 is one-to-one on 4 and n[4] = P.

Similarly, if P is A}. then there is a continuous z : N' — X and a closed 4 C N
such that 7 is one-to-one on 4 and n[4] = P (this is a restatement of 1G.5).

HiNT. By 3E.6, we may assume X' = . By 4A.3 then, there is a recursive f : N’ —
N such that

Pla) < f(a) c WO
and by 4A.4, there is a recursive § € WO so that

Pla) <= f(a) <z p.
Put

O(y.a) <= y maps <, onto an initial segment of <g in an order
preserving fashion and y = 0 outside the field of <,
<= (Yn){[a((n.n)) #1 = y(n) =0]
&lal(n.n) =1 = B((r(n).y(n))) = }}
& (Vn)(Vm){[a((n, >) = l&a(< M>)

<
( s)lee((s. >) =1&yp(s) = rn]}-
Clearly. Q is I19 and hence so is 0%,
0 (y.a) = 0(y. f(a)).
Moreover, easily
Pla) <= ()0 (r.a)
<= there exists exactly one y such that 0*(y, a).
Bring O* to normal form
0" (y.a) <= (Vn)(3m)R(y.c.n.m)

and let

S©@.y.a) < (Vn)[R(y.a.n.6(n)) & (Vm < 6(n))-R(y.c.n.m)].

Now S is a I1J subset of ' x V' x A and the recursive map (J,7, @) — « takes S
onto P and is one-to-one on S. The result follows because N' x N x N is recursively
homeomorphic with V.

The assertion about A} sets follows by the same proof, starting with a continuous
f such that

Pla) <= f(a) e WO. —|
This result is important, particularly because we will prove later that every injective,

recursive image of a Al set is Al—see 4D.7.
We can also obtain from this result an interesting partial converse to 3E.16.
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4A.8. Prove that a point xy is Al if and only if there is a H? singleton {ag} C N
such that x is recursive in ay.

HinT (Gregoriades). If x is recursive in some o with {a} in T19, then x is easily
Al. If xo is Al. then the singleton {xo} is also Al, and so by 4A.7, there is a I} set
A C N and a recursive = : N/ — X which is injective on A and such that z[4] = {x¢}:
thus 4 = {a} is also a singleton, and z(ay) = x¢. S0 X is recursive in g by (iv)
of 3D.7. -

It is not true that every A} point is a I1Y (or even an arithmetical) singleton—this
has been shown by Feferman [1965].

4A.9. Prove that for each countable ordinal &, the set
I: ={a:a e WO&|a| <&}
is A1, uniformly in the coding for ordinals determined by WO and the canonical coding
for Al.
HINT. We must show that there is a partial function u : N' — A which is recursive

on WO and such that
B € WO = u(f)isaAj-codeof {a:ac WO&|a| < ||}
Choose recursive irrationals €;, €, so that
a<nf < Gile.f.a)
a<yf = Giefa)
where G|, G, are good universal sets in 1} and =! respectively by 3H.1 and let

u(f) = (S(er. p). S(ea. p)). B

Of course this exercise is nothing but a restatement of 4A.2 using codings.

4B. The prewellordering property!!2!3)

The basic representation theorem implies easily the so-called prewellordering prop-
erty for T11, which in turn implies directly many of the nice structural properties of this
pointclass. This property can be established for £} and many other pointclasses more
complicated than I1}, so it is worth studying its consequences in a general setting.

Recall from 2B that a norm on a set P is any function

@ : P — Ordinals
taking P into the ordinals. There is a simple correspondence between norms and
prewellorderings on P established in 2G.8, where with each ¢ we associate the pre-
wellordering <¥ on P,
x <Py = plx) <p)
Conversely, if < is a prewellordering on P, then < = <¥ for some norm (; moreover,
 1s uniquely determined if we insist that it be regular, i.e., that ¢ maps P onto some
ordinal 4.
Let us call two norms ¢ and w on P equivalent if <¥ = <V, i.e.,

p(x) <p(y) = yx) <w).
Clearly, every norm is equivalent to a unique regular norm.
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There are many trivial norms on a set, ¢.g., the constant 0 function, but the concept
becomes nontrivial if we impose definability conditions on a norm in the following
way.

Let T be a pointclass, ¢ : P — 4 a norm on some pointset P. We call ¢ a I'-norm
if there exist relations <%, gl“i in I" and —I respectively such that for every y,

() P() = (Vx{[P(x)&p(x) Cp(y)] = x <Fy <= x <y}

It is important for the applications that the definition of I'-norm be precisely that
given by (*). Notice that if I' is adequate and P € I, then () is stronger than simply
requiring that the associated prewellordering <¥ be in I" but weaker than insisting that
<?beinl'N-I.

In addition to the prewellordering <¥, there are two other relations that are naturally
associated with a norm ¢. Put

x <5y = P(xX)&[-P(y) Velx) <py)l
x<py = Px)&[-P(y)Volx) <el)l
The meaning of these relations becomes clear if we extend the norm ¢ on P C X to
all of X' by
p(x) =00, if ~P(x).
where oo is assumed larger than all the ordinals. Then obviously, with this extended ¢,
x<py = Px)&ep(x) <o),
x<hy e Pl)&p(x) < ply).
4B.1. THEOREM. Let I" be an adequate pointclass and let ¢ be a norm on some P in
[; then ¢ is a I'-norm if and only if both <j, and <, are inT".
Proor. If g:;, <;‘, are in I', we can take
x<fy &= x<; .
x<fy = <),

and verify easily that they prove ¢ to be a I'-norm. On the other hand, given such
relations <¥, gl“i, notice that

x <5y = P(x)&[x < yV-y g? x].
* @
x<py = Px)&-y <fx,
so that both §;‘, and <;‘, areinI. 4

A pointclass I' is normed or has the prewellordering property if every pointset P in I
admits a '-norm.

4B.2. THEOREM. Both I1} and 11} are normed.(*1%)
PrOOF. Given P in I1}, choose a A! function f by 4A.3 such that
P(x) <= f(x) e WO
and for x € P, put
p(x) =1/ (x)].
Using the notation of 4A.2, we can take
x<py = f(x)<nfO).
x<fy = fx)<z f(»)
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and verify easily that ¢ is a [T}-norm.
The same proof works for IT}, taking a Borel f. -

4B.3. THEOREM (Novikov, Moschovakis'213)). If Tisadequate, P € T, P C X x N
and P admits a I'-norm, then NP admits an IVVN T-norm.

Hence, if T is adequate closed under VN and normed. then INT is normed. and in
particular, Zé and ;% are normed.

ProOOE It is enough to establish the first assertion. Assume that
0(x) <= (Fa)P(x.a)
with P in I, let ¢ be a '-norm on P and define w on Q by
w(x) = infimum{p(x. a) : P(x.a)}.
Proof that y is an 3V I'-norm is immediate from the equivalences
x <y = Ba)(Vp)[(x. a) < (v, )]
x <,y <= (3a)(Vp)[(x.a) <} (. B)]. n
This result is typical of the kind of abstract setting in which the notion of a I'-norm
proves useful. There will be several opportunities for applying 4B.3 in its full generality.
We will study many consequences of the prewellordering property in the next two
sections. Here we concentrate on just a few facts which are simple, useful and indicative
of the power of this hypothesis about a pointclass.

Recall the definition of a uniformizing set P* C P C X x ) in Section 1C, Fig-
ure 1C.1.

4B.4. Tue Easy UNIFORMIZATION THEOREM (Kreisel [1962]). Suppose I is an ade-
quate pointclass, ) is a space of type 0, P C X x YV isin I and P admits a T-norm.
Then P can be uniformized by some P* inV’T.

In particular, if T is adequate, normed and closed under ¥ , then every P C X x ) in
T with Y of type 0 can be uniformized by some P* inT.

Proor. It is obviously enough to prove the result with ) = w. Assume then that
PC X xwisinT,let p bea'-norm on P and put

P*(x,n) <= P(x.n)&(Vm)[(x.n) < (x.m)]
& (Vm)[(x,n) <, (x.m)Vn < m],

or in other words
P*(x.n) < P(x.n)&p(x,n) = infimum{p(x,m): P(x.m)}
&n = infimum{m : P(x,m) & o(x,m) = p(x.n)}.
Clearly P* is in VT and
P*(x.n) & P*(x,n") = P(x.n) & P(x.n’)
&ox.n)=px.n)&n<n&n" <n=n=rn',
so P* is the graph of a function. If (In)P(x.n). let
¢ = infimum{p(x,n) : P(x.n)}.
n = infimum{m : P(x,m) & p(x,m) = &},
and verify easily that P*(x, n). Thus P* uniformizes P. -
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The problem of uniformizing subsets X’ x ) for arbitrary product spaces ) is much
harder and cannot be settled using only the prewellordering property. We will deal
with it in 4E.

Theorem 4B.4 is most often used in the form of the following easy corollary.

4B.5. THE A-SELECTION PrINCIPLE (Kreisel [1962]). Let I be adequate, normed and
closed under 3°,¥®, let P C X x Y be in T with Y of type 0. assume that A C X is in
A=InN-I and
(Vx € 4)(3y)P(x,p).

Then there exists a A-recursive function f : X — Y such that
(Vx € A)P(x. f(x)).
Proor. Put
O(x,y) < x¢ AV[x € A&P(x,y)]

and choose Q* C Q by 4B.4 which is in I' and uniformizes Q. Clearly Q* is the
graph of a function f : X — Y and (Vx € A)P(x. f(x)). Since Y is of type 0, f is
I"-recursive by 3D.2; now f is A-recursive since

fx)#y = @Nfx) =y &y #yl n

Exercises

4B.6. Let I" be an adequate pointclass. Prove that a norm ¢ on some P in I is
a ['-norm if and only if the unique regular norm y which is equivalent to ¢ is a
[-norm. Prove also that if ¢ is a [-norm, then there are relations <¥. <f in I and
—I" respectively such that for every y,

P(y) = (Vx{[P(x) &o(x) <p(y)] <= x<fy < x<{y}

4B.7. Prove that if I' is adequate and normed, then the associated boldface class I
is also normed.

4B.8. Prove that for n > 2, the pointclasses £, £% are normed. Prove also that
every ¢ (or £Y) pointset of type 0 or 1 admits a =¥ (or £?) norm. Show that the latter
result fails for sets of reals.

HiNT. Given P in XU so that
P(x) <= (3m)0(x.m)
with Q in T1%_,, put
@ (x) = least m such that Q(x, m). -

4B.9. Suppose I is a Z-pointclass closed under Al substitution. Prove that if every
pointset of type 1 in I" admits a I'-norm, then I'" is normed.

HinT. Use 3E.6. =

Recall the definition of reduction from 1C. A pointclass I has the reduction property
if every pair P, Q of sets in I' can be reduced by a pair P*, Q* in I

4B.10. Prove thatif I"is adequate and normed, then I" has the reduction property; in
particular, 1}, IT}, =} and £} have the reduction property. (Kuratowski, Addison.1?))
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FIGURE 4B.1. Separation of P C Q from X'\ Q.

HINT. Given P, Qin T, put
R(x,n) <= [P(x)&n=0]V[O(x)&n = 1],
let ¢ be a I'-norm on R and take
Pi(x) <= (x.0) <; (x. 1),
0*(x) <= (x.1) <X (x.0). -

A pointclass I has the separation property if when P, Q arein ', P N Q = (), then
there is some R in A = I' N =" which separates P from Q. We have already proved
in 2E.1 that £} has the separation property.

4B.11. Prove that if I" is adequate and has the reduction property, then the dual
class —I" has the separation property; in particular, £, £1. IT}, IT} have the separation
property. (Lusin, Novikov, Addison.(1?))

HINT. Given P, Q in —I', both subsets of X, let Py = X'\ P, Q; = X'\ Q, choose
P}, Qf toreduce Py, Q; and prove that P; U Qf = X'. Take R = 0Oy =

Many times we use the separation property in the following form: if Pisin I, Q is

in =" and P C Q. then there exists some R € A so that (see Figure 4B.1)
PCRCO.

To see this, separate P from X' \ Q.

4B.12. Prove that if I is adequate, w-parametrized and has the reduction property,
then I'" does not have the separation property.

Similarly, if T is adequate, N'-parametrized and has the reduction property. then T’
does not have the separation property.

In particular, X}, IT}, 2}, £2, TI |, £} do not have the separation property. (Novikov,
Kleene, Addison.?)

HINT. Let G C w x o be universal for I' [ w and put

P(n) < ((n)o.n) € G. 0(n) < ((n)1.n) €G.

Choose P*, O* in I" which reduce P, Q and assume towards a contradiction that some
R in A separates P* from Q*, i.e.,

P* CR, RNQO*=0.
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DiaGgraM 4B.2. Normed Kleene pointclasses.

Choose integers e, m such that
R(n) < (e.n) €G. -R(n) <= (m.n) € G

and let 1 = (m, ¢). Now show that both assumptions ¢ € R, ¢t ¢ R lead to contradic-
tions.
The second assertion is proved similarly. -

4B.13. Prove that if I" is adequate and w-parametrized, then at most one of the
pointclasses I', —I" is normed.

It follows from the results of this section that the Kleene pointclasses which are
normed are exactly those circled in Diagram 4B.2. The circle around XY is dotted,
since only 2(1) pointsets of type 0 or 1 admit Z‘l)-norms.

The diagram for the boldface classes is identical.

We have not included here X}, IT} and the higher analytical pointclasses, as it is not
clear at this point which of ! or I} is normed, if any.

Many of the results in this section have uniform versions which are easy to establish
using the methods of 3H. We put down one theorem of this type as an example.

4B.14. If T is w-parametrized, adequate and has the reduction property, then I" has
the uniform reduction property, i.e., for each X, there are recursive functions u(c, f8),
uy(a, B) such that whenever a, f code subsets P, Q of X respectively in ', then
ui(a. B), upy(a, B) code sets P*, Q* respectively which reduce the pair P, Q.

HiNT. All codings are relative to a good parametrization of course, so the hypothesis
(for example) means that

P(x) <= G(a.x). O(x) <= G(p.x)

with G a good universal set.
Define

U, B.x) <= G(a.x).
Us(a. f.x) <= G(B.x).

so that both Uj and U, arein I" and let U}", U; reduce the pair U;, U, in I'. There are
then recursive irrationals e, e, so that

Uf(a. B, x) < Gle.a.B.x) < G(S(sl,a.ﬂ),x)
Uj(a. B, x) < Gler.a. B x) < G(S(sz,a.ﬂ),x),

where we have used the Good Parametrization Theorem 3H.1. It is easy to check that
the recursive functions

u(a.p) =S a.p)
w(a. p) = S(e.a.p)
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have the required properties. -

4C. Spector pOintClaSSeS(14—16)

The consequences of the prewellordering property which we proved in 4B depended
on several side conditions on a pointclass I, e.g., closure under various operations or
parametrization. Here we will isolate the most commonly used hypotheses into the
basic notion of a Spector pointclass. The simplest Spector pointclasses are 1} and
X} —in fact [T is the least Spector pointclass.

A Spector pointclass is a collection of pointsets I" which satisfies the following
conditions:

(1) T isa Z-pointclass with the substitution property and closed under V.
(2) T is w-parametrized.
(3) T is normed.

Recall that (1) implies E(l) C T and Iis closed under &, Vv, 3= and 3, and by 3G.1,
I' is also adequate.

All the Kleene pointclasses X!, T} satisfy (1) and (2), so to prove that one of these is
a Spector pointclass we need only verify the prewellordering property. It is also trivial
to check that each relativization I'(z) of a Spector pointclass I is a Spector pointclass,
see 4C.4. Thus I}, =1, T11(z). Z1(z) are Spector pointclasses—they are the only ones
we know at this time.

In Chapters 5 and 6 we will prove using strong set theoretic hypotheses that some
of the higher Kleene pointclasses are also normed and in Chapters 6 and 7 we will
introduce many more examples of Spector pointclasses. Here we concentrate on
consequences of (1)-(3) above which give us new results about I} and X.

First let us prove a strong closure property of Spector pointclasses which implies
that every one of them contains every I1} relation.

Suppose Q(x, w) is given and we define P(x, w) by

(%) P(x.w) < (Va)(31)Q(x.w *xa(t)).

where w * v codes the concatenation of the sequences coded by w and v, if Seq(w).
Seq(v). see (*18) of 3A.6. For each countable ordinal ¢, define the set P° C X x w
by the recursion

€ P(x.w) <= Q(x.w)V (¥s)(Fn < &P (x,w * (s)).
It is easy to verify by induction on &, that
P<(x.w) = P(x.w).
We claim that, in addition,
(% % %) (VE) =P (x.w) = =Q(x, w) & (3s5)(VE) =P (x. w * (s)):

because if (V&)—P<(x,w) but (towards a contradiction) for every s there exists some
&, such that P< (x,w * (s)) and we choose k > & for every s. then =P*(x,w) by
the hypothesis, which implies that for some s and for all n < &, =P7(x,w * (s)),
contradicting the choice of . Now, from (* * ), there is some s = s such that for
all &, = P<(x, w * (s0)), so again =Q(x,w * (so)) and now for some s = s; and all ¢,
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=P< (x, w(so. 51)). etc.. and finally we have (V7)—Q (x, wxa(t)), witha = (so. 51.... ).
i.e., =P(x,w). Thus
P =P
Now define a norm
¢ : P — Ordinals
by
@(x, w) = least ¢ such that P*(x, w):

it is immediate from (*x) that P satisfies the equivalence

P(x.w) <= Ox.,w) Vv (Vs)[(x. w * (s)) <} (x,w)].

It is perhaps a bit surprising that this equivalence completely determines P.
4C.1. LeMMA. Suppose Q(x,w), P(x.w) are given and P admits a norm o such that

P(x.w) <= Ox.w) V (Vs)[(x.w * (s)) <} (x,w)]:

then
P(x.w) <= (Va)(31)Q(x. w xa(r)).
Proor. First we prove by induction on ¢ (x, w) that
P(x,w) = (Va)(31) QO (x. w xa(r)).

Assuming this for all (x,u) € P with ¢(x,u) < ¢(x,w) and supposing that P(x, w)
holds, we have by the hypothesis

O(x.w) vV (Vs)[(x.w * (s)) <§ (x.w)].

If Q(x, w) holds, then easily (Vo) Q(x, w * @(0)) since w * @(0) = w. Otherwise. we
have
(Vo)x.w + {s)) <3 (x.w)],
so that for each s, P(x,w x (s)) and ¢(x,w * (s)) < ¢(x,w). By the induction
hypothesis then,
(Vs)(Va)(31) O (x. w * (s) x (1))
from which (Va)(31)Q (x. w * @(t)) follows immediately.

Conversely, if we assume —P(x,w), then =Q(x,w) and there exists some s = s
such that ~(x, w * (s0)) <}, (x,w). This means =P (x,w * (s9)). since P(x,w * (s0))
and —P(x, w) implies (x, w * (s)) < (x.w). Again, ~Q(x,w * (s)) and for some
s =51, 2(x,w * (s0.51)) < (x.w * (5)) etc., so we get some a = (so. 51, ...) such
that (V)=Q (x. w = a(1)). =

There is a bit of trickery in this proof which will not become completely clear until
we look carefully at inductive definability in Chapter 7. For now we can simply view
this lemma as a tool for establishing the next very useful result.

4C.2. THEOREM (Moschovakis!S)). Let T be a Spector pointclass, suppose Q C X x
w is in T and P is defined by

P(x) < (Va)(31)0(x.a(1)):

then PisinT.
In particular, T1} is the smallest Spector pointclass and T} is the smallest Spector
pointclass closed under =
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PrOOF. The second assertion follows immediately from the first by (ii) of 4A.1.
To prove the first assertion using the lemma, it is enough to find some R* C X x w
in I which admits some norm ¢ so that

R*(x.w) <= Q(x.w)V (Vs)[(x,w * (s)) <} (x, w)].
since we then have
P(x) <= R*(x.1).
Here is where we will use Kleene’s Recursion Theorem for relations, 3H.3.

Let G C N x X x w be a good universal set in T for I'. let y : G — Ordinals be a
I'-norm on G and define

Ra. x,w) <= O(x.w) V (Vs)[(a. x.w * (s)) <;, (. x,w)].

Now R isin I', so by 3H.3 there is a fixed recursive £* so that
R(e*. x,w) <= G(e*, x,w).
Put
R*(x,w) <= R(e*. x,w)
and on R* put the norm
plx.w) =yl x. w).
Computing,

R*(x,w) < R(e*, x,w)
= O(x.w)V (Vs)[(e™. x.w  (5)) <5, (7. x.w)]

= Qxw) v (V8)[(x.w # (s)) <} (x.w)]

so that R* has the required property. -

This theorem is interesting partly because it gives an intrinsic structural characteri-
zation of TI}. Of course, T1} can be easily characterized by its closure properties, e.g..
it is the smallest X-pointclass closed under V* and vV, But nothing very deep can
be proved in general about X-pointclasses closed under V* and vV, We will see that
Spector pointclasses have a rich structure theory, much of it giving new results even
when we specialize it to IT}.

There is another practical corollary of 4C.2 which we will list together with some
simple properties of total functions recursive in a Spector pointclass.

4C.3. THEOREM. Let I" be a Spector pointclass, suppose f : X — Y is total and
[-recursive; then f is A-recursive, Graph(f) = {(x.y) : f(x) = y} is in A and for
every X,

f(x) € Alx) =T(x) N —T'(x).
i.e., f(x)is a A(x)-recursive point.

Moreover, every Al function is T-recursive, so in particular, T is closed under substitu-
tion of Al functions.

Proor. The first assertion is easy and uses only the fact that I' is a Z-pointclass
closed under V”. Thus {(y.s) : y ¢ N,}isin I since it is I1{ and I contains all IT)
sets, hence {(x,s) : f(x) ¢ Ny} isin ' by closure under substitution of I'-recursive
functions; thus f is A-recursive. From this follows trivially that £ (x) € A(x). As for
the graph,

f(x)=y <= (Vs)[y e Ny = f(x) € N{]
— (Vs)[f(x) € Ny =y € N,].
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Nowif f : X — Yis Al then {(x,s) : f(x) € N} is Al, hence in " by 4C.2, hence
[ is I'-recursive. —|

Exercises

4C.4. Prove that if I' is a Spector pointclass, then so is each relativization I'(z).

With each pointclass I' we have associated the boldface pointclass I', where for
PCXx,

Pel <= forsome P* CN x XinT andsomee € N, P = P},

ie.,

L =U.T().
As usual,

A=Cn-T.

4C.5. Prove that if " is a Spector pointclass, then I contains IT! and is closed under
Borel substitutions, 3, vV, \/“, A“. it is N-parametrized and it is normed.

Moreover, every I'-measurable function is A-measurable (in fact A-recursive by
3D.22) and has a graph in A. The pointclass I is closed under substitution of -
measurable functions.

4C.6. Prove that if I" is a Spector pointclass, then —I is closed under the opera-
tion & .

If ¢ : P — Ais aregular norm, we call 4 the length of ¢,
ol = 4.
The length || of an arbitrary norm is (by definition) the length of the unique regular
norm equivalent to ¢.

If ¢ : P — || is a regular norm, then for each ¢ < |p
defined by

. the &’th resolvent of P is

P*={x:p(x) <&}
Clearly
P =Uecpy Pe.

4C.7. Let T be a Spector pointclass and let ¢ : P — || be a regular I'-norm on a
pointset P in ', where P is of type 0. Prove that for every ¢ < |¢|, the resolvent P< is
in A.

Similarly, if ¢ : P — || is aregular I'-norm on some P in I, then for every & < |¢
the resolvent P¢ isin A = L' N —L. In particular,

P =Ueqy P

s

with each P¢in A.
HinT. Choose some y € P such that ¢(y) = & and notice that
x€P = x <y
= -y <} x). -
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This result is more useful if we can get an estimate on the length || of a T-norm.
Given a pointclass I' (which need not be a Spector pointclass), put
0 = supremum{| < | : < is a prewellordering of @, < in A},
d = supremum{| < | : <is a prewellordering of N, <in A}.

Clearly, 0 is a countable ordinal, but 4 may well be uncountable—the only obvious
bound is
d < (2™)" = least cardinal > 2™.

4C.8. Let I' be an adequate pointclass closed under 3, V. Prove that
0 = supremum{| < | : <is a wellordering on w. < in A},

¢ is a limit ordinal and for every I'-norm ¢ on a pointset P of type 0 in I,

p| <.

4C.9. Prove that if I' is an adequate pointclass, then for every I'-norm ¢ on a
pointset Pin I, [p| < 4.

If T is a Spector pointclass, then ¢ is an ordinal of cofinality > w and every pointset
in I is the union of J setsin A.

HINT. An ordinal 4 has cofinality > w if for every increasing sequence &y < &; <
-++ < A, lim, &, < A. This follows here from closure of A under \/“. =

This is obviously a “soft” version of part of 2F.2, with a very different proof. To get
“hard” corollaries of this exercise we must establish a construction principle for the
specific A and also get an estimate of the size of . Both of these often turn out to be
very hard.

The traditional notation for § and § when I"is X} (or I1}). is ! and d ). Similarly,
for the relativized class 2! (z) (or T} (z)). its ordinal is 6} (z). (It is trivial to establish
that the boldface class corresponding to X! (z) is £}, so the boldface ordinal of £} (z)
isagaind}.)

From the Kunen-Martin Theorem 2G.2 we know that

=N, 4, <N
This is about all that can be proved about these ordinals in classical set theory, except
for 4A.5, that
0} = o™X = least nonrecursive ordinal.

The next exercise gives an interesting generalization of the Boundedness Theo-
rem 4A .4 to arbitrary IT}-norms.

4C.10. Suppose P C X is II} and ¢ : P — Ordinals is a regular, I1}-norm on
P. Prove that P is Borel if and only if |¢| < Ny. (The Boundedness Theorem for
I1{-norms.)

HINT. Let A = || and assume first that 1 < ®;. Now
P = Ué<). P:

and each P< is Borel by 4C.7, so P is a countable union of Borel sets and hence Borel.
Conversely, if P is Borel, then the prewellordering

x<y = P(X)&P(y)&e(x) <o(y)
of length 1 is easily Borel and hence 4 < N;. n

This result is often useful in conjunction with the following, very general formulation
of the Boundedness Theorem 4A .4:
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FIGURE 4C.1. The Covering Lemma.

4C.11 (The Covering Lemma, Figure 4C.1). LetI" be a Spector pointclass, let ¢ be
a regular '-norm on some P C X in '\ A, let Q be in —I" and assume that either X’
is of type 0 or I is closed under V. Prove that

LOC P ={xeP:p(x) <&}

Similarly, let I" be a Spector pointclass closed under vV let ¢ be a regular I'-norm
onsome P C XinI \ A and let Q be in —I'. Prove again that

.QC P

QO C P = forsome ¢ < |p

Q C P = forsomel < |p

In particular, if I' is a Spector pointclass closed under vV, G C N x X is universal
inI"and ¢ : G — Ordinals is a [-norm on G, then a pointset P C X isin A if and
only if there are irrationals €, g9 and some xy € X such that G (eo. xo) and

P={xecX:Ge.x)&p(e.x) < ple. x0)}
HiNT. By contradiction, see the proof of 4A.4. -
The next result is a simple but interesting extension of the A-Selection Principle.

4C.12 (The Principle of I'-Dependent Choices). Let I" be a Spector pointclass, sup-
pose PC X x Y x YisinI, Yis of type 0, and

(Vx)(Vy)3y" ) P(x.y.y").
Prove that for each fixed yy € Y, thereisa function f : X x@w — ) whichis A-recursive
and such that

S (x.0) = yo.
(Vn)P(x. f(x.n). f(x.n+1)).

HiNT. By hypothesis and the A-Selection Principle 4B.5, there is a A-recursive g :
X x Y — Y such that (Vx)(Vy)P(x. y.g(x. y)). Define / by the recursion

£ (x.0) = yo.
flxn+1)=g(x. f(x.n)). .
Another simple but interesting application of the A-Selection Principle comes up in

the next result. This is essentially a representation theorem for A sets which happen
to be open—we will need it in the exercises of 4F.
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4C.13. Let I" be a Spector pointclass closed under VNV, let P C X bea pointset in
A which is open. Prove that there is some irrational € in A such that

P=,N(X.e(n))
and for each n,
N(X.e(n)) CP.

(N(X.s) 1is the closure of N (X, s).)
In particular, under these hypotheses, P is semirecursive in some e € A.(2)

HiNT. Put
O(x.s) < P(x)&x e N;&(Vy)ly € Ny = P(y)].

Clearly Qisin I and (Vx € P)(3s)Q(x. s). so by 4B.5, there is a A-recursive function
f X — o such that (Vx)Q(x, f(x)). The set

A={s:@x e P)[f(x) =sl}

is in —I" and it is disjoint from

B={s:(3y ¢ Py € N}
since for each x € P. N f(x) € P. By the separation property for —I', there is some C
in A,
ACC. BNC =0.
Now it is immediate that
P=U{N;:seC}
and foreach s € C, N, C P. Take

s ifseC,
els) = .
0 ifs ¢ C. =

The last exercise is an interesting generalization of the fact that X} relations have
countable rank whose proof uses Kleene’s recursion theorem for relations, 3H.3, as
did the proof of 4C.2.

4C.14. Let T be a Spector pointclass closed under vV, suppose < is a (strict)
wellfounded relation on the perfect product space X whichisin —-I',let G C N x X
be a good universal set in " and let ¢ : G — Ordinals be a '-norm on G. Then there
exists a recursive function

XN xX
which is order-preserving from < into ¢, i.e.,
x=y=f(x).f(») € G&p(f(x)) <o (f(¥)).
It follows that if ¢ is any regular I'-norm on the good universal set G, then
lp[=9.
(Moschovakis [1970].)
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HinT. Put
Oa.x) <= (Vy)ly < x = (. y) <} (a.x)]

so that Q is in " and by 3H.3 there is a recursive e* € A satisfying
O(e*. x) <= G(e*. x).
Put
f(x)=(e".x)

and check by a trivial induction that if x is in the field of <, then

f(x)eG&(Vy)ly <x = o(f(»)) <o (f(x))].

Applying this to each relativized pointclass I'(w) we show that || exceeds the rank
of every strict, wellfounded relation in —I" on X', whence |¢| = ¢ follows immediately
by the fact that every two perfect product spaces are Al-isomorphic and 4C.9. -

4D. The parametrization theorem for AN X

Most of the results in 4C follow quite directly from the definitions and depend
on only few of the axioms for a Spector pointclass. Here we will consider somewhat
deeper propositions whose proofs make essential use of the full set of axioms, including
w-parametrization.

Recall that a partial function

fiXx =Y
is T-recursive if Domain(f) is in I" and f is ['-recursive on its domain; if T is closed
under &, this amounts to saying that the relation
G/ (x.5) = f(X)|&[(x) € N,
is in I'. These partial functions are very useful when I' is a Spector pointclass. We
summarize some of their properties in the next result.

4D.1. THEOREM. Let I" be a Spector pointclass, let f : X — Y be a I'-recursive
partial function.

(1) The relations

P(x) <= f(x)L.
O(x.s) = f(x)&[f(x) ¢ N;.
R(x.y) < f(x)=y.

= f)I&f(x)=1.
S(x.y) <= f(x)]&f(x)#y.
areallinT.
({)IfOCYisinT and
R(x) <= f(x)|&QO(f(x))

then RisinT.
(iil) For each x € X, if f(x)|, then f(x) € A(x), i.e.. f(x) is A(x)-recursive.
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PrOOF. (i) The set {(y.s) : y ¢ Ny} is 1Y and hence in I and the partial function
(x.5) — (f(x).s) is easily I-recursive, so by the substitution property there is some
0O*(x.s) in I such that

S =1[0"(x.5) <= f(x) ¢ N]:
thus
SO &f(x) ¢ Ny = f(x)|&Q0"(x.5)

and thisisin I.
The other claims are easier:

fx)=y = (Vs){y e Ny = [f(x)| & f(x) € N,]}.
FON&f(x)#y <= AsHIf(X)] & f(x) € Ns]&y ¢ Ny}
(ii) Given Q C Y in T, choose Q* C X in I by the substitution property so that
f(x)] = [0"(x) <= 0(f(x))]
and notice that
R(x) <= f(x)] & Q"(x).
(iii) Use 3G.5. -
We have been using and will continue to use the handy abbreviation
y € A < yis A-recursive
< U(y)isin A,
and similarly for A(x). It is also convenient for any pointclass A to put
ANX ={x € X: xis A-recursive}.

For example £ N R = A N R = the set of recursive real numbers.
Using partial functions we can formulate simply an easy to prove but very powerful
parametrization theorem for the points in a Spector pointclass.

4D.2. THE PARAMETRIZATION THEOREM FOR THE POINTS IN A, A(x)(”). Let T be a
Spector pointclass. For each product space Y, there is a I'-recursive partial function

d:w—)
such that for every y € ),
y €A < forsomei.d(i)| &d(i) = y.
Similarly, for any X, Y there is a I'-recursive partial function
d:oxX =)
such that for all x, y,
y € A(x) <= forsomei d(i,x)| &d(i,x) = y.

ProoF. Take first the case Y = N. We prove the second assertion, the first being
simpler.

Choose aset G C w x X x w x w which is universal for I' | (X x w x w) and let
G* C G be in I' and uniformize G by the Easy Uniformization Theorem 4B.4. Here
we are thinking of G as a subset of (w X X X w) X w, i.e., we uniformize only on the
last variable. Now put

d(i,x)] <= (Vn)3m)G*(i.x.n.m)
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and if d(i, x)], let
di.x) =«

where for all n, m

an)=m <= G*(i,x.n,m).
We omit the trivial computation which establishes that d is in I". From this it follows
that each d(i, x) is in A(x) by 4D.1. Conversely, if @ € A(x), choose i so that

an)=m <= G(i.x,n.m)
so that

an)=m <= G*(i.x,n.m)
and hence d(i, x)| &d(i, x) = a.

If YV is of type 0, the result is trivial. Otherwise, there is a Al bijection
7 N—Y
with Al inverse 7~! by 3E.7, so let d as above parametrize the A(x) points in A" and
defined* : v x X — ) by
d*(i.x) =n(d(i.x)):
clearly
d*(i.x)| &d*(i.x) € Ny <= d(i.x)| &n(d(i.x)) € Ny
so d* is I'-recursive. In particular, each d*(i, x) is in A(i, x) = A(x). Conversely. if y
is in A(x), then o = 7n~!(y) is in A(x) since n~! is Al and hence [-recursive, hence
o =d(i,x) forsomei and y = n(a) = d*(i, x). -
There are many interesting corollaries of this theorem and we will leave most of

them for the exercises. Two deserve special billing.

4D.3. THE THEOREM ON RESTRICTED QUANTIFICATION (Kleene [1959b]18)). Les T

be a Spector pointclass, assume that Q C X x YV isin I and put
P(x) & 3y eAN)QO(x,y).

Then PisinT.

Similarly, if Q CX x Zx Yisin T and

P(x.z) < (Fy € Al2))0(x.z.p)

then PisinT.

Proor. Taking the second case,

P(x.z) < (3i){d(i.z)| & Q(x.z.d(i.z))}.
so Pisin I by (ii) of 4D.1. =
The next result gives a very powerful method for uniformizing Borel sets by Borel
sets in the special circumstances when this is possible.
4D.4. THE A-UNIFORMIZATION CRITERION®?). Let T be a Spector pointclass closed
under VN, let P C X x Y be in A and assume that each section P, = {y : P(x, y)}is
either ) or contains some points in A(x) N Y, i.e.,

(%) (3y)P(x.y) <= (Fy € Alx))P(x.p).

Then the projection 3” P is in A and P can be uniformized by some P* in A.
Conversely, if P C X x Y is in A and can be uniformized by some P* in A, then each
non-empty section Py has some point in A(x).
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PROOF. Assume () and let 0 = 3V P, i.c.,

O(x) <= (3y)P(x.y)
<~ (Fy e Ax))P(x.p).
Clearly Q is in A by closure of —=I" under 3V and 4D.3.
Now put
R(x.i) < P(x.d(i.x))

where d parametrizes A(x)N) by 4D.2. By the A-Selection Principle 4B.5, since (Vx €
0)(3i)R(x.i). there must be some g : X — w in A such that (Vx € Q)R(x.g(x)).
Put

P*(x.y) <= 0(x)&d(g(x).x) = y.
It is immediate that P* uniformizes P and that it is in A follows by 4D.1, since
P*(x.y) <= 0(x) & (3N[d(i.x)| &d(i.x) = y &g(x) = i
—P(x.y) <= —0(x)V (3)[d(i.x)| &d(i.x) # y &g(x) = i].

For the converse, suppose P* C P is in A and uniformizes P and assume that
(3y)P(x, y): then there is a unique y* such that P*(x, y*) and

y*e Ny < (Fy)[P*(x.y) &y € N,]
— (Vy)[P*(x.y) =y € N].
so y* € A(x). -

We leave the application of this result for the exercises of this and the next two
sections.

Exercises

4D.5. Suppose I"is a Spector pointclass and f : X — w is a partial function; prove
that 1 is I'-recursive exactly when its graph

{(x.i): f()L & f(x) =i}
is in T'. Similarly, a partial function f : X — N is I'-recursive exactly when the
associated f* : X X w — w is I'-recursive, where

ffen)=w = f(X)|&f(x)(n) =w.
Prove also that the collection of I'-recursive partial functions is closed under compo-
sition.
HinT. For the last assertion, compute
Fg)) & f(g(x) € Ny <= (3y € Alx))[g(x)l &gl(x) =y
&f(y)l&f(y) € Nyl
Use 4D.1 and 4D.3. -

4D.6 (The Strong A-Selection Principle). Let P C X x Y be a pointset in some
Spector pointclass I'. Prove that there exists a I'-recursive partial function

fix=)
such that
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(i) f(x)] = (HyEA( ) P(x.y).
(i) (3y € Ax))P(x.y) <= P(x. f(x)).
HinT. Put
O(x.i) <= d(i.x)| & P(x.d(i.x))
where d parametrizes A(x) N'Y by 4D.2 and let O* C Q uniformize Q in " by 4B.4.

Now Q* is the graph of a I'-recursive partial function g : X — o by 4D.5 and the
partial function we need is given by

f(x)=d(g(x).x). -

4D.7. LetI" be a Spector pointclass closed under v, let P C X bein A and assume
that f : X — ) is A-recursive and one-to-one on P. Prove that f[P]isin A and that
there is a A-recursive function g : ) — X which agrees with the inverse function f !
on f[P].

Hint. If P(x) & f(x) = . then x is the unique point in P whose image is y; hence

s EU(x) = x € N;
= A (X) =y &P(x)&x" € N]
= (WIS (x) #y V=PV e N]
and U(x) isin A(y), i.e., x € A(y). Hence

y e fIP] <= (Ax)[P(x)&y = f(x)]
— (Ax e AY))[P(x) &y = f(x)]

and f[P]is in A by closure of —I" under 3 and 4D.3.
To get the inverse function, notice that (Vy € f[P])(3x € A(y))[f(x) = y] and
apply the strong A-Selection Principle, 4D.6. -

Taking I' = I1}, this is a lightface version of 2E.7 with a very different proof. The
classical result follows easily from this, by “relativization.”

4D.8. Let I" be a Spector pointclass closed under vV, let P C X bein A and
assume that f : X — ) is A-measurable and one-to-one on P. Prove that f[P]is in
A and there is a A-measurable function g : J — X which agrees with the inverse f !
on f[P]

HINT. If P isin A, then P is in I'(gg) and in =I'(g;) for some €, &; in NV, so easily
P isin A(e) for some e, say with (¢)o = &0, (¢); = €. Similarly, if f is A-measurable,
then f is A(e’)-recursive for any ¢’ such that {(x,s) : f(x) € N} isin A(¢’). Thus
we can find some €* such that P is in A(e*) and f is A(e*)-recursive and apply 4D.7
to I'* = I['(e*); it follows that f[P]isin A(e*) C A and similarly for the inverse. -

This technique of obtaining boldface results from lightface, finer theorems is very
easy. We will not always bother to put down the boldface consequences, unless they
give well-known classical theorems and we want them to stand out.

It is worth putting down for the record the characterization of Al which follows
from 4D.7 and 4A.7.

4D.9. Prove that a set Q C X is Al if and only if Q is the recursive, injective image
of some Y set P C .
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Before using 4D.4 to establish some interesting uniformization results, we point out
that not every Borel set can be uniformized by a Borel set.
First a lemma which is interesting in its own right.

4D.10. Prove that there is a T1¢ set 4 C N, such that 4 # () but A has no Al-
recursive member; similarly, for each x, there is a IT)(x) set 4 C N, 4 # (), such that
A has no Al (x)-recursive member. (Kleene [1955¢].(1920))

Infer that not every I1 set A C N is a recursive image of .

HiNnT. Towards a contradiction, assume that every non-empty H(l) set has a member
in Al and let P(n) be a X! relation on w which is not IT}. There is a 1 set Q(n. «)
such that

P(n) <= (3a)0(n.a)
and by our assumption, we then have

P(n) < (BaeA)O(n. a)

which implies that P is in IT} by 4D.3.
If A = f[N] with a recursive 1, then 4 would have recursive members, namely any
f (a) with recursive a. -

4D.11. Prove that there is a I1J set P C A" x N which cannot be uniformized by
any X! set.(1920)

HINT. Assume the contrary and let G (n, &, ) be a universal ITY subset of & x A" x .
Since w x N is recursively homeomorphic with A, the assumption implies that G can

be uniformized by some X! set G* C G, say G* is T} (e*) for a fixed ¢*. Now every
9(e*) set A C N is of the form

A={a:G(ne* a)}
with a fixed n; if 4 # 0, then (Ja)G (n.e*, ). so A contains the unique a* such that
G*(n.e*,a*). But this a* is in Al(¢*), since
o (t) =w <= (Fo)[G*(n.e*, a) &alt) = w]
— (Va)[G*(n.e*.a) = al(t) = w],
contradicting 4D.10. -
Nevertheless, there are many special circumstances in which Borel sets can be uni-

formized by Borel sets. The next exercise gives a simple topological condition which
is often easy to verify and implies the more subtle definability condition of 4D.4.

4D.12. Let I" be a Spector pointclass closed under VN, let P C X x Y bein A and
assume that for each x, the section P, has at least one isolated point—e.g., it may be
that each P, is finite, or countable and closed. Prove that P can be uniformized by
some P* in A. Infer the same result for P in A, with P* in A.

Hint. If y is isolated in P, then for some s, P, N Ny, = {y}, so that the singleton
{y}isin A(x) and y is easily A(x)-recursive. For the second assertion recall that each
P in A is in some A(¢*) and use the result on the Spector pointclass '(e*). -

In 4F we will improve this result substantially by showing that it is enough to assume
each P, to be a countable union of compact sets.

The next exercise is simple but amusing.
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4D.13. Prove that if P C R"” x R™ is a convex Borel set, then the projection
O={xeR":(3Fy eR")P(x.y)}
is Borel and P can be uniformized by a Borel set.

HiNT. For m = 1, each section P, is cither a singleton or contains a whole line
segment. Use induction on . -

We now establish some interesting definability results about A N X'.

4D.14. Prove thatif I" is a Spector pointclass, then for each X theset AN X isin I
Similarly. the relation {(x.y) : x € A(y)} isin T. (Upper classification of A.)'®)

HINT. x € A <= (Fi){d(i)] &d(i) = x}. -
4D.15. Let I" be a Spector pointclass and let d : @ — X be a I'-recursive partial

function which parametrizes AN X = {x € X' : x is A-recursive}. Prove that there is
a ["-recursive partial function

c: X —w
such that
c(x)] &= xcA
and for x € A, d(c(x)) = x.
HinT. Use the Easy Uniformization Theorem 4B.4 or 4D.6. -

4D.16. Prove that if I is a Spector pointclass closed under either vN or 3V, then
for every perfect product space X the set AN X is not in =I". (Lower classification
of A)118)

In particular, Al N X is not =} and A} N X is not I1).

HINT. If 7 : N X is a A} isomorphism, then clearly
xeA = 1 '(x) eA,
so it is enough to prove the result for A. For simplicity in notation put
D=ANN.
Case 1. T is closed under vV . Let
jeJ = (Fa)la € D&ec(a) = j]
= (30)d(i)| &e(d(i)) = j].
soJisinI". Also
j#d = (Va)|a ¢ DV el &ea) £ 1.

so that if D were in A, then J would be in A, and then the irrational

L Jd(HG) L i el
a(j) = {0, it

would be in A and different from all d(j).
Case 2. T is closed under 3. Let

iel < d(i)]
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and let ¢ be a '-norm on /. Put
Pla) = (Vi)la(i) < 1N&(Vi)la(i) =0=icI]
& (Vi)(V))[(alj) = 0&i <¢ j) = a(i) = 0].
Clearly P isin I and

Pla) <= (Vi)[a(i) <1]

& |{izali) =0} =1V @)U € 1&{i:ali) =0} = {i: (i) < ()}]].
Since I ¢ A, or else we get a contradiction as before, we have
i¢l < (Fa)la ¢ D& Pla)&ali)+# 0]
which proves I € A and yields a contradiction. -

The definition of a Spector pointclass was a bit complicated, because it involved
the subtle substitution property. We give here an elegant characterization of Spector
pointclasses in terms of a closure property much simpler than substitution.

4D.17 (Kechris). Let I' be a X-pointclass closed under V*, w-parametrized and
normed. Prove that I' is a Spector pointclass if and only if it satisfies the following
property of closure under restricted quantification: if Q C X x Z x YVisin I" and

P(x.z) < (3y € A(2))O(x.z.p).

then Pisalsoin .

HinT. Spector pointclasses are closed under restricted quantification by 4D.3.

Conversely, to establish the substitution property for some I satisfying the hypothe-
ses above, suppose @ C Visin I and f : X — ) is computed on its domain by some
PCXxwinI. Put

0*(x) <= (Iy € Ax))[Q(») & (Vs)ly € Ny = P(x.5)]]:
clearly Q* isin I" and
FL& f(x) € Alx) = [0 (x) = O(f(x))].
Thus to complete the proof it will be sufficient to check that under the condition on I,
fx)] = f(x) € Alx).
Suppose f(x) = y and put
S(n,s) <= P(x,s)&radius(N,) <27".

Clearly S is in I'(x), which is adequate, closed under 3”, V* and normed. Also
(Vn)(3s)S(n, s). so by the A-Selection Principle 4B.5 there is a A(x)-recursive function
g : @ — o such that (Va)S (n.g(n)). It is now immediate that

yEN, < (3n)[y e N(V.g(n)) &N (Y.g(n)) C N
so that y € A(x). 4

Unfortunately this elegant characterization is not useful in practice since it is usually
much easier to establish that a given I satisfies the substitution property rather than
prove directly closure under restricted quantification.
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4E. The uniformization theorem for H{, 2%(19—22)

We now proceed to establish one of the central results in the subject, that I1} sets
can be uniformized by I1} sets. The key tool for the proof is the notion of a scale.

A scale on a pointset P is a sequence = {¢;, }new Of norms on P such that the
following limit condition holds: if x¢, x;, x2,... are in P and lim; o, x; = x and if
for each n, the sequence of ordinals

on(x0), u(x1). n(x2). ...

is ultimately constant, say

Pn (Xi) = /ln
for all large i, then P(x) and for every n,
on(x) < An.

Thus a scale is just a semiscale (in the sense of 2B) which satisfies an additional lower
semicontinuity property.

As with norms, there are many trivial scales on a pointset, at least if we use the axiom
of choice: choose a one-to-one norm ¢ : P~ k and a set for each n., v, (x) = p(x).
Again as with norms, we get a nontrivial concept by imposing definability conditions.

Let I be a pointclass and g = {, }»c a scale on some set P. We call g a I"-scale if
there are relations Sr(n. x. y), Sp(n. x, ) in T and —I" respectively, such that for every

V.,
(x) P(y) = (Vn)(VxX){[P(x) & pu(x) < ¢u(y)] <= Sr(n.x.y)
(1) = Sp(n.x.p)}
In other words, @ is a I'-scale if all the norms ¢,, are ['-norms, uniformly in n.
It is trivial to verify as in 4B.1 that if I" is adequate and i is a scale on some P in I,
then @ is a I'-scale exactly when the relations
R(n.x,y) <= x <} ».
S(n.x.y) <= x<j ».
arein I
A pointclass I is scaled or has the scale property if every pointset in I admits a

I'-scale. It is often sufficient for our purposes to prove that pointsets of type 1 in I’
admit I'-scales, whether or not the stronger scale property holds in I" (see 4E.6).

4E.1. THEOREM. Every I} pointset of type 1 admits a TIi-scale; similarly, every T}
pointset of type 1 admits a I1}-scale.

ProoOF. Let us first develop a bit of notation. If « codes a linear ordering <,, i.e.,
a € LO as we defined this in 4A, then for every integer n put

<aln={(s1):5 <qt&t<,n}
={(s.0) 1 al(s.1)) = 1 &a((t.n)) = 1&a((n 1)) # 1}.

Clearly <, [ n is also a linear ordering—it is the initial segment of <, with top n, if n
is in the field of <, and it is the empty relation otherwise. If <, is a wellordering with
rank function p, then for each n, <, | n is a wellordering and

P(”) - | Sarn|'
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In particular, for n, m in the field of <,,
n<gm <= | <y n| <[ <o ml

Given a pointset P C X of type 1 in I}, choose a recursive f : X — N by 4A.3

such that for every x, f(x) € LO and
P(x) < f(x) € WO.
Let
(&) — (&m)
be an order-preserving map of N; x N; (ordered lexicographically) into the ordinals,
1.€.,
(&) <(&) = [E<VIE=E&n <]
Finally. for x € P put
on(X) = (| <0 |1 <pyl ml).

We claim that = {©, }nee 18 2 H%-soale on P.

To prove this, assume that lim; x; = x with x¢, x;, ... in P and that for each n» and
all large i,

@n(xi) = (A, Zn).
This implies immediately that for each » and all large 7,
| <l 1l = 2.
The key to the proof is the fact that f is continuous, being recursive. Let us first use

this to prove that the mapping
ne A,

is order-preserving from <, into the ordinals. This holds because
n < m = [(0)((n.m)) = 1& 1 (x)((m.n)) # 1
= forall large i, f(x;)({n.m)) = 1& f(x;)({m.n)) # 1
(by the continuity of f)

= forall large i, n <,(,) m
= foralllargei. | <)l n| <| <[ m|
= I < A,

where the last implication is justified since for all large i. | < /([ n| = 4,.

Since n — 2, is order-preserving, < (., is a wellordering. i.e.. f(x) € WO and we
know P(x). The same fact implies that for every 7,

‘ Sf(x)r I’l| < )vn

since | <y n| is the rank of n in <,(,) and every order-preserving map dominates
the rank function by 2G.7. Similarly,

because
| </(v) | = supremum{| < [ n|+1:n € w}
<supremum{/, +1:n € w} <4,
the last inequality following from the fact that for each n and all large i,

I = | Sf(’w)rn| < | Sf(?‘i) | =4
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we are appealing here to (*), following the proof of Theorem 4A.3. Thus
<solnl) < (4 2n)

on(x) = (| <y

s

and @ is a scale on P.
To show that @ is a I1}-scale, find ( easily) a recursive g such that for a € LO,

Sg(a’n) = SD{ r n:

and put

Snuln.x.y) <= f(x)<u f(»)
&[~(f(y) <s f(x) Ve (f(x).n) <ng(f(y).n)].

Ss(n,x.y) <= f(x) <z f(»)
&[-(f(y) <o f(x) Ve(f(x).n) <z g(f(¥).n)].
where <p, <s are from 4A.2. —

As with semiscales in the proof of the Kunen-Martin Theorem, here too we often
need scales with very special properties. A scale @ = {@y }nee on P C X is very good
if the following two conditions hold:

(1) If xq,x1.... arein P and for each n and all large i, ¢, (x;) = 4,. then there exists
some x € P such that lim,_ o, x; = x (and hence for each n, ¢,(x) < 4,).
(2) If x, yarein P and ¢,(x) < ¢,(y). then for each i < n, ¢;(x) < ¢;(y).

Condition (1) implies that @ is a good semiscale in the sense of 2G.

4E.2. LEMMA. Let I be an adequate pointclass. If a pointset P of type 1 in I" admits
a T-scale, then P admits a very good I'-scale.

PROOF. Assume at first that P C N is a set of irrationals and let 7 = {y,, }neo be
a I'-scale on P. Choose A > w and large enough so that all the norms y, are into 4.
For each n, wellorder the sequences of length 27 of the form (&g, ko. &1. k1. .. .. En ky)
(& < 4. ki € ) lexicographically,
(Co.ko. ..o k) < (0. lo. ... o Iy)
< <o <o

V [&o = 1o & ko < o]

V& =no&ko=1ly&& <ml

\V o

VIGo=n& - && =ny&ky < 1,]
and let

(Co.ko. - ... Enoken) = (Co. koo o Cn k)

be an order-preserving map of this ordering into the ordinals. Finally put

onla) = (yola).a(0).yi(a).al).....yi(a). a(n))

We will show that g = {¢, }ncq 1s a very good I'-scale on P.
Suppose first that ag, aq,... are in P and for each n and all large i, ¢,(c;) is
constant,

onlai) = (woley). i (0)..... wu(a;). a;(n))
=(C0- koo E k)
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Since by the definition

ki =ai(j)  (j <n.alllarge i),

it follows that

K =k,
is independent of n and
lim; Ly o; =a = (ko. k1....).

Similarly,

& =yioy) (j < n,alllarge i),
so that

& =¢
is independent of n and for all large i,
wilay) =¢;.

[4E.2

Since ¥ is a scale, we thus have a € P and for each j, 1//_,-(04) < ¢;: from this follows

immediately that for each n,
@l‘l(a) S <603 kO’ él: kl: s én: kn>

It is also immediate from the definition that for x, y in P,

on(x) < @u(y) = foreachi < n. ;(x) < ¢;(y).

so that i is a very good scale.
To prove that @ is a I'-scale, let

ary f = a<, &L, a
and put
R(n.a.p) <= a<;, p

Via ~y, f&a0) < (0)]
(VA

Ve~ f&a(0) =B0)& -+ &a ~y, f&aln) < f(n)]

= 3 <n){(Vj<ila~y, B&a(j) = B())]

& e <y, BVIa~y, f&ali) < B(i)]
Vii=n&a~,, f&ali) < p(i)]]}.
Clearly Risin I and

a<; f < R(nap).

so p is a ['-scale. since the argument for <7 is similar.
Finally, if O C X is of type 1 with X # N, let

7 Nr— X

be a recursive isomorphism, let

P=r'10]

and verify easily the following two propositions: if ¥ is a ['-scale of Q, then the

sequence
V/; (O‘) = V¥n (na)
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T

FiGure 4E.1. Uniformizing via a very good scale.

is a I'-scale on P and if @ is a very good I'-scale on P, then the sequence

o (x) = al(n'x)
is a very good I'-scale on Q. -

There are many interesting results about scales and we will look at some of them
in the exercises and again in Chapter 6. Here we concentrate on the relation between
scales and uniformization.

4E.3. THE UNIFORMIZATION LEMMA. If T is adequate, X is of type 0 or 1 and
P C X x N admits a T-scale, then P can be uniformized by some P* in v T

PrOOF. By 4E.2, let g = {¢y }necw be a very good T'-scale on P, let

R(n.x.a) <= (VB)[(x.0) <{ (x.B)]

and put
Pi(x.a) <= (Vn)R(n. x, ).
It is sufficient to show that P* uniformizes P, since R is obviously in vMT and hence
P*isin VVT.
To begin with, clearly
P*(x,a) = P(x, ),

since
P*(x,0) = (x. ) <o (x, o)
— P(x,a).

Assume now that for some fixed x, (3a)P(x, a); we must show that in the case
there is exactly one o such that P*(x, o).
Keeping x fixed, put

Jn = infimum{ep,(x, a) : P(x,a)}
and let (see Figure 4E.1)
Ay ={a:P(x.a)}
A ={a: P(x,0) &pu(x, ) = 4y}
={a: (VP)l(x.a) <5, (x. )1}
={a: R(n x,a)}.
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Clearly each A4, is non-empty and
P*(x.a) <= A, la € 4,].

so it is enough to prove that (), 4, is a singleton.
Notice that
Ao 2 4y

and by the second condition on a very good scale,

(VAI(x.a) <5, (x. Bl = (VB)[(x.a) < (x. B)].
so that in fact
Ay D2 A1 24,2 ---.

Choose now some o; € A;, one for each i. We then have ¢,(x.0;) = A, for each
i > n, so by the first condition on a very good scale, there is some « such that

o = 111’11,_,00 a;,
P(x, «), and for each n,

®n (x. a) < s
by the definition of 4, then,

Pn (X, 04) = ;Lna
so a € (), 4, and this intersection is non-empty. Moreover, if also f € (), 4, then
the sequence

ap. f.ar. foon. B =901, 2. V3.

has the property that for each # and all large i, o, (x, y;) is constant, so that lim; _ ., 7;
must converge, presumably both to f and to o = lim;_,, «;, so that f = «. Hence
(), Ax is the singleton {a}. which is what we needed to show. =

A pointclass I" has the uniformization property if every P C X x )Y in I' can be
uniformized by some P* in I
4E.4. THE NOVIKOV-KONDO-ADDISON UNIFORMIZATION THEOREM. The pointclasses
I, I}, =1, £ have the uniformization property (Kondo [ 1938](19-22)),
PrOOF. Suppose first that P C X x Y isin 1'[{. If Y is of type 0, the result follows
from 4B.4. If not, let
7N —Y
be a A} isomorphism of N with ), let
o X" — X
be a A isomorphism of X’ with some space X* of type 0 or 1 and define Q C X* x N/
by
O(x.a) < P(o(x).n(a)).
Now Q is [T} and by 4E.3 we can find a [T} set 0* C X* x A/ which uniformizes Q.
It is immediate that the I} set

P*(x.y) < O* (Uﬁl(x)s ﬁfl(y))

uniformizes P.
The argument for I} is identical.
If PC X x Yisin X}, then

P(x.y) <= (3a)0(x.y.a)
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with Q in T1}. Applying the result about IT} to Q C X x (¥ x N). we get a I1} set
0* C X x (¥ x N) which uniformizes Q. Then
P*(x.y) <= (3a)0"(x.y.)

is easily seen to uniformize P. -

We will see in Chapter 5 that this is just about the strongest uniformization theorem
which can be proved in Zermelo-Fraenkel set theory: it is consistent with the axioms
of Zermelo-Fraenkel (including choice) that there exists a IT} set which cannot be
uniformized by any “definable” set—in particular, it cannot be uniformized by any
projective set.

Among the many important consequences of the uniformization theorem, perhaps
the most significant is the basis result for =} which we now explain.

A set of points (in various spaces) B is called a basis for a pointclass I, if every
non-empty set in I' has a member in B, i.e., for P C X in T,

(Ix)P(x) < (Ix € B)P(x).
We also say that a pointclass A is a basis for I if the set of A-recursive points is a basis
forT, ie.,for PinT,
(Fx)P(x) = (x € A)P(x).
In 4D.10 we proved that A} is not a basis for I1Y, and hence it is not a basis for X}
or I}.
4E.5. THE Basis THEOREM FOR X1. The pointclass Al is a basis for =} and more
generally, for each x. Ai(x) is a basis for E%(x). Thus, if P C X x Yisin Zé, then
(Fy)P(x.y) < (Fy € A)(x))P(x. ).

Proof. The second assertion immediately implies the first. To prove it, given
P C X x Y, choose P* C X x Y in £} which uniformizes P. If (3y)P(x,y),
then there exists exactly one y which satisfies P*(x, y), call it y*; clearly

Yy EN; = ()P (x.y)&y € Ny]
= (V)P (x.y) =y € Ny].
so y* is Al(x)-recursive. 8

Again this result is best possible in Zermelo-Fraenkel set theory, i.e., we cannot

prove in this theory that every non-empty I} set must contain a “definable” element.

Exercises

4E.6. Suppose I is an adequate pointclass closed under substitution of A} functions.
Prove that if every pointset of type 1 in I" admits a I'-scale, then every pointset in I"
admits a very good I'-scale.

In particular, [T} and IT} are scaled.

HINT. Suppose P C X is given, P in I'. Using 3E.6, let
N> X

be a recursive surjection of V" onto X such that for some I1) set 4 C N, n[4] = X
and zf (x) = x for every x € X, with a A} function such that f[X] = 4. Put

O(a) <= ac A&P(r(a)).
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(a3.b3)
(as.bs)

FIGURE 4E.2. The leftmost infinite branch.

so Q isin I" and by hypothesis and 4E.2, Q admits a very good I'-scale 7 = {w,, }new-
On P set

en(x) =y (f (x))
and show that @ is a very good I'-scale. The key point is the continuity of 7; it implies
that if x, x1.... are in P and o; = f(x;), then lim; _ o x; = lim;_ o 7(a;) = n(c)
with 7(a) € P. -

The analog of 4B.3 also holds for scales, i.e., if I is scaled, adequate and closed
under VWV, then VT is also scaled. There is a bit of computation to this and we will
postpone it until Chapter 6 when we will need it.

The next result is implicit in the proof of 4E.4, but we put it down for the record.

4E.7. Prove that if T is adequate and closed under substitution of A} functions and
v and if every pointset of type 1 in [ admits a I'-scale, then both I' and FVT have
the uniformization property.

Every non-empty X! set has a A} member by 4E.5 but need not have a A} member
by 4D.10. The correct basis for X} is a small part of A}, by the next result.

With each relation P C X = »* on a space of type 0 we associate its contracted
characteristic function ap,

ozp(n) _ 1 ifP((n)l,...,(n)k),
0 ifﬂp((l’Z)l,...,(H)/c).
We call a set, function or point recursive in P if it is recursive in ap. Notice that we

only define these notions here for P of type 0—the correct concept of recursion relative
to an arbitrary pointset is quite complicated and we will not go into it now.

4E.8 (Kleene’s Basis Theorem, Kleene [1955b], ?%)). Prove that there is a fixed X}
set P C o such that {x : x is recursive in P} is a basis for X}.
HinT. It is enough to get a set P of type 0 with the required property, which can
then be “contracted” to a subset of w. Suppose
0(a) <= (3p)(V1)R(al(1). f(1))
is a typical 2| set of irrationals with R recursive. As usually, we can think of Q as the
projection

Q =p[T]
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of thetree 7 on w X w,
T = {(ao,bo,al,bl,...,a,_l,b,_l) : (VZ < t)R((ag,...,ai>, <b0, .. bl>)}

Any infinite branch of this tree will determine an element of Q, so our aim is to find a
definable infinite branch. The basic idea of the proofis that the leftmost infinite branch
(see Figure 4E.2) of T is recursive in some 2} set P of type 0.

Recall the function u * v from (*18) of 3A.6 and suppose that we can find integers
aog, by, ay, by, ... such that for every n,

(%) () 3B) (V)R ({a. . ... an—1) xa(1). (bo.....by—1) * B(1)):
choosing a, f to witness this, and taking ¢ = 0, we have in particular
(‘v’n)R((a(): e an,1>, <b05 e bn,1>).,

ie., with a(n) = a,, f(n) = b, now, we have

(Vn)R(a(n). B(n)).

soa € Q.
It is clear that (%) simply asserts that an infinite branch of T starts with the finite se-
quence (ag, by. . ... a,_1.b,_1). We now choose for each n the leftmost finite sequence

which is the beginning of some infinite branch. To be precise, put
Pu.v) < (o) 3B)(V1)R(u*a(t). v+ B(1)):
clearly P is =]. It is easy to verify that
P(u,v) = (In)(3m)P(u * (n), v x (m)).

Thus we can define a = (ag. a;....), B = (bo. b1....) as above, recursive in P, by the
simple recursion

a(t) = (usP(@(r) « ((s)o)- B0 ((s))) ) .
p(t) = (,usP(a(t) % ((8)o). p(2) * <(s)1>))1

This shows how to assign to each =} set 0 C N a X! set P of type 0 such that
{x : x is recursive in P} is a basis for the single pointset Q. To get a single P so that
{x : x is recursive in P} is a basis for T} subsets of NV, apply this procedure to some
0 C w x N which is universal for £} | A/. Moreover, to see that this yields a basis for
X1, use the fact that for every X there is a recursive surjection 7 : N' — X and that if
a is recursive in P and 7 is recursive, then 7(«) is recursive in P. -

It should be quite obvious by now that every basis result implies some uniformization
result, at least implicitly, as a corollary of its proof. The uniformization theorem that
comes out of the preceding exercise is a bit messy, but it is worth putting down because
it implies that we can always find measurable uniformizations for X! sets.

4E.9. Prove that every X! set Q C X x ) can be uniformized by some 0* C Q
which can be constructed from X! and IT! sets using the operations &, v, 3, V*.

Infer thatif Q C X x YV is Xl and D = 3% is the projection of Q on X, then we
can find a function f : X — ) which is Baire-measurable, absolutely measurable and
such that (Vx € D)Q(x. f(x)). (The von Neumann Selection Theorem, Neumann
[1949].3%))



182 4. STRUCTURE THEORY FOR POINTCLASSES [4E.9

HINT. Itisenough to prove the result for X x N with X of type 1, since the smallest
pointclass containing £} and IT! and closed under &, Vv, 3, V* is easily closed under
Borel substitutions.

Suppose then that

O(x.a) <= (3B)(V1)R(x.al(1). B(1))
with R clopen and put
P(x,u,v) < (Fa)@B)(Vt)R(x,u xa(t),v = B(t)).
P*(x.t,u,v) < Seq(u)&Seq(v) &lh(u) = lh(v) = ¢
& P(x.u,v)
& (Vu') (Vo' ){[Seq(u’) & Seq(v’) & 1h(u') = 1h(v') = ¢
& (', v') <, (u,v)] = =P(x,u.v)}.

where =<, is the lexicographic ordering of the pairs of sequences of length ¢ with the
given codes,

(') <0 (ww) = @ < O[(v) < DU, (0),) = (). (0))]
& ()i () < ()i, (0)1)].
It is clear from the proof of 4E.8 that the relation

0% (x.a) = (Vt)(Fv)P*(x.t.a(t).v)

uniformizes Q.
For the second assertion, assume first Q C X x A and define P, P*, O* as above,
choose a fixed oy € M and put

Flx) = oy if (Va)-0(x, a)
a if (3a)0(x.a) and O*(x, ).
For any closed F C N we have
f(x)€EF < [ap € F & (Va)-0(x,a)]V (Ta)[a € F & O0*(x. a)]

and since I11 sets have the property of Baire and are u-measurable for each o-finite
Borel measure u, it is enough to prove that the set

B={x:3a)la € F&Q*(x.a)l}
has the same properties. Computing,
x € B <= (Fa)(V1){(Fv)P*(x.t.(r).v) & (IB)[B(1) = a(r) & B € F]}
— (Fa)(V1)[x € Sz
where
Sa) = {x: Fv)P*(x.t.a(r).v) & (3P)[B(t) =a(t) & p € F1}.

Now each S, is absolutely measurable and has the property of Baire by 2H.8 and 2H.5
and

B =,8,.

so by the same results, B is absolutely measurable and has the property of Baire.
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In the general case, if P C X x ) with Y perfect, let 7 : N/ »~» ) be a Borel
isomorphism, let Q0 C X x N be defined by
O(x.a) < P(x.zn(a))
and choose f : X — N as above. Take

g(x) ==(f(x))
and verify easily that g has the required properties, since for any Borel 4 C ),
g7l = {x: f(x) e n'[4]}. n

This is the strongest result we can prove in Zermelo-Fraenkel set theory in this
direction. We will see in Chapter 5 that it is consistent with this theory that there exists
a function f : R — R whose graph is I} and which is not Lebesgue measurable; the
graph of f, then, is a [T} set in the plane which cannot be uniformized by the graph
of a Lebesgue measurable function.

By 4E.5, every non-empty I} set has a A} member. The next exercise gives another
basic result for IT} which is stronger, at least superficially.

For any pointclass I', a point x is a I'-singleton if the set {x} isin T

4E.10. Prove that the collection of ITi-singletons is a basis for IT}.
HINT. Given P C X in I1}, let
Q(n.x) < P(x)

and let 0* C Q uniformize Q in I1}. The unique x such that 0*(0, x) is a I1}-singleton
in P. -

On the other hand, if we impose the weakest natural closure property on a basis for
I1]. then this basis must include all of A}.

4E.11. Suppose Bis a set of points which is a basis for I} and which is closed under
Turing reducibility <7, i.e.,

y € Band x is recursive in y = x € B.

Prove that BB contains every A} point.
HINT. If o is a Al irrational, then the set P = {f : f = a} is easily X,
P(B) <= (I{(Vs)ly € Ny = a € N;]&y = p}.
Let
P(B) <= (I»)0(B.7)
with Q in I1} and let 0* C Q be in I1! and uniformize Q. Now Q* is non-empty, so

it must contain a point of B, which must be (c, y) for some y. Since « is recursive in
(a.7). a € B. It follows easily that B contains the A} points in all spaces. -

4E.12. Prove that for each perfect X, the collection of IT}-singletons in X is a IT}
pointset—and hence a proper subset of A} N X' by 4D.16.

HinT. Choose a universal H} pointset G C w x X, let G* uniformize G and notice
that

x is a IT}-singleton <= (Je)G*(e. x). 4
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4F. Additional results about IT!

Most of the results in this chapter have been about a general Spector pointclass I,
perhaps with an additional hypothesis that I" is closed under v or that it has the scale
property. Here we will look at some very specific properties of I} which do not follow
easily from neat, axiomatic assumptions. These results too will be extended to some
of the higher Kleene pointclasses in Chapter 6, using strong set-theoretic hypotheses,
but we will need new proofs for them.

First, an effective version of the Perfect Set Theorem 2C.2.

4F.1. THE ErrecTiVE PERFECT SET THEOREM (Harrison [1967]). If P C X is a X!
pointset which has at least one member not in A}, then P has a non-empty perfect subset.

Similarly, if P is £}(z) with some member not in A} (z), then P has a non-empty perfect
subset.

In particular, if P C X is }(z) and countable, then P C Al(z) N X.

PrOOF (Mansfield [1970]). The argument for X}(z) is identical with that for X}, so
we only prove the absolute version.

We may assume that P has no Al members, since {x € P : x ¢ Al} is also X}
by 4D.14. Suppose X = N, to begin with, choose a recursive R such that

Pla) <= (3B)(VOR(E(). B(1).

and let

T = {(ag,bo, - ,an_l,bn_l) : (Vi < H)R(<ao, - ,Cl,’>, <b0, - ,b,‘>)
& (EIa')(EIﬁ)(‘v’t)R((ag, cosly ) x (1), {bg.....by_1) * E(I)) };

clearly T is a tree on w X w and in the notation of 2C,

P =p[T].

Look up the proof of the Perfect Set Theorem 2C.2. We claim that in the notation
used there,

T=S;

because if not, then there is some u = (ag.by....,a,_1.b,—1) € T with p[T,] a
singleton {a} and

an)=m <= (3a)3B){(Vt)R((a.....an_1) *a'(1).

so easily a is Al

Now p[S] = p[T] # 0. so P = p[T] has a perfect non-empty subset as in the proof
of 2C.2.

The result follows for arbitrary X as in 2C.2, using 3E.6. -

This theorem implies in particular that Borel sets with countable sections can be
uniformized by Borel sets, see 4F.6.
The next result is a converse to 4D.3 for the case I' = I1}. First a lemma.
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4F.2. LEMMA. There is a H? relation S(a, B.y). such that whenever § € WO and
a € LO,

a € WO&|a| < |B] < (Fy)S(e.p.7)
= (Fy e Al(e. B))S(a. B.p).
ProOF. The notation is that of 4A. As in the proof of 4A.7, put

O(c. f.y) <= 7y maps <, onto an initial segment of <g in an order-
perserving fashion and y = 0 outside the field of <,,

where we allow “initial segment” to include all of <,. As in that exercise, Q is easily
I19. say

Ole. p.y) <= (Vn)(3m)R(ev. f.y.n.m)
with R recursive. Put further,

0" (0. .7.0) <= (Vn)R(a.f.7.n.0(n))
and notice that

Ofa. f.7) = (30)Q" (e p.7.9)
= (3 € Alle. 7)) Q" (e f.7.0),
since if (39)O0* (.. B.7.6). we can choose
6(n) = least mR(cv, f.y. n,m),

and this ¢ is clearly in Al (a, B.7).
Moreover, it is immediate that if § € WO and a € LO, then

a € WO & |a| < |f| = there is a unique y such that Q(a. f.7)
= (I € Al §)) Q(ex. B.7).

since the unique y such that Q(a., B.7) is surely in Al (c. ). Thus we have, for f € WO
and a € LO,

a € WO&|a| < |B] <= (Fy)(30)0" (e B.7.9)
< (Fy €Al §)) (36 € Al(a. .7)) 0" (a. p.7.9)
with Q* in I1{, so by 3E.17
a € WO&|a| < | <= (Fy)(39)0" (e B.7.9)
— (I € Af(e. §)) (36 € Al(e. £)) Q*(a. B.7.9).
Finally, take

S(e.p.y) == 0" (a.B.(7)o.(¥)1)
and verify easily that the lemma holds with this S. -

4F.3. THE SPECTOR-GANDY THEOREM (Spector [1960], also Gandy [1960]). For
every H% set P C X, thereis a H? set R C X x N such that

P(x) <= (3a € A{(x))R(x. ).



186 4. STRUCTURE THEORY FOR POINTCLASSES [4F.3

PROOF. Suppose first that P is Al. By 4A.7 there is a H(l) set A C N and a recursive
7 : N — X which is injective on 4 and n[A] = P. Hence,
P(x) <= (Fa)la € A& n(a) = x]
<= (Fa e Al(x))[a € 4&n(a)=x].
where the second equivalence holds because if 7(a) = x and o € A. then « is the

unique irrational satisfying these conditions and it is easily A} (x). Thus for a A} set P
we have the stronger representation:

P(x) <= (Fa)R(x, )
<= (Jaunique a)R(x.a)
< (Ja € Al(x))R(x. ).
where R is some I1{ set.

Towards proving the result for I} pointsets of type 0 or 1, recall first 4D.14 according
to which {(a. x) : @ € Al(x)} is I1}. Hence, for X of type 0 or 1, there is a recursive
function g : N x X — A such that for each o, x, g(a. x) € LO and

a e Al(x) = gla.x) € WO.
For each x, let
w7 = supremum{|f| : § is recursive in x, f € WO}:
by the relativized version of 4A.4, easily, for each x
(1) supremum{|g(a. x)| : & € Al (x)} = w7,

orelse {a : @ € Al(x)} would be Al(x), contradicting 4D.16.
Suppose now P C X is [T}, with X of type 0 or 1, so there is a recursive [ : X — N
such that for each x. f(x) € LO and

P(x) = f(x)e WO.
From (1) we get immediately
P(x) <= (Ja € A{(x))[/(x) € WO&|f(x)] < [g(a. x)|l.
since for each x, f (x) is recursive in x. We claim
(2) P(x) <= (3a € Aj(x))(Iy € A{(x)S(/ (x). gla.x).7).

where S is the H‘l) set of the lemma.

To prove direction (=) of (2), assume P(x); then f(x) € WO and f(x) is
recursive in x, so by (1) there is some o € Al(x) such that |/ (x)| < |g(e. x)|. By
the lemma then, there is some y € Aj(f(x).g(a.x)) such that S(f(x).g(a. x).7):
but clearly, y € Al(x) by 3E.17 since f (x) is recursive in x and g(c, x) is recursive in
(. x) and hence Al (x).

To prove direction (<=) of (2), suppose there is an o € Al(x) and some y such
that S(f (x).g(e. x).7). Now g(a.x) € WO and f(x) € LO. so by the lemma we
have f(x) € WO, i.e.. P(x).

This completes the proof of (2). From (2) we get the theorem for any pointset of
type 0 or 1 by a trivial contraction of quantifiers.

Finally, suppose P C X where X is not of type 0 or 1, so there is a Al isomorphism

7N — X.
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If Pisin H%, then the inverse image
O(a) < P(n(a))
is [T}, so by the theorem for spaces of type 1,

Q) <= (3 € Aj(e)Rla. )
with R in I1). Hence

P(x) = 0(z'(x)) = (3peAl(x'())R(x (). )
= (3P A{(x))R(z"'(x).B).
where A}(x) = A}(z~!(x)) holds because both = and 7! are A]. Continuing the
computation, we have

P(x) <= (3 € Al())(Iy € Al))ly = 7' (x) &R(y. B)]
from which the result follows easily using the same kind of arguments and the fact
that {(y.x) : y = 7 1(x)} is Al. -
The Spector-Gandy Theorem does not have many applications but it is undoubtedly
one of the jewels of the effective theory. It gives a very elegant characterization of I}
in terms of a (restricted) existential quantifier which is particularly significant in the
case of relations on w: P C w is [T} if and only if there is a T1Y set R C w x N such that

P(n) <= (3o € ADHR(n. o).

This corollary says in effect that the collection of A} irrationals somehow “determines”
the collection of I1} relations on w.

The third main result of this section is also peculiar to the effective theory, like the
Spector-Gandy theorem. It differs from it in that it says something most significant
about perfect product spaces.

A set P C X is thin if P has no perfect subsets other than (). Countable sets are thin,
and by the Perfect Set Theorem, every X! thin set is in fact countable. As we will see
in the next chapter, it is consistent with the axioms of Zermelo-Fraenkel Set theory
that there exist uncountable, thin I1} sets.

4F.4. THE LARGEST THIN I1} SET THEOREM (Guaspari [19757), Kechris [1975], Sacks
[1976]). For each perfect product space X, there is a thin, T1} set C; = C(X) C X
which contains every thin, T1} subset of X.

ProoF. Fix X and let G C @ x X be universal for the T1! subsets of X, let

¢ : G — Ordinals
be a [1}-norm on G. Put
(1)  R(nx) = Gnx)&[{y:Gny)&pn.y) < p(n x)}is countable].
We claim:
(2) R(n.x) <= G(n.x)&(Vy){[G(n.y) &p(n.y) < o(n x)] = y € Aj(x)}.
To prove direction (=) of (2), notice that if R(n. x), then the set
A={y:Gn.y)&en y) <o x)}
={y:(ny) < (n.x)}
={y:~((nx) < (n.y))}
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is A}(x), so if A4 is countable, we must have 4 C A%(x) N X by 4F.1. Conversely,
assuming the right hand side of (2) we immediately infer that 4 is countable, since
Al(x) N X is countable.

Now (2) implies that R is I1}, since it yields

R(nx) = Glnx) & (9)[(n.x) <5 (n.3) vy € AL(0)]
We define C; = C;(X) by
Ci(x) <= (@n)R(n.x).

Clearly Cj is H{, so it remains to show that Cj is thin and that it contains every thin,
I} subset of X.
Assume first that P C X is thin and H%, so that for some fixed ny.

P(x) <= G(np. x).

Foreach x in P, {y : G(ng.y) &p(ng.y) < p(no. x)} is Al (x) as above: in particular,
it is Borel, so it must be countable, since it is a subset of P and cannot have a perfect
subset. Hence

P(x) = G(ng, x) = R(ng, x) = C(x)
and P C (.
Suppose now, towards a contradiction, that F = @, F is perfect, F C C. put
O(n,x) <= F(x)&R(n.x).
The relation Q is I} and (Vx € F)(3n)Q(x. n), so by the A-Selection Principle 4B.5,
there is a Borel function g : X — w such that
(Vx € F)R(g(x).x).
The map
x = (g(x).x)

is also Borel and maps F into G. Now G is not in X! by 3E.9 (otherwise every I}
subset of X would be in X}), hence by the Covering Lemma 4C.11 there exists an
ordinal 1 < |¢p|, such that

x €F = p(glx).x) <L
The ordinal 4 is countable, since |p| < 8] = N;. Letting
Ape={x:R(n x)&p(n.x)==~¢},
this means that
F CU,eciAne.
However, each 4, ¢ is countable, since
Ape C{y 1 G(n.y)&ep(n.y) < p(n.x)}

with any point x such that R(n, x) and ¢ (n, x) = &, so F is countable, contradicting
the assumption that it is perfect and not empty. -

This theorem has led to an interesting theory of the structure of countable and thin
[T} sets which we will not pursue here beyond 4F.7 and 4F.8. See Kechris [1975],
[1973].
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Exercises

4F.5. Prove that if P C N is a countable Z{ set of irrationals, then there exists a A}
irrational € such that

P C{(e)o. ()1, (e)2.... }

HINT. By 4F.1, P C Al N\ and by 4D.14 the set Al N A is T1}. It follows from the
Separation Theorem 4B.11 that there exists a Al set Q,

PCQOCAINN,

Let ¢ : N — o be the IT}-recursive partial function of Exercise 4D.15 and notice that
the set

A={i:3Fa)a € Q&ecla)=i]}
={i:(Fa e Al)[a € Q&c(a) =i}
is easily A} and the parametrizing partial function d : « — N is defined on 4. Put

e((i. j)) =d(i)(j) ifi € 4.
e(k) =0 if k # (i. j) forall i € A. H

4F.6. Prove thatif P C X' x ) isa Borel set such thateach section P, = {y : P(x.y)}
is countable, then the projection 3” P is Borel and P can be uniformized by a Borel
set P*. (Lusin [1930a], Novikoff [1931].119-2)

HINT. Suppose P is Al(e). Each section P, is easily in Al (e, x). so
Py # )= (Eiy € A{(e,x))[y € Py]

by the Effective Perfect Set Theorem 4F.1. Now apply the A-Uniformization Crite-
rion 4D.4, taking I = I} (¢). -

4F.7. Prove that a set P is thin if and only if every Borel subset of P is countable.
Infer that the notion of being thin is preserved by Borel isomorphisms.

HiNnT. Use Corollary 2C.3 of the Perfect Set Theorem. -
The result implies that if 7 : X — Yisa A} isomorphism, then
Ci(Y) = n[Ci(X)].
Hence all the sets C;(X) for perfect X are determined by the set
C = CGWN),

the largest thin set of irrationals.

4F.8. Let C C X be a thin I1} set and on C define

x <y <= xisAl(y).

Prove that < is a prewellordering, so C ramifies into a wellordered sequence of sets
of points which are Al-equivalent. Prove that the length of < is no more than X;.
(Kechris [1975].)
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FIGURE 4F.1. Neighborhood fan.

HINT. Let ¢ : C — Ordinals be a IT}-norm on C. Suppose x, y are in C and
@(x) < @(p). Since the set

A={z:2€ C&p(z) <)}

is easily Al(y) and has no perfect subsets, 4 C Al(y) N & by 4F.1; hence x is Al(y).
This proves comparability and transitivity is already known from 3E.17. To prove that
< is wellfounded, assume that x, y are in C and y is not Al(x) and prove as above

that p(x) < p(p). B

In the remaining exercises we outline the proofs of several uniformization theorems
of Borel sets.

Let us first recall a simple fact about trees which will be needed below.

4F.9 (Konig’s Lemma). Let T be a tree on a set X which is finitely splitting, i.e.,
every sequence # = (X, ..., x,_1) in T has at most finitely many one-point extensions
inT, (x0,.... %=1, Y1).... (X0, ....Xn_1. V). Prove that T is infinite if and only if it
has an infinite branch.

HINT. If (xg. x1,...) is an infinite branch, then for each n, (xq.....x,_1) € T, so
T is infinite. If T is infinite, then for some x; the subtree T\, must be infinite, since
T =T,)U---UTy,) for some yy,...,y;. Again, for some x; the subtree 7|, )
must be infinite, so recursively we get an infinite branch (xo, x....). -

Fix a product space X and for simplicity of notation let
N(s)=N(X.s)

be the s’th basic nbhd of X'. A finitely splitting tree of nbhds of X isatree T on w which
is finitely splitting and such that if (sq.....s,_1) € T, thenforeachi =0,....,n — 1,
radius(N,,) < 27/, For simplicity we will call these nbhd fans (see Figure 4F.1).

With each nbhd fan T we associate the subset of X
K =K(T)={x:(3a)(Va)[(a(0).....a(n—1)) e T&x € N(a(n —1))]}.

It is not hard to verify that each K (T') is a compact subset of X and each compact set
K is K (T ) with a suitable nbhd fan T'. In the next result we get an effective version of
this.
Let us say that a nbhd fan 7 is in a pointclass A if the set of codes of the sequences
in T isin A, i.e., if
T¢ = {<S0, . ,Sn_1> : (S(), . ,S,,_l) S T}
isin A.



4F.10] 4F. ADDITIONAL RESULTS ABOUT I1} 191

FIGURE 4F.2.

4F.10. LetT be a Spector pointclass closed under vV and X a fixed perfect product
space. Prove that a set K C X is compact and in A if and only if there exists a nbhd
fan 7 in A such that K = K(7).2%

HinT. If 7 isin A, then
x € K(T) <= (vn)(3u)|u € T° &Ih(u) = n& (Vi < n)[x € N((w))]]:

the implication (=) is immediate and the converse implication follows easily using
Konig’s Lemma. Thus K(7') is in A and its compactness can be proved by a simple
topological argument.

Conversely, suppose K is compact and in A. Recall from 4C.13 that there is an
irrational € € A such that

X\K=N((0)UN(e(1))U---

and for each n,
N(e(n)) C X\ K.

To construct a nbhd fan T such that K = K(T'), intuitively we first find ¢y, . ... #; as
in Figure 4F.2, such that

K CN(to)U---UNI(t). {N(t))U---UN(1x)} NN (e(0)) =0
and each N (z;) has radius < 1. Then for each i, we find 5o, . . .. s, such that
K NN(t;) € N(so)U---UN(sp).
{N(so)U--UN(s)} N {N((0)) UN(e(1))} =0

and each N (s;) has radius < % etc. The key to proving that this can be done in I is
the A-Selection Principle 4B.5.
Put

(
Since K N N(s) is compact and disjoint from N ((n)). easily
(Vn)(Vs)(3u)P(n, s, u).
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FIGURE 4F.3.

Moreover, P is easily in I, so by 4B.5 there is a A-recursive function f (n, s) such that
(Vn)(Vs)P(n.s. f(n.s)). Choose once and for all f. ... 74 such that each N (;) had
radius < 1,

K CN(ty)U---UN(t;). {N(t)U---UN(1)} NN (e(0)) =0
and put

T = {(so,...‘,s,,,l):soisoneofto.,...,tk
&(vi<n—1(3j<(f(i+1s))) s = (/G +1.5)) ] }-
Clearly T¢ is in A and it is simple to check that K(T') = K. -

This representation of compact sets in A allows us to prove that each of them (if
# ()) must have a member in A.

4F.11. LetI be a Spector pointclass closed under v~ Prove that if K isa compact,
non-empty set in A, then K has a member in A.2%
HINT. Choose T in A such that K = K(T), let

R(u) < (Vn)(Fv)[Seq(v) &lh(v) =n&uxv € T,
P(u,v) <= —-R(u)V[R(u)& R(v) & v is a one-point-extension of u]
and by 4C.12 let f : @ — w be in A and such that
f(0) =1 = code of the empty sequence

(Va)P(f (n). f(n+1)).

It is now easy to check that (), N (f (n)) contains a single point in K which is clearly
in A. -

4F.12. Let T be a Spector pointclass closed under vV, suppose P C X x Y isin A
and for each x, the section P, is () or contains a compact set in A(x). Prove that the
projection 3 P of P is in A and P can be uniformized by some P* in A. Verify that
the hypothesis holds if each section P, is compact.?¥

HiNT. Use 4F.11 and the A-Uniformization Criterion 4D.4. -
This result implies immediately that Borel sets with compact sections can be uni-

formized by Borel sets. We proceed to show that for this it is enough to assume that
the sections are o-compact.

First a purely topological fact.
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4F.13 (Kunugui’s Lemma). Suppose 4 C N is closed, F : N' — X is continuous
and

0 # Fl4] € U, Kx

with each K,, closed. Prove that for some # and for some basic nbhd N, in NV,
) £ F[AN N;] C K,,.

HiNnT. Towards a contradiction, suppose no F[A4 N N,] is contained in some K,.
In particular, there is some x = F(a) ¢ Ky, so there is a nbhd M of x such that
M N Ky = (). We can then find a basic nbhd N° of « such that F[4 N N°] C M, in
particular

FIANNINKy=10
as in Figure 4F.3. Assume now that F[4 N N°]is not a subset of K|, so there is some

x = F(a)witha € ANNY, x ¢ K; and repeat the argument. Thus we get a sequence
of basic nbhds

N°DON!ID...
in AV such that each F[4 N N']is non-empty and F[4 N N']NK; = (. If we also make

sure that N’ D N and radius(N’) — 0 as i — oo, we find a point @« € 4 N N for
each i, so that F(a) ¢ K;. for any i, which contradicts F(a) € |J, K. 4

The next lemma isolates part of the construction that we need for the main result
here.

4F.14. Let I" be a Spector pointclass closed under vV, let X be a fixed product
space, suppose

ACKCB.

where A4 is in —I", K is compact and B is in I'. Prove that there is a nbhd fan 7" in A
such that2¥

ACK(T)CB.
HINT. Notice first that the closure 4 of A4 is also in —I” since

x€Ad < (Vs)[x e Ny= (Ty)ly € 4&y € N{]|

and of course 4 C K, so A is compact.
By the Separation Theorem for —I" (4B.11) choose a A-set C such that

ACCCB.
Following the method of proof of 4C.13, put
P(x.s) <= x¢ C&xEN;&N;,NA=1) (Figure 4F.4);
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P isclearly in T" and (Vx ¢ C)(3s5)P(x.s) since 4 is a closed subset of C. By the A-
Selection Principle, there is a A-recursive function f such that (Vx ¢ C)P(x. f(x)).
The set

{s:3x ¢ O)s =X}

isin —I" and it is a subset of the I'-set
{s:N;nd=0}:
the separation theorem gives us a A set I between these two such as the open set
G=U{N;:s€l}
clearly satisfies
ANG =10
x¢C=x¢eG

so in particular,
x¢ B= x€aQq,

see Figure 4F.5.
We now imitate the construction of 4F.10 above to get a nbhd fan 7" such that the
associated set K (T') satisfies

ACK(T)
K(T)NnG =0.
This will complete the proof, since we evidently have
ACK(T)CB.
Briefly, we first write
G=N(0)UNEM)U---

with some € in A (by 4C.13) and N (e(m)) C G. for all m, and then we find 7. .. .. 7
such that

C N(to)U---UN(tr).
{N(t)U---UN(1)} NN ((0)) = 0.
and each N (#;) has radius < 1. Then for each i, we find sy. . ... s, such that
ANN(1;) © N(so) U+ UN(sn).
{N(so) U---UN(s,)} N{N((0)) UN(e(1))} =0
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and each N (s j) has radius < % etc. The proof that this procedure determines a A,
compact set K (T) is via the A-Selection Principle as in 4F.10 and we omit it. -

A set is a-compact if it is a countable union of compact sets. (In R” every £ set is
o-compact.)

4F.15. Suppose L C X is a non-empty, Al set which is g-compact. Prove that L
has a non-empty Al and compact subset; infer that L has a Al member.
Similarly with Al(x) substituted for A} throughout.®%

HINT. The argument for Al(x) is identical with that for Al.

Suppose L = |J, K, where each K, is compact. By 4A.7, there is a 1] set 4 C N
and a recursive F : N/ — X, injective on 4, such that F[4] = L. By 4F.13 then, for
some s and some 7, the set

B = F[A N Ny

is contained in some K,,. Now B is Al, by 4D.7, B is compact and
0#BCBCL:

by the preceding exercise then, there is a compact set K in A} such that
0#BCKCL

and then L has a Al member by 4F.11 above. =

We put down for the record the uniformization theorem that follows from this
exercise.

4F.16. Prove thatif P C X x ) is Al(z) and the section P, = {y : P(x.y)}is o-
compact for every x € X, then the projection 3 P is Al(z) and P can be uniformized
by some P* in Al(z).

Similarly, if 7 C X x ) is Borel and every section Py is g-compact, then 3” P is
Borel and P can be uniformized by some Borel P* (Arsenin [1940], Kunugui [1940];
see also Larman [1972]).

HINT. Use 4F.15 and the A-Uniformization Criterion 4D.4. If P is Borel, use the
fact that P must be A}(e) in some ¢, 3E.4. =

The uniformization theorems of Lusin-Novikov (4F.6) and Arsenin-Kunugui can
be turned into interesting structure theorems about Borel sets with “small” sections
which we now proceed to show.

4F.17. Suppose P C X x Y isin Al(z) and every section P, = {y : P(x,y)} is
countable. Prove that there existsa set P* C w x X x ) in A% (z) such that

P(x.y) < (3n)P*(n.x,y)
and such that for each n € w, the set
Py={(x.y): P*(n,x.y)} C P

uniformizes P.
In particular, if P C X x ) is Borel and each section P, is countable, then

pP=U,P;
where each P} is Borel and uniformizes P. (Lusin [1930a], Novikoff [1931].)
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HiNT. Let P* C P uniformize P in A}(z) by 4F.6, and put
Olx.y.n) <— dn,z.x)| &d(n.z,.x) =y

where d is the partial function which parametrizes Al(z, x) N Y by 4D.2. Now
(V(x.y) € P)(3n)Q(x.y.n). so by the A-Selection Theorem 4B.5 there is a A}(z)-
recursive f : X X Y — w so that

(Vx)(Vy)[P(x.y) = y =d(f(x.y).z.x)].

Put then
P (n.x,y) <= [f(x,y) =n&P(x,y)]VIVY)f(x,)") #n]&P*(x, )]
and check that this P** satisfies the conclusion. =

4F.18 (Louveau). Prove thatif P C X is A{(z) and o-compact, then
P(x) <= (3K)[K is Al(z) and compact, K C P. and x € K]
moreover P is Zg(a) for some o € Al(z), in fact P satisfies an equivalence
(%) P(x) < (Vn)P*(n,x)

where P* is in I19(a) for some a € Al(z) and each section P} = {x : P*(n,x)} is
compact.(2)

Similarly, if P C X x Yisin A% (z) and each section P, is ¢-compact, then there is
some P* C w x X x Y in Al(z) such that

P(x.y) <= (Vn)P"(n.x.y)

and such that each section P, is compact.
In particular, if P C X x Y is Borel and each section P, is g-compact, then there
exist Borel sets P, such that

P=U,P;
and each P* is Borel with compact sections (Saint Raymond).2%
HiNT. To simplify notation suppose P is Al so that by 4A.7.
P = F[A]
for some I1Y set A C A and a recursive F : N — X, with F injective on 4. Put
acd” = (3s){aeN&(VP)[feN,NA
= (3K)[ K is compactin A{, K C Pand F(B) € K ]| }.

It is easy to verify that 4* is a I1] set, using the representation of compact A} sets via
nbhd fans and it is obvious that 4* is open. We will prove that 4 C A*.
Assume towards a contradiction that

B=A\A"
is non-empty and notice that B is £! and closed. Since
F[B] C F[A] =U, Kx
with each K, compact, 4F.13 above implies that for some s, n

0 # F[BNN,]C K.
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so that for some s, F[B N Ny] is a non-empty compact subset of P. Since F[B N N,]
isin 2{, 4F.14 then guarantees that there is a Al compact set K such that

FIBNNJC K CP.

Fix a € BN N, and suppose f € Ny N A. If f € A* then F(f) is a member of some
Al, compact set by definition; if # ¢ 4*, then f € 4\ A* = B, so F(f) € K, so again
F () isamember of some Al, compact set. This establishes that « € A*, contradicting
a € B. Thus we have shown

AC A"
It then follows immediately that
x € P = for some A%, compactset K C P, x € K.
Call o« € N a code of the nbhd fan T if
($0,...s8p-1) €T <= al{so,....5p_1)) =1
and put

Q(x.i) < x € P&d(i)| &d(i) codes a nbhd fan T in A}
such that k(7)) C Pand x € K(T),

where d parametrizes Al N A by 4D.2. Easily Q is [T and (Vx € P)(3i)Q(x. i), so
we can find a A{ function f : X — o such that (Vx € P)Q(x. f(x)). Put

R(i) <= (FxeP)f(x) =1l
Put also
Ry(i) <= d(i)| and d(i) codes a Al, compact subset of P
and notice that R; is £}, R, is [T} and R; C R,. so we can find some Al set R such that
R CRCR,.
It is now obvious that
i € R = d(i)| and d(i) codes some Al, compact set K;

and
P={K;:i e R}
so letting
P*(n.x) +<—= R(n)&x c K,

we have (x) in the theorem with P* in Al and such that each section P} is compact.
The same argument relativized to a fixed but arbitrary x gives the second assertion
and then the third assertion follows trivially.
To get the full strength of the first assertion in the theorem choose f# € Al so that

{(B)y:n=0,1,...} ={d(n) : R(n)}.
choose y € Al so that for each n and m

(y)n(m) = largest u so that Seq(u) &h(u) = m & (B),(u) = 1
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and let
P*(n,x) <= xisin K(T,) where T, is the nbhd fan coded by (8),

= (vm) (Fu < (), (m)) [ (B)a () = 1 &1n(u) = m
& (vi < m)[x € N((w))]]-
Again (x) holds with this P*, which is clearly I19(c) with « = (B, 7) € Al -

The basic idea in these uniformization results about Borel sets is that we can find
a Borel uniformization when the sections of the given set are “topologically small,”
1.e., a-compact. We now proceed to show that we can also find Borel uniformizations
when the sections are “topologically large.” i.e., not meager.

The key to this type of result is a basic computation of the category of £2 and X}
sets.

4F.19 (Kechris [1973]). Foreachset P C X x ), put
0(x) < P, ={y: P(x,y)}is not meager.
Prove that if P is X0, then Q is also 0. if P is =}, then Q is £} and if P is [T}, then Q
is also IT}.
HinT. If Pis 2(1) and hence open, then by the Baire category Theorem 2H.2
P, is not meager <= P, # () < (3i)P(x.r;)

where {rg. 1, ...} is the recursive presentation of Y, so Q is ). Now if Ris I1%_,,
{y : (3m)R(x. y,m)} is not meager
< (Im)[{y : R(x,y,m)} is not meager]
< (Im)(3s)[Ns; \ {y : R(x,y.m)} is meager]

and by induction hypothesis the relation in the brackets is IT12_,. so we are done.
Suppose now

P(x.y) <= (Ba)F(x.y.a)

with F in 1Y and fix x for the discussion. By the von Neumann Selection Theorem 4E.9
we can find a Baire-measurable /' : Y — N which uniformizes Fy and then by 2H.10
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we can find a comeager Gs set 4 C ) such that the restriction f [ 4 of f to A4 is
continuous as in Figure 4F.6. Choose € € N so that

(%) e((s.1)) =1 < fINsNA]C N, &N;NAF#0

and check first that

(1) e((s.t)) =1= FyN(Ny x N,) #0.

since if y € Ny N A. then (y. f(y)) € Fy N (N, x N;). Finally put

2) B. = {y €Y: (@) @el(s.1) = 1&y € Ny]
& (Vs)(Vt)(Vk){[e((s.1)) = 1&y € Ny]
= (3s")3) [e((s".1')) =1&y € Ny
&Ny C Ny & N,y C N, &radius(Ny) < ﬁ &radius(N,/) < ﬁ] }}
and check easily that
(3) ANP, CB,..
If P, is not meager, then (3) implies that B. is not meager. Thus we have shown
that
P, is not meager = (Je){e satisfies (1) and
the set B, defined by (2) is not meager}.

On the other hand, the definition of B, makes sense for arbitrary ¢ € N, in fact the
relation

B(e.y) < y € B.
is easily Hg, hence 22. Moreover, if for some fixed x and € the implication (1) holds,
then

y € B. = there are sequences s, 51, . .., fo. ], ... such that

Ny 2Ny 2O--- Ny DN, 2---. and for each n,
(N;, x N,,) N Fy # 0, radius(N,,) < 1/(n + 1),
radius(N,,) <1/(n+1)and y € N,,

= there is a sequence of points (y,. o) in F, such that
lim, ., ¥y, = y and lim,_, o, = « exists

= (3a)(y.a) € F, (since F, is closed)

=y € P,.

Thus
P, is not meager <= (Je){e satisfies (1) and
the set B. defined by (2) is not meager}

and this relation is immediately X!.
The claim for H% sets follows from the remark which we have already used, that for
any set P with the property of Baire,

P isnot meager <= (Is)[N, \ P is meager]. -
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4F.20. Prove thatif P C X is I1}(z) and not meager, then P has a member in Al(z).
(Thomason [1967], Hinman [1969]; see Kechris [1973].)

Infer that if P C X x Y is in Al(z) and each section P, is not meager in ), then
P can be uniformized by a set in Al(z); similarly, every Borel set P C X x ) with
non-meager sections can be uniformized by a Borel subset.

HINT. Assume P is [T} (z) and not meager and suppose ¢ : P — & is a regular
I1}(z)-norm on P. Now

P=U:, AxeProlx)=2¢5
so if k < Wy, then by the countable additivity of the collection of meager sets we get
(%) for some A < K, {x € P: ¢(x) = A} is not meager.

If k = X; then P is not Borel by 4C.10. Choose a G5, non-meager set A C P by 2H.4
(applied to X \ P) and then use the Covering Lemma 4C.11 to infer that for some
E<h AC U AxeP: @(x) = {} so that again (*) holds. We have thus shown
that for any regular, I1}(z)-norm on P, (x) holds.
Fix now a very good I1}(z)-scale p = {¢,} on P. with all the norms regular and
put for each n
Jn = least 4 such that {x € P : ¢,(x) = 1} is not meager,
P,={x€P:p,(x) =1}
Putting this another way,

X€EP, < {yeP:p,(y)=en(x)}is not meager
& (Vw)[pn(w) < @u(x)
= {y € P pu(y) = pu(w)} is meager]
< {y e P:p,(y) <pn(x)}is not meager
&{y € P:p,(y) < pu(x)} is meager,

where in the second equivalence we have used again the countable additivity of the
ideal of meager sets and the fact that ¢, (x) < Ni.

It is immediate that each P, is non-empty. Notice also that by the the key property
of a very good scale given in 4E, easily

Oni1(y) < @ni1(x) = @u(y) < @n(x)

and

‘Pn(y) < ‘Pn(x) = ‘Pn+1(y) < 90n+l(x)e
so that immediately
Py2O2PI2OP 2.

If x¢, x1. . .. is any sequence of points with x,, € P, then by the definition of a very
good scale again, there exists some x such that

lim,_ o X, = x and P(x).

Moreover, if yy, y1,... is another such sequence converging to some y € P, the
sequence

X0, Y0, X1 V15 -+
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would have to converge to a unique point, so that x = y. Hence: there is a unique
point x* which is the limit of some sequence Xy, X1, x2,... with x, € P, and this
x* € P. Since obviously

x=x" < (Vs){x € Ny = (Vk)(3n > k)(3y)[P(n,y) &y € N}
it will be enough to prove that the relation
P*(n.y) <= yePp,

isin 21(z), since this would show that x* is £} (z)-recursive and hence (easily) in Al(z).
Finally this follows easily from the preceding exercise and the equivalence

x € P, < {y:-(x <, y)}isnot meager
&{y:y <, x}is meager
< {y:~(x <}, »)}is not meager
& (Vs)[(Ns \ {y : y <}, x}) is not meager]

which is easy to verify.
This completes the proof of the first assertion and the rest follows from the A-
Uniformization Criterion 4D.4. -

There is a similar result for measure which we will not prove here—thatif P C X' x )
is Borel and all sections P, have g-measure > 0 for some o-finite Borel measure u
on ), then P can be uniformized by a Borel set. (The basic lemma for this is due to
Tanaka [1968] and Sacks [1969].) Kechris [1973] has an excellent discussion of these
and related results as well as additional references.

We will end this section with a negative uniformization result—an obstruction to
improving the von Neumann Selection Theorem. First a computation.

Recall from 4F that

o7 = supremum{|a|: o € WO & o <7 x},
and for any two irrationals «, f§ let («, ) be the irrational coding their pair as in 1E,
(o B)((0.1)) = a(n),
(o B)((1.n)) = Bln).
{a, B)(2) = 0if ¢ is not of the form (0, n) or (1, n).
4F.21. Prove that the relation
Pla, ) = wfa‘m = of
is X! and that for each «, there is a perfect non-empty set C such that
peC = of*" =uwp.
HiNT. By a direct relativization of 4A.5, for each x,
o =6} (x) = supremum{|a| : @ € WO & Al(x)}.
Compute:
0" > 0 s [3y € Al(a. B){y € WO & (VO)[(6 € LO&S <1 a)
— (<, cannot be mapped in an order-preserving
way onto <;)]}.

This implies immediately that {(c. ) : a)fo“‘ﬂ> > ¢} is [T} and hence P is X!.
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Since € Al(a) = P(a. ). if the converse implication held, we would have that
Al(a) NN is Z}(a) for each a, contradicting 4D.16; thus for each a. the Xi(a) set
{B : P(a. B)} has members not in Al(«) and hence it contains a perfect set by the
Effective Perfect Set Theorem 4F.1. -

Lusin [1930a] claimed that every X! set can be uniformized by a set which is the
difference of two X! sets. This is not true.

4F.22. Prove that there exists a X] set which cannot be uniformized by the difference
of two X1 sets. (J. Steel, D. A. Martin.)
HINT. Take
Pla.f) <= o™ =wf&p ¢ Al(a)

which is £} by the preceding exercise and 4D.14 and suppose that P is uniformized by
P (a.p) <= Qla.p)&~R(a.f)

where (equivalently with the hypothesis that P* is the difference of two X sets) we
assume that Q and R are IT} (a*) for some fixed a*. Let #* be the unique f such that

Oa”. ") &~R(a". f*)
holds.
By 4A.3, there is a recursive function f such that

Oa. ff) <= f(a.f) € WO:
since Q(a*, B*) holds. f(a*, 8*) € WO so that for some ¢,

*

[l p) <é <o = of,
since P(a*. §*) holds and hence »{* # = »2". The relation
S(p) < fla".p) e WO&|f(a". p)| <& R(a". )

is easily in X} (a*) and obviously S(8*) holds; but * ¢ Al(a*), so by the Effective
Perfect Set Theorem 4F.1, S contains a perfect set of irrationals. This contradicts the
inclusion

SC{p:P (o p)}={p} B

4G. Historical remarks

The results of this chapter are the hardest to credit., partly because we have presented
them in a modern form which is the end product of the work of many researchers.
In addition to this, there has been considerable duplication, and rediscovery of ideas,
as the recursion theorists often did their work in ignorance of the classical theory.
Since the writing of a detailed and documented history of the subject would be a
formidable (though fascinating) task, I have confined myself below to a few remarks
which indicate the origins of the main ideas (when this is clear from the literature) and
point to the most significant papers.

’Let us begin with a brief summary (in somewhat modernized terminology) of
the results of Lusin and Sierpinski [1923], surely one of the most important early
contributions to the theory of analytic sets. Lusin sieves (cribles) were introduced here
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and they were used to obtain a representation theorem for I} sets quite similar to
our 4A.3.

3A sieve is a map r — F, which assigns to each rational number r a subset F, of a
space X. The set sifted by the sieve is defined by

x € Sieve, F, < {r:x € F,} is not well ordered,

where we use the standard ordering on the rationals. The basic result of Lusin and
Sierpinski [1923] is that the sets of the form Sieve, F, with each F, closed are precisely
the analytic (X1) sets; thus every coanalytic (I1}) set P satisfies an equivalence

P(x) < {r:x € F,} is well ordered

with a sieve of closed sets—a representation very similar to that of 4A.3.

“Lusin and Sierpinski [1923] used this characterization of II! sets to give a new
proof of the Suslin Theorem (A} =Borel) and also to prove that £ sets are both the
union and intersection of 8; Borel sets, our 2F.2. (Half of this result was first shown in
Lusin and Sierpinski [1918] which anticipated somewhat this later joint paper.) They
also established the Boundedness Theorem 4A .4 for IT! sets with the natural ordinal
assignment that comes from their representation.

SFix an enumeration rg, r, 14, . .. of the rationals and define the set WO™ C C of
binary infinite sequences by

a € WO* = {r, : a(n) = 1} is wellfounded:;

this is (essentially) the set of codes for ordinals introduced in Lusin and Sierpin-
ski [1923] and used extensively in the classical development of the theory. Lusin
and Sierpinski showed that WO* was II} but not £ and Kuratowski [1966] (§38,
Lemmas 2, 5) gives the essential content of 4A.2.

The effective version of the Basic Representation Theorem 4A.3 (for X = w) was
proved in Kleene [1955a], one of the most significant contributions to the effective
theory. Kleene’s result asserted that each I} subset of w satisfies

P(x) <= f(x)e€o0,

where f is recursive and O is a set of (integer) notations for the so-called constructive
ordinals. (Incidentally, these had been introduced by Church and Kleene and their
supremum is w X, sometimes read “Church-Kleene w;.”) Kleene’s main motivation
was the study of these ordinals rather than I1} and A}; but he used his representation
theorem in his [1955b] and [1955¢] to study 1} and A} and in the second of these papers
he established the effective version of the Suslin Theorem (for X = w). We will prove
this result in Chapter 7, where we will also cover in some detail the very fundamental
method of definition by effective transfinite recursion introduced in Kleene [1955a].

7 A representation theorem for I} (with X = w) which is much more similar to 4A.3
was established in Spector [1955], another basic source of ideas for the effective theory.
Spector used integer codes of recursive wellorderings of w (for ordinals below a)1CK)
but other than this, his basic notions were quite close to ours. He also proved 4A.2
(essentially) and 4A.4 (for X = w) as well as 4A.5.

8Kleene and Spector worked in almost complete ignorance of the classical theory
and there is no apparent lead from the classical work to theirs—except (possibly) for
one slender thread.

°The ordering of finite sequences of integers which we introduced in the proof
of 4A.3 was first defined in Lusin and Sierpinski [1923], where it was used in almost



204 4. STRUCTURE THEORY FOR POINTCLASSES [4G

exactly the same way in which we used it. Kleene [1955a] used the same ordering
(essentially for the same purpose) and credits Brouwer [1924] for the definition and
some of its basic properties—this is Brouwer’s famous intuitionistic proof that every
(constructive, totally defined) real function must be uniformly continuous on closed
intervals. Now, Brouwer has no list of references in his paper, but he might have seen
Lusin and Sierpinski [1923]; the publication dates make this barely possible. In any
case, Brouwer’s background in topology makes it quite likely that he knew the early
papers in descriptive set theory (including Lusin and Sierpinski [1918]) and he might
have been led to the ordering along the same path followed by Lusin and Sierpinski.
10Recursion theorists are apt to refer to the Kleene- Brouwer ordering, while someone
versed in the classical theory would naturally call this the Lusin-Sierpinski ordering.

T As we remarked in the introduction, the relationship between classical descriptive
set theory and Kleene’s theory of the arithmetical and the analytical pointclasses on
w was first perceived as a list of analogies between the two theories, to begin with by
Mostowski and later (and more accurately) by Addison in his Thesis [1954] and later
in his [1959a]. (Addison and Spector were graduate students of Kleene during the
same general period 1951-1954; it is interesting that Addison’s deepening interest in
and knowledge of the classical theory at that time was not effectively transmitted to
Kleene and Spector.) The general, unified theory which we are studying in this book
evolved slowly in the years since 1955 from these analogies.

2The prewellordering property was first isolated explicitly by Moschovakis in
1964, in an effort to find common proofs for theorems about IT} and X} (on w);
see Rogers [1967]. (The original version was somewhat more complicated and this
present definition is due to Kechris.) On the other hand, arguments which involve
ordinal assignments to points (like the index in Lusin and Sierpinski [1918]) pervade
the classical literature both in descriptive set theory and in recursion theory, so many
of the results in 4B—4D are best viewed as elegant and strengthened versions of their
classical, concrete special cases. The credits given in the text refer to these special
cases.

BIn particular, Novikoff [1935] assigned ordinals to the points of a £} set precisely
as we did in 4B.3, starting with an ordinal assignment from a sieve on the given I}
matrix. Novikoff [1935] used 4B.3 to settle the problems of separation and non-
separation for I1}, £} and I1}—the separation theorem for X! is already in Lusin
[1927]. Kuratowski [1936] inferred the separation property for I} from the reduction
property for £} which he introduced and established. Finally, Addison [1959a] put
down the lightface results in 4B.10, 4B.11 and 4B.12. following both the classical work
and Kleene [1950], where the failure of separation for 2(1) was proved.

4The further step of using the prewellordering property as the key tool in study-
ing the structure theory of collections of relations was taken in generalized recursion
theory, particularly in recursion in higher types and inductive definability; Moschova-
kis [1967]. [1969], [1970], [1974a], [1974b] and the present work are successive stages
in the development of what is sometimes called prewellordering theory.

I5The present notion of a Spector pointclass is the natural generalization to the
context of Polish spaces of the Spector classes of Moschovakis [1974a]. Theorems 6B.3
and 9A.2 in that monograph correspond to the substitution property and 4C.2 here.

16T he study of collections of relations with arguments in several spaces (and espe-
cially X-pointclasses and Spector pointclasses) as opposed to studying collections of
subsets of a fixed space (often o-fields) is one of the chief methodological differences
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between our approach to descriptive set theory here and the classical work. We are
forced to look at relations since the effective pointclasses are not closed under count-
able unions but they are closed under projection along w, to take an example. At the
same time, the use of relations makes the logical computations of complexity (which
were also used in the classical theory) much simpler, so that there is an advantage,
even if one is only interested in the projective pointclasses.

"The parametrization theorem for A, 4D.2 is an abstract version of the various
“hierarchies” for the hyperarithmetical sets, for example the sets H, in Kleene [1955b]
or the sets W, in Spector [1955]. Similar abstract parametrizations were constructed
directly from the prewellordering property in Moschovakis [1967], [1969] and [1974a]
whose Theorem 5D.4 is the basic model for 4D.2 here.

18K leene [1959b] has the basic version of 4D.3, for IT!, with a proof based on the
hierarchy of the H,-sets. The upper classification of A (4D.14) is a trivial consequence
of this. As for the lower classification of A (4D.16), it has been rediscovered by several
people at various times, with the proof for A} usually depending on the Uniformization
theorem 4E.4. The simple argument for A} that we gave is due to Kechris.

YLusin [1930a] introduced the fundamental problem of uniformization and an-
nounced four results. 1. Every X1 set can be uniformized by the difference of two L}
sets. (This is actually false, see 4F.22.) 11. There is a £} set which cannot be uniformized
by a £} set. 1I1. Every Borel set can be uniformized by a I} set (joint result with
Sierpinski). IV. If P C X x Y is Borel and every section P, is countable, then P is
the union of countably many Borel sets P}, each of which uniformizes P. (There was a
similar result for analytic P.)

20Theorem 11 is equivalent to 4D.11, which we obtained as an immediate corollary
of Kleene’s 4D.10. Novikoff [1931] also gave a proof of this result, as well as a proof
of a weak version of IV, that for Borel P with countable sections the projection 3% P
is Borel and there exists a Borel uniformization, our 4F.6. The complete IV is 4F.17
here.

2Sierpinski [1930] established III and asked whether every IT! set can be uni-
formized by some projective set. It was a bold question, because Lusin had published
an example which purported to show that one could not “effectively” (in what he called
“realistic mathematics™) uniformize I} sets. This uniformization problem was soon
recognized as the outstanding problem of descriptive set theory, until Kondo [1938]
solved it using the basic idea introduced by Novikov and published in Lusin and
Novikov [1935]. (Kondo gives additional credit to another Novikov paper where
apparently I} sets with finite sections were uniformized.) The lightface version was
worked out by Addison in the late fifties.

22Kondo’s solution of the uniformization problem was in many ways harder than
the problem—his proof appeared to be so complicated that few people ever read it.
But the difficulty is only a matter of style, as there is basically only one natural proof
of this result. The present treatment in 4E.1-4E.4 via scales was worked out in 1971
by Moschovakis who was attempting to generalize the result using strong axioms. We
will look at this generalization in Chapter 6.

ZFor the applications of descriptive set theory to analysis, the most important
uniformization result is von Neumann’s Selection Theorem 4E.9. This was proved
before the war, despite the late publication of Neumann [1949]. Here we obtained it
as a direct corollary of the Kleene Basis Theorem for Z}, 4E 8.
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24There are many results in the literature on Borel uniformizations of Borel (or
even X! and II}) sets with special properties, many of them set in wider contexts
than the category of Polish spaces. We have concentrated on just the basic theorems
which illustrate the applicability of the effective theory to this kind of problem—and
particularly the usefulness of the A-uniformization criterion 4D.4. These “effective
proofs of boldface results” have been part of the folklore of the subject for a long time
and there is nothing basically new in our treatment here; the final versions of 4F.9—
4F.18 owe much to the seminar notes of some lectures given by Louveau after he had
seen a preliminary version of this chapter.

2 Louveau [1980] has obtained recently a very beautiful extension of 4F.18 which
in particular implies the following: if P C X is A} and £ for some 7, then P is % ()
for some a € A}



CHAPTER 5

THE CONSTRUCTIBLE UNIVERSE

We have already referred to several comsistency and independence results, e.g., that
the continuum hypothesis cannot be settled in Zermelo-Fraenkel set theory and that
one cannot prove in this theory that A} sets of reals are Lebesgue measurable or that
uncountable I1} pointsets have perfect subsets. To prove rigorously theorems of this
type, one needs the powerful metamathematical tools of modern logic; we will study
some of these quite carefully in Chapter 8. Our main purpose here is to consider
briefly a property of pointsets which holds in Godel’s universe of constructible sets and
use it to establish the independence of many important propositions of descriptive set
theory.

Godel’s aim was to prove the consistency of the axiom of choice and the generalized
continuum hypothesis with the classical axioms of Zermelo-Fraenkel set theory (with-
out choice). To do this, he defined a collection L of sets with very special properties, the
constructible sets, and showed (first) that if we interpret “set” to mean “constructible
set.” then all the axioms of Zermelo-Fraenkel set theory become true. In other words,
all these assertions about sets hold in the constructible universe L: it follows that every
logical consequence of these axioms also holds in L. Now Gddel went on to establish
that the axiom of choice and the generalized continuum hypothesis also hold in L.
because of the special nature of constructible sets; it follows that the negations of these
statements cannot be logical consequences of the axioms of Zermelo-Fraenkel set the-
ory. In other words, the axiom of choice and the generalized continuum hypothesis are
consistent with Zermelo-Fraenkel set theory, they cannot be disproved in that theory.

Godel’s work implies that a very strong form of the continuum hypothesis holds in
L—the set \ of irrationals admits a wellordering of rank X; which is “Al-good” in a
technical sense. We will make this proposition precise in SA and we will abbreviate it
by “A/ C L.” since it is in fact equivalent to the assertion that all points in Baire space
(as sets of ordered pairs of integers) are constructible. Thus the hypothesis N C L is
also consistent with the axioms of Zermelo-Fraenkel set theory and neither it nor any
of its logical consequences can be disproved from these axioms.

We will show that the hypothesis A/ C L yields a complete structure theory for
the Lusin and Kleene pointclasses, e.g., it implies that all X! (n > 2) are Spector
pointclasses with the uniformization property. It also implies that there are A} sets of
reals which are not Lebesgue measurable, that there are uncountable IT} sets which
have no perfect subset, etc. The consistency of N’ C L implies then that all these
propositions are also consistent with the axioms of Zermelo-Fraenkel set theory (with
the axiom of choice), e.g., we cannot prove in this theory that some X! set cannot be
uniformized by a £} set or that every A} set of reals is Lebesgue measurable.

207
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It turns out that the proofs of these results from the hypothesis N' C L are quite
easy. The more difficult metamathematical proof of the consistency of ' C L will be
given in full in Chapter 8.

At the end of this chapter we will also give a brief discussion (without proofs) of
various other consistency and independence results which illustrate the limitations of
classical, axiomatic set theory. These are proved by Cohen’s method of forcing which
we will not cover in this book.

Although the statements of theorems and the proofs in this chapter will be com-
pletely rigorous, the discussion will be necessarily somewhat vague since we will not
say exactly what we mean by “statements about sets” or “logical consequences.” These
are among the basic notions of logic and they will be defined with complete preci-
sion in Chapter 8. The reader who feels uneasy about using these terms intuitively
may turn to that chapter now and peruse at least the first few sections. Almost all of
Chapter 8 can be read at this point with no knowledge of the intervening Chapters 5, 6
and 7. However, only a rudimentary, intuitive understanding of these metamathemat-
ical notions is needed to read the material here, and it is perhaps best to continue in
our development of descriptive set theory before we turn to look seriously at logical
matters.

5A. Descriptive set theory in L)

Suppose < is a wellordering of some product space X and I' is a pointclass. We say
that <is I'-good if for every P C Z x X in T the relations

0(z.x) <= (3y < x)P(z.y).
R(z.x) <= (Vy <x)P(z.y)

are also in I, i.e., if I" is closed under <-bounded quantification. For example, the
natural ordering on w is I'-good for every adequate pointclass I".

Notice that if I is adequate and the identity relation = on X is in A, then every
I'-good wellordering of X is in A, since

z<x < Ay <x)[z =]
z<x <<= z#£x&x <z
We now introduce the abbreviation
N C L <= N admits a X}-good wellordering of order type (rank) X;:
put another way, N' C L asserts that there is a bijection
PN — Ny
of Baire space with the set of countable ordinals such that the relation
a <y f = pla) <p(f)

is a X}-good wellordering of A/. In particular, <; is a A} pointset which well-
orders \.(23)

As we mentioned in the introduction, A" admits a }-good wellordering of rank X;
exactly when every point of Baire space is in the collection L of constructible sets.
This motivates our choice of notation.
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The hypothesis A/ C L is almost certainly false on the basis of our intuitive un-
derstanding of the universe of sets. Not only does it imply the continuum hypothesis
2% — N, which is itself dubious. it further asserts the existence of a definable, Aé
wellordering of . for which we have no evidence at all. It is well known that all
proofs of Zermelo’s theorem that A/ can be wellordered depend heavily on the axiom
of choice and fail to produce an explicit, definable wellordering.

The proof that the set of constructible irrationals admits a X!-good wellordering of
rank Ny utilizes the very special properties of constructible sets.

Notice that by Corollary 2G.3 to the Kunen-Martin Theorem, A/ does not admit a
Al wellordering. Thus the existence of a A} wellordering is the strongest hypothesis
of this type which can be consistent with the axioms of Zermelo-Fraenkel set theory.

Exercises

We start with a few simple facts about good analytical wellorderings.
If < is a wellordering of A/ of rank R, put

IS, B) <= {(a);:icw}={y:y <Bh
we read this “a codes the initial segment of < with top f.”

5A.1. Let < be a wellordering of A of rank ;. Prove that < is £}-good (n > 2) if
and only if the associated relation IS(c. #) is AL

HINT. Assume first that < is X! -good. Compute:
IS(a. p) <= (Vi)l[(@); < F1&(Vy)[y < f = (Fi)[y = (@)i]]
= (Vi)[(a); < B1&(Vy < B)3F)[(@)i = 7],
which implies that IS(a, f8) is A}, since < is X!-good and in A}. Conversely, if IS(c. )
is Al and P(d.y) isin X}, then
3y <B)PO.y) <= (Ba){IS(ev. f) & (3i)P (0. ()i) }.
(Vy <B)PO.y) <= Ba){IS(e. f) & (Vi) P (0. (a)i) }. n

5A.2. Prove that if N admits a X! -good wellordering of rank R, then every perfect

product space X admits a wellordering of rank N; which is Z,L-good, H}(-good and
A}-good for every k > n.

HINT. Suppose < is Z}-good of rank X; on AV. The equivalences
(Fy <B)PO.7) <= (Fa){IS(ev. p) & (3) P (9. (@);) }
— (Va){IS(a. B) = (Fi)P (6. ()}

and their duals show easily that < is X} -good. IT} -good and A}(-good for each k > n.
If X is any perfect product space, let

h:X— N
be a Al isomorphism of X’ with \V, put
x <y <= hix) <h(y)

on X and verify easily that <’ is £} -good, 1} -good and A} -good on X for each k > n.-
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@
®

DiaGraM 5A.1. The normed Kleene pointclasses in L.

After these preliminary results, we proceed to list the most significant facts about
descriptive set theory in L.

5A.3. Prove thatif N C L, then for each n > 2, 2,1, is a Spector pointclass.

HinT. By the remarks following the definition of Spector pointclasses in 4C, it is
enough to show that each X! (n > 2) has the prewellordering property. Suppose
P C XisXl, sothat for some T, | set Q C X x N,

P(x) <= (32)0(x. a):

let <; be a £}-good wellordering on A induced by a rank function

p N — Ry,
and put
p(x) =inf{p(a): Q(x.a)}  (x € P).
Now
x<py = Ba){0x.a0) & (VB <L a)[f =aV-0(y.p)}
x<py = (Fa){0(x.a) & (VS <1 a)=0(y. f)}.
so that by 5A.2. both <% and <}, are £} and ¢ is a £} -norm. o

Thus in L the Kleene pointclasses which are normed are exactly those circled in
Diagram 5A.1.
The diagram for the boldface pointclasses is identical by 4B.7.

5A.4. Prove thatif ' C L and n > 2, then X! has the uniformization property and
Al is a basis for Z!. (Addison [1959b].))

HINT. Suppose first that Q C X x YV is I} |, let < be a X!-good wellordering of
rank N; on Y (by 5A.2) and put
0" (x.y) <= 0O(x.y) & (Vz < y)-0(x.z2):

clearly 0* is X! and it uniformizes Q. Now show that every X! relation can be
uniformized by a X! relation as in the proof of 4E.4.
The second assertion follows by the argument we used to prove 4E.5. -

5A.5. Prove thatif V' C L, then every X! (n > 2) has the scale property.
HINT. Given P in X}, suppose

P(x) <= (Fo)0(x.a)
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with Q in TI}_,. let <; be a X!-good wellordering of N and let <, be a !-good
wellordering of X. Define the anti-lexicographic wellordering < on X x N (the product
of X and V) by

(xa) < (.f) <= a<i fVla=f&x <5 )]
and let
7 : X x N'— Ordinals
be an order-preserving mapping of < into the ordinals. Now put
¢(x) = n({x. <;-least & such that Q(x. a))):

easily

x <5y <= (3a){0(x.0) & (VB <1 @)=0(y. f)}
V (3a){0(x.0) & O(y. )
& (V<1 a)[-0(x. ) &=0(y. )1 & x <5 y}

and similarly for <%.so pisa *!-norm. Since ¢ is actually an injection, the sequence
©. ., ... isaXl-scale on P. -

We now consider the regularity properties of projective sets in L. The key construc-
tion is embodied in the following simple fact.

5A.6. Assume N C L and let X', Y be any two perfect product spaces. Prove that
there exists a function f : X — ) whose graph

Graph(f) = {(x.»): f(x) = »}
is I1} and thin.
HINT. Let < be a £}-good wellordering of A of rank ®; and put
Pla.f) <= a <, f&p e WO&(Vy <L f)~{y e WO&[y| = |
where WO is the set of ordinal codes of 4A. Clearly P is > solet

Pla.p) <= (Fy)Q(a.B.7)
with Q € IT!; considering Q as a subset of N x (N x N), let Q* uniformize Q in I},
so that for each a,
(3p)(3Fy)0(e. B.y) <= (3B)(Fy)Q" (. B.7).
0 (a.B.y)&Q (. p.y) = p=p &y ="
Use 4A.6 to show that Q* has no non-empty perfect subsets—the key observation is
that any uncountable subset of Q* involves uncountable many «’s and hence uncount-

ably many distinct ordinals || which form an unbounded subset of ¥;.
Since Q* is obviously the graph of a function

[N =N XN,

this proves the result for ¥ = A, Y = N x N, from which the general fact follows by
taking Al isomorphisms and using 4F.7. -

}-
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In 8G.12 we will establish the converse of this result—the existence of a function
f : N'— N with thin, I1} graph in fact implies that N C L.

Recall from 2H that a function f : X — ) is Baire-measurable if for each open
G C ). the inverse image f ~'[G] has the property of Baire. Similarly f : X — Y is
u-measurable (where u is a o-finite Borel measure on X) if ' ~![G] is u-measurable,
for each open G C ).

A measure u on X is regular if u(X) > 0and u({x}) =0forall x € X.

5A.7. Suppose f : X — Y and Graph(f) is thin; prove that f is not Baire-
measurable or #-measurable for any regular g-finite Borel measure on X'.

Thus, if N C L. then there are functions f : R — R with I} graphs which are
neither Baire-measurable nor Lebesgue-measurable.

Hint. By 2H.10, if f is Baire-measurable then there is a comeager Gs set P such
that f | P is continuous. Now P is uncountable, so the injective image

P = {(xf(x)) :x € P}

is also uncountable and a X! subset of Graph(f'); but then P* must have a perfect
subset by 2C.3, contradicting the hypothesis.
The argument for measure is similar. -

5A.8 (Godel, Addison [1959b]). Prove that if A¥ C L, then each perfect product
space X has uncountable, thin T1} subsets, it has A} subsets without the property
of Baire and for each regular, o-finite measure u, it has A} subsets which are not
u-measurable. (%)

HINT. Take /' : X — Rasin 5A.6. For the first assertion use a A} isomorphism of X
with X x R. For the second and third assertions argue that theset {x : p < f(x) < ¢}
is A} for each pair of rationals p. ¢ and that not all these sets can have the property of
Baire—or be y-measurable. -

There is another, simpler way of obtaining sets in L which are not measurable and
do not have the property of Baire, which depends on the classical theorems of Fubini
and Kuratowski-Ulam.

The Fubini Theorem asserts (in part) that if 4 is a Borel measure on X and if
A C X x X is measurable in the product measure u x u. then

(i) the section
A" = {x: Alx )}
is u-measurable, for almost all y € &,

(ii) if u(A”) = 0 for almost all y € X, then A has measure 0 in the product measure
and the section

Ay ={y:A(x.y)}
has measure 0, for almost all x € X.

We will not prove this here.
The corresponding result for category is not as well-known and it is worth putting
it down for the record.

5A.9 (The Kuratowski-Ulam Theorem, see Oxtoby [1971]). Prove thatifaset 4 C
X x Y has the property of Baire, then the section A” = {x : A(x, y)} has the property
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of Baire for a comeager set of y’s and

A is meager <= A” is meager for a comeager set of y’s

<= A, ={y:A(x.y)} is meager for a comeager set of xs.

HiINT. Suppose first that 4 C X x ) is closed and nowhere dense, let G = X' x Y\ 4,
so G is dense and open. For each basic nbhd Ny C X, put

Gy ={y:(3xeNy)G(x.p)}
and check that each G; is dense, open in ); hence by the definition
H = ﬂS G, C)Y

is comeager. Now if y € H, then easily G¥ = {x : G(x,y)} is dense and hence
AY = X\ G? is nowhere dense.

Thus whenever A4 is closed and nowhere dense, the section 4”7 is nowhere dense for
a comeager set of y’s. This implies immediately that if 4 is meager, then A” is meager
for a comeager set of y’s, which yields direction (=) of the second assertion.

To prove the first assertion, choose an open G and a meager set P such that
AN G = P and notice that for each y, 4¥ A G¥ = P’; since each G’ is open, this
proves that 4% has the property of Baire whenever P’ is meager, which is true for a
comeager set of y’s.

Finally, to prove direction (<=) of the second assertion, suppose 4 A G is meager
with G open and A4 is not meager, so that G # 0; now A4” A G” is meager for a
comeager set of y’s and if the same were true for 4%, it would follow that G” is meager
for a comeager set of y’s. But G contains a basic nbhd of the form N (X.s) x N(). )
since it is non-empty and G” is not meager for y € N (), ¢), which implies that N (), 1)
is contained in a meager set, contradicting the Baire Category Theorem. -

5A.10. Suppose p : X — Ordinals maps a perfect product space X into the ordinals
so that for each &, the set p~!(&) = {x : p(x) = &} is meager; prove that the
prewellordering < induced by p does not have the property of Baire (as a subset of
X x X).

Similarly, if each p~!(¢) has u-measure 0 for some regular Borel measure I'. then
< is not measurable in the product measure x4 x u.

In particular, both conclusions hold if each p~!(¢) is countable or a singleton (i.e.,
if <is a wellordering).

HINT. Let 4 = {(x.y) : p(x) < p(y)} and suppose first that the set {y :
A” is meager} is not comeager; choose then a least yy such that 4’ has the prop-
erty of Baire but is not meager, put

B={(x.y):p(x) < p(y) <py)}

and verify easily that B has the property of Baire. Now B” is meager for a comeager
set of y’s by the choice of y(, hence B is meager. On the other hand, for each x < y,

B, ={y:p(x) < p(¥) < p(y)} so that
A" C B*UB,U{y:p(y)=p(y)}

and hence B, cannot be meager or else 4*° would be meager.
The argument is a bit simpler if {y : 4 is meager} is comeager and the whole proof
goes through word-for-word for the case of measure. -
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We will end this set of exercises with an interesting alternative version of 5A.6 which
brings in the largest, thin I} set of 4F.4.

5A.11. Let C) be the largest, thin, H} subset of A/. Prove thatif A' C L, then every
irrational « is recursive in some S € Cj.

HINT. Let /@ NV — A have thin, [T} graph and notice that (trivially) each « is
recursive in the pair (a. f(a)). Now let 7 : N x ' — N be a recursive homeomor-
phism and observe that z[Graph( )] is a thin, 1} subset of A and « is recursive in

n((a,f(a))). -

5B. Independence results obtained by the method of forcing(“)

If we can prove a certain statement 6 about sets from the hypothesis NV C L,
then we know that @ is consistent with the axioms of Zermelo-Fraenkel set theory
(with choice)—it cannot be disproved from these axioms. This is a particularly nice
consistency proof for 6, as it establishes that 6 actually holds in a very natural model
of set theory, namely L.

The ingenious method of forcing was invented by Cohen in order to prove the
independence of the axiom of choice from the remaining Zermelo-Fraenkel axioms
as well as the independence of the continuum hypothesis in Zermelo-Fraenkel set
theory with choice. This involves constructing models of set theory which are more
complicated (and less natural) than L. We will not attempt to explain forcing here,
but we will simply list a few of the results which are proved using it and which are
relevant to descriptive set theory.

By ZFC we understand the classical Zermelo-Fraenkel set theory, with the axiom
of choice. (The specific axioms are listed in Chapter 8.) In stating consistency results,
it is natural to assume that ZFC itself is consistent—this is surely true since all its
axioms hold in its intended model, the universe of sets. We will not bother to make
this hypothesis explicit.

5B.1. TaeoreM (Cohen, Levy). We cannot prove in ZFC that N admits a projective
wellordering ; in particular, we cannot prove in ZFC that N' C L.

An extension of this result asserts that the uniformization problem for the higher
Lusin pointclasses is hopeless in ZFC.

5B.2. THEOREM (Levy [1965]). We cannot prove in ZFC that every I set in N' x N
can be uniformized by some projective set.

Even weaker structure properties cannot be proved.

5B.3. TueorEM (Harrington). We cannot prove in ZFC that either £} or I1} has
the separation property; hence, we cannot prove in ZFC that either l;[; or X ; has the
prewellordering property.

Martin’s Theorem 2G.4 is also best possible in ZFC—it cannot be extended to the
higher Lusin pointclasses. Sample result of this type:

5B.4. TaeoreM (Harrington [1977]). We may assume consistently with ZFC that
2% = V7 and that there are T1} wellfounded relations on N of rank Xy7.

Similarly, Sierpinski’s Theorem 2F.3 cannot be extended:
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5B.5. THEOREM (Solovay). We may assume consistently with ZFC that 2% = Ry,
and that there is a T1} set A which cannot be written as the union of fewer than Ry7 Borel
sets.

The best result about regularity properties of projective sets needs the additional
hypothesis that the existence of inaccessible cardinals is consistent—see Section 6G
for a definition of these. In the present context this is surely a reasonable assumption.

5B.6. THEOREM (Solovay [1970]). If the theory ZFC+ (there exist inaccessible car-
dinals) is consistent, then the following statements (taken together) are consistent
with ZFC.

(i) Every uncountable projective set has a perfect subset.
(ii) Every projective set has the property of Baire.
(iii) Every projective set is u-measurable, for every c-finite Borel measure .
(iv) There is no projective wellordering of the continuum.
Moreover, one may consistently assume (1)—(iv) together with either the continuum
hypothesis or its negation.

We will say something about the proofs of these results in Chapter 8, after we
have studied the metamathematical method. Suffice it to say here that they are deep
and intricate arguments which involve a detailed analysis of both set theory and the
“axiomatic method.”

5C. Historical remarks

IThe results in 5A are all due basically to Godel, except for some of the refinements
and generalizations.

2Godel [1938] proved that the collection L of constructible sets is a model of
Zermelo-Fraenkel set theory which further satisfies the axiom of choice and the gener-
alized continuum hypothesis. He also announced there without proof that in L there
are non-Lebesgue measurable A} sets and uncountable 1! sets with no perfect sub-
sets. In the later, second printing of the monograph Godel [1940] (which apparently
appeared in 1951) he also added a note announcing that in L, the set A" admits a £}
wellordering.

3Addison [1959b] formulated the notion of a £}-good wellordering of rank X; and
gave the first published proof that L N A admits such a wellordering. He also derived
most of the corollaries of this proposition that we have listed here, including the
uniformization and basis results SA.4 as well as SA.8. According to his introduction
in [1959b], Addison was building on earlier papers of Kuratowski and Novikov and
on some very early, unpublished work of Mostowski.

4For the results using forcing which we will not cover here, we refer the reader to
Jech [1971] and Kunen [1980].






CHAPTER 6

THE PLAYFUL UNIVERSE

The results of Chapter 5 witness clearly the basic inadequacy of the Zermelo-Fraenkel
axioms for descriptive set theory. It is simply impossible to extend the classical results
about I} and 2} to the higher Lusin and Kleene pointclasses on the basis of ZFC.

One way to go. at this point, would be to adopt the hypothesis A/ C L as an
additional axiom of set theory. As we saw, this gives (almost trivially) a complete
structure theory for projective sets. The defect of this approach is that there is not
much evidence in favor of the hypothesis A/ C L, and many set theorists tend to believe
that it is false.

Another possibility is to give up developing a theory for the higher Lusin pointclasses
and concentrate on consistency and independence results. Many logicians do this, but
it is not our approach here.

Instead, we will study hypotheses which go beyond ZFC, which yield a rich theory
of projective sets and which appear to be (at least) plausible. We should caution the
reader that this “plausibility” will not be obvious on first reading; evidence for it will
flow (we claim) precisely from the results which we will prove in this chapter.

Solovay [1969] was first to use strong set theoretic hypotheses (unprovable in ZFC
and inconsistent with A/ C L) to solve problems in descriptive set theory. Specifically,
he assumed that there exist measurable cardinals (MC); granting this, he proved that
every X} pointset has the property of Baire, is measurable relative to every o-finite
Borel measure and is either countable or has a non-empty perfect subset.

We will define measurable cardinals and prove Solovay’s results in Section 6G.
Before this, however, we will study another strong hypothesis which yields a rich
structure theory for projective sets. Besides its power, this hypothesis also has some
advantages over MC because it is simpler to state and easier to use.

This is where games come in: the hypothesis of projective determinacy (PD) asserts
that in certain two-person, infinite games of perfect information, one of the two players
must have a winning strategy. We will give precise definitions of these notions in
Section 6A.

There is no doubt that this introduction of powerful and unfamiliar hypotheses
poses serious foundational questions. Our discussion of these problems here will
be somewhat vague and tentative; we will come back to them ( better equipped) in
Chapter 8. In the meantime, the reader who wants to go beyond the classical theory of
the first four chapters should put aside his doubts about our approach, open himself
to new ideas and plunge into the mathematics of the subject. If he can do this, he will
be amply rewarded.

217
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6A. Infinite games of perfect information'!-?

Let X be a fixed non-empty set. With each set 4 C “X of infinite sequences from X,
we associate a two-person game G = Gy (A) as follows. Players I and 11 alternatively
choose members of X ad infinitum, as in Diagram 6A.1, so that a sequence

f=(ao.a1.az,...) €°X

is specified; I wins if /' € A4, otherwise II wins.

NSNS

II
DiaGraM 6A.1. Playing the game.

It is understood here that before I chooses a, (for n even) he is allowed to see
ap.ai,....a,_1, and similarly with II. This is why we call these games of perfect
information.

We have described a run of the game G which resulted in a particular play f. The
set A is the payoff for Gy (A4), but we will often identify 4 with Gy (A4) and talk of the
game A.

A strategy for player 1 is any function ¢ with domain all finite sequences from X of
even length (including the empty sequence) and values in X. We say that I follows (or
plays) o in a run of the game G, if the resulting play

[ =(ap.ar.az,...)

satisfies

a, =olag.ai,....an_1) (n even).

Dually, a strategy for player 11 is any function 7 on the finite sequences from X of odd
length, with values in X
When I plays ¢ against II’s 7, the resulting play

O'*TZ(a(),al,az,...>

is completely specified,

ap = 0(®)= ap = T(ao),
a, =olag,...,a,_1) (neven),
a, =t(ag....,a,—1) (nodd).

We naturally call ¢ a winning strategy for 1 if for every t, o x © € A—i.e., if | always
wins when he plays ¢, no matter what II plays; dually 7 is winning for 11 if for every o,
ox1 ¢ A.

Finally, the game G = Gy(A) (or the set A) is determined if either I or II has a
winning strategy—or wins the game, as we will say.



6A.2] 6A. INFINITE GAMES OF PERFECT INFORMATION 219

Not all games are determined, but simple ones are. The first result of this type is
fundamental for the subject.

First a definition: if 4 C ®X and u = (ay.....a,_1) is a sequence of even length,
the subgame of A at u is

Aw) ={f €“X : (ap.ar.....a,—1. f(0). f(1)....) € 4}.

6A.1. LEmMA (AC). Let A C “X and suppose u = (ag.a1,....a,_1) is a finite
sequence from X of even length. If 11 does not win the game A(u), then there is some a
such that for all b, 11 does not win A(u”"(a.b)).

Proor. Towards a contradiction, suppose II does not win 4(u), but that for each
a. there is some b and a strategy t which is winning for ITin A(u"(a.b)). Using the
axiom of choice, let

a— (b%, %)
be a function which assigns to each a some b“ and 7¢ with these properties. Now
II can win A4(u) by answering Is first move ao by 5% and then following %, as if he
were playing in A (u” (ag. b*)).
In more detail, define 7 by

t(ag,....an—1) =1t(az,....a,_1) (odd n)

and suppose that I plays f = (ag.a;....) in A(u) while II responds by . Then
(az.a3....) ¢ A(u"(ao.ay)). since II has been following % after the first two moves
hence (ag. ay. as....) ¢ A(u), i.e.. Il has won this run of A(u). -

We will customarily describe in an informal way how I or II can play to win a certain
game, as in the first paragraph of this proof, without bothering to define formally a
winning strategy.

6A.2. THE GALE-STEWART THEOREM (AC, Gale and Stewart [1953]). For each
X #£ 0, every closed subset of ®X is determined.

Proor. Of course we use the product topology on “X (with X discrete) as in
Chapter 2.

Suppose then that A C “X and II does not have a winning strategy in 4. We
describe how I can play to win.

By the lemma, there is some «( such that for every b, Il cannot win the subgame
A(ag, b); let 1 start the game by playing some aq with this property and suppose
II answers by some a;. Now II cannot win 4 (ag. a;).

By the lemma again, there is some a, such that for every b, II cannot win the
subgame A(ay, a1, a». b); let I play one such a, and continue in the same fashion.

At the end of this run of the game, we have a play

[ =(ap.a.a....)

and for every even n, II cannot win A(ay, ..., a,_1). This implies that there is some
fn € X with

fn(o):aOa--wfn(n*l):an—b fn€A>

otherwise II could win A4(aq. ..., a,—1) by moving randomly. Now lim,_o fn = f.
and hence f* € A, since A4 is closed, so that I has won. -
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Proofs of determinacy can become very complicated, but their basic idea is always
the same: to reduce in some way the problem of winning a given game to winning
various associated closed games. We give here one more proof of this type.

First extend to all spaces ®X (X # ()) the basic definitions for the Borel subsets of
“w =N

X! = all open subsets of “X,
M= (X \4:Aczl).
and for & > 1,

A Egg < A=\J,., A; for suitable 4y, A, ...

Icw

where each 4; is in l:[g for some n < ¢.

The Borel subsets of “X are the sets which occur in some ;2 or l;[g—they obviously
form the smallest collection of subsets of “X which contains the open sets and is closed
under complementation and countable union.

Most of the trivial results about the Borel subsets of NV extend to the Borel subsets
of X, but one must be careful; if X is uncountable, then ®X is not separable and
theorems which depend on the separability of A' must fail. (For example, it is not
always the case that open sets are countable unions of closed sets.)

6A.3. THEOREM (AC, Wolfe [1955]). For each X # 0, every £9 subset of “X is de-
termined.

PrOOF. Suppose
4= UiE(u Fi
with each F; closed and by 2C.1 choose trees 77 on X such that
F=[T'1={f€°X :(Vk)(f(0)..... f(k—1)) € T'}.

The idea of the proof is to define a set of sure winning positions for I in A4, i.e., a set
W of sequences from X such that I wins 4(u) in a particularly obvious way, ifu € W.
We will subsequently show that if (§ ¢ W, then in fact II wins A, thus establishing the
determinacy of A.

Put first

ue W’ < (3i)[Iwins F'(u)];

if u € WO, then I wins 4(u) almost trivially, by playing to get into a specific closed
set Fj.
Suppose now that W has been defined for each # < £ and for i € w put

feHY «— (Vevenk)[(f(0).....f(k=1) €U, WIUT]:
clearly H¢' is a closed set. Let
ue W <= (3i)[I wins the game H (u)]

and
W =U: we.
We now prove by induction on ¢ that

(%) ue W= Iwins A(u).
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Granting (x) for all < & and assuming that u € W<, choose i so that I wins
H%(u) and let I play in 4(u) following this winning strategy in H<(u). As the game
progresses, if ¢y, ..., ¢, have been played after k steps, we know that

u"(co,....cp_1) € Uy<e WU T,
Case 1. For some k, we actually have
uA(Co, e Ckfl) S U;7<§ w.
By the induction hypothesis then I can switch to a strategy which will produce from then
onsome f € A(u"(co.....cr—1)).sothatthewholeplay (co.....cx—1. £(0), f(1)....)
isin A(u) and I has won.

Case 2. Forevery k. u”(co.....cx—1) ¢ U, W".. Now the play f = (co. c1....)

satisfies
(V) [u"(co. c1.....cr—1) € T']
so that u™(f(0), f(1)....) € [T'] = F'and f € F'(u) C A(u). so that again I has
won A(u).
In particular, () implies that
) € W = 1 wins 4.
To show that if ) ¢ W, then II wins 4, notice first that for each 7,
n< &= H" CHY,
and hence trivially
n<&E= W"'CW-
Since the sequence W¢ (& an ordinal) cannot increase for ever, there is some ordinal
k such that
Wﬁ+1 — WN =W

Suppose now that () ¢ W**!. We describe how II can play to win 4.

By the definition of W**! and the determinacy of each closed game H**' 1I can
actually win every H"'. Let him start by playing to win H*'; after a while then. a
finite sequence (co. . ... cx_1) has been played and

(covewvvchmt) & WE&I(co.....cm1) ¢ T
no matter how the game continues, we know at this stage that the final play will not
bein FO.
Let kg be the first k at which this happens and using W* = W**! let Il switch to a
strategy so he can win HeAM (¢, cko_l); again, some k > kg is reached so that
(Co, . ..,Cko_l,CkO‘,...,Ck_l) ¢ WK&(C(),. ..,Ck_l) ¢ Tl.

At this point we have insured that the final play will not be in F!.
Clearly II can continue to play in this manner and guarantee that the final play will
not be in any of the sets F°, F!, F2, ... thereby winning 4. A

If A is a collection of sets, put
Dety(A) <= foreveryset 4 C “X in A,
the game Gy (A) is determined.

We will be particularly interested in the hypotheses Det,,(A) and Det,(A), with A one
of the pointclasses we have been studying.
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Thus far we have shown Dety ();8) for every X. The determinacy of the dual class
follows from the following trivial result.

6A.4. THEOREM. Suppose A is a collection of subsets of some “X which is closed under
continuous substitution; then

Dety (A) <= Dety (—\A) .

If X = w or X = 2, then closure under recursive substitution is a sufficient hypothesis.
PrOOF. Given 4 C ®X in A, let

B={(x.f(0).f(1),...):xeX.fed

and verify easily that
I wins B = Il wins ®X \ 4,
IT wins B = I wins ®X \ 4,
so that if B is determined. 4 must be determined too. -

6A.5. COROLLARY. For each X, Dety (I9).

Martin has shown that all Borel games are determined—we will prove this in Sec-
tion 6F. For the moment we consider the significance for descriptive set theory of
some specific types of games. The main content of the exercises below is that for
adequate A closed under Borel substitution, Det,,(A) implies that all sets in A have
the property of Baire, they are absolutely measurable and if uncountable, they have
non-empty perfect subsets.

Exercises

Let us first put down for the record that not every set is determined.

6A.6 (AC). Prove that there is a set 4 C “2 which is not determined. (Gale and
Stewart [1953].)

HINT. Notice that there are 2% possible strategies for player I (and also player 1I)
on 2 = {0, 1} and choose wellorderings {a:}, {o:}. {z:} of rank 2% for the set C of
binary sequences and the sets of strategies for I and II respectively. Now define by
induction sets A, B: such that for & < 280,

Ag N B: = 0
card(4;) < 2™, card(B:) < 2™
(31)[o: * T € Be]
(Jo)[o * 1: € A¢]
and take 4 = [J: 4.. -
The proof of course depends on a blatant application of the axiom of choice. No
one has been able to prove without using the axiom of choice that there exist non
determined games on w or 2; neither has anyone defined a specific set 4 C “2 or
A C “w and then proved (in ZFC) that A4 is not determined.

It is often easier to study games on 2 instead of games on w, but there is little
difference in the results.
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6A.7. Prove that if A is a pointclass closed under recursive substitution, then
Det, (A) = Dety(A).
HINT. Given 4 C “2in A, define g : N/ — C by
o~ {) e o
let
a€B < gla)c4
and show that the player who wins B (playing on ) also wins 4 (playingon2). -

The converse implication is a bit awkward to state but it makes the point.

6A.8. Prove that there is an operation
A— H(A)
which takes subsets of “w into subsets of 2 such that the following hold.
(i) If Ais closed under H, then

Dety(A) = Det,, (A).

(ii) 20, MY, AY and the corresponding boldface pointclasses are closed under H, if
n>3.
(iii) If A is adequate, A D T19 and A is closed under A} substitution, then A is closed
under H; in particular this holds if A is =}, IT}, A}, etc.
HiNT. The idea is to simulate games on w by games on 2.
Think of a sequence « as the play in some game on w, where a(0), a(2), a(4), ...
are contributed by I and a(1), a(3), a(5). ... are contributed by II; we will code this
by a play /(a) of an associated game on 2 which looks like this:

h(o) = (1,IL1,10,...,LILO, 1,L 1,L,...,1,LLO, 1,IL, I,1L,..., 1,110, ...).

a(0) I's a(l) I's a(2) 1I's

(Here I stands for arbitrary digits played by I and similarly for II.) Call sequences of
this form good and give a precise I19 definition of goodness. Notice also that if f fails
to be good, this is because one of the players first gives infinitely many 1’s when it is
his turn to code an integer by playing finitely many 1’s and then a 0. Foreach 4 C “w
and o € 2, put then

a € H(A) <= aisnot good on account of II
or o is good and 1~ (a) € A.

It is easy to verify that whichever player wins H (A4) also wins A, so we have proved (i).

(i) is immediate, since 4 is recursive and hence the inverse function 4/~ (= (¢ — 0)
on bad arguments) is Al.

To prove (iii), check first that there is a recursive relation Q(u, ., t) such that
whenever « 1s good,

Ou,a.1) <= @p){h(p) = a&p(t) = u}.
Suppose now that 4 is in I, so that
acAd <= (Vn)(3m)(Vt)R(a(r).n.m).
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I ao.....0K—1 Ag41s -+ o> Aiy—1

11 Ak A,
DI1AGRAM 6A.2. The G} (A)-game.

with R recursive, by 4A.1. Hence,
o € H(A) <= aisnot good on account of II or
ais good & (Vn)(Im)(Vi)(Vu){Q(u. a.t) = R(u.n,m)}.
The argument is similar for the other pointclasses involved. -
We now consider some special games which have topological or measure-theoretic
significance.
Given 4 C X, the game G} (A) is played as follows (see Diagram 6A.2): I chooses

a finite (non-empty) sequence from X, then II chooses a single member from X, then
I chooses a finite (non-empty) sequence from X, etc. ad infinitum. I wins if the play

f=(a.ai....)

is in A. otherwise II wins.®)

In this game I is favored, since he is allowed to play more than one point from X if
he wishes: in particular, if I wins Gy (4), he obviously wins G} (4) too.

Strategies and winning strategies for these games are defined in the obvious way.
We put

Det} (A) <= foreach 4 C “X is A, either I or II wins the game G5 (A4).
Let us first notice the obvious.
6A.9. Prove that if A is a pointclass closed under recursive substitution, then
Det,, (A) = Det} (A) = Det}(A).

HinT. For the first implication, associate with each 4 C “w the set

B = {a : foreveryn.Seq(a(n)) and a(0)(a(1))"a(2)(a(3)) "+ € 4}
and check that the player who wins B also wins A.

The second implication is proved by the method of 6A.7. -

The topological significance of the *-game is evidenced in the next two results.

6A.10 (Davis [1964]). Prove that I has a winning strategy for G5 (A4) if and only if
A C ®2 has a non-empty, perfect subset.

HiNT. If ¢ is a winning strategy for I, then the set

B = {a € “2 : «aistheplayinsome run of G*(4), where I plays by o }

is easily a perfect subset of 4. Conversely, if C is a perfect subset of 4, choose
a tree T on 2 such that C = [T] = {a : (Vn)(a(0).....a(n — 1)) € T} and
have I start playing in G5(A4) by moving some (ao,....a,—1) € T such that both
(ag.....a,—1.0) and (ay....,a,_1,1) are in T; such a sequence exists, otherwise C
would be a singleton. No matter what Il moves, have I play (a,41. . ... ax_1) such that,
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with u = (ao,....au—1.an. Ans1s. ... ax_1), both u™(0) and (1) are in T, which is
always possible, since [7'] is perfect. -

6A.11 (Davis [1964]). Prove that II has a winning strategy in G;(4) is and only if
A is countable.

HinT. If A4 is countable, then II has an obvious winning strategy—he simply plays
in his »’th turn to make the play different from «,,, where 4 = {a, ay. ... }.
Suppose now that II wins via 7 and let o be a fixed binary sequence. Call a sequence

So. ko, st k... 821 ki

good (for v and «) if each s; is a non-empty, finite binary sequence, each k; is 0 or 1,
the sequence

w =89 (ko) "s1 (k1) ™+ sy (k=)
is an initial segment of o, and sy. ko. . ... 5,1, k;_; is the beginning of a run of G5 (4)
played according to 7, i.e., for j </,
kj = ‘L'(S(),k(),...,Sj);

the empty sequence (/ = 0, by convention) is automatically good. If every good
sequence has a good proper extension, then « is the play in a run of G5 (A4) where II has
followed 7, and hence @ ¢ A; thusif a € A, there must exist some s¢. ko, - .., /1, kj_1
(possibly the empty sequence) which is good for r and o and has no proper, good
extension. If

s0 (ko)™ .s—1 (ki—1) = @(0), (1), ... a(n — 1),

then, easily, for i > n we must have
ai) =1 =(s0. ko5 1k (aln). ....aln = 1)),

and so « is completely determined (recursively) by the value a(n) and the maximal
good sequence sg. ko, ..., _1,k;_1. Since there are only countably many possible
good sequences, 4 must be countable. -

From these two simple facts we obtain the first connection between determinacy
hypotheses and structural properties of pointsets.

6A.12. Prove that if A is an adequate pointclass closed under A} substitution, then

Det;(A) <= every uncountable pointset in A has a non-empty
perfect subset

and hence(®7)

Det,,(A) = every uncountable pointset in A has a non-empty
perfect subset.

Infer Det; (X}). Infer also that Det;(IT}) and Det,,(X1) cannot be proved in ZFC.

HINT. If 4 C X is uncountable in A, let 7 : X —» “2 be a A} isomorphism, infer
that [ A4] has a perfect subset z[C] and argue that the uncountable Borel set C C A4
has a perfect subset.

The other assertions follow immediately using 6A.9, 5A.8 and 6A.4. -
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FIGURE 6A.3. The Banach-Mazur game G**(A4).

The next game we will study can be used to prove that determinacy implies the Baire
property. It is easier here to work directly on arbitrary pointsets rather than prove the
result for subsets of “2 and then transfer it.

Given A4 C X, the **-game or Banach-Mazur game) G** = G**(A) is played as fol-
lows: 1 chooses an integer 5o, 11 chooses s1. I chooses 5,5, and so on. If N(0), N(1),...
is the standard enumeration of a nbhd basis for X, then each player must move some
s; such that (see Figure 6A.3)

N(si-1) 2 N(si)
radius(N (s;)) < lradius(N(s;—1))

—otherwise the first player who does not follow this restriction loses. If they both
follow the restriction, at the end they have defined a point x, the unique point in all
the N (s;); now I wins if x € A, otherwise IT wins.!)

6A.13. Prove that if A is adequate and closed under A% substitution, then
Det,, (A) = for each 4 € A, G**(4) is determined.
HINT. The payoff set A** C “w for G**(A4) is easily in A. -

6A.14 (Banach, see Oxtoby [1957].(1). Prove that for a fixed 4 C X,

(i) Il wins G**(4) <= A4 is meager,
(i) Twins G**(4) <= forsome s, N(s) \ 4 is meager.

HINT. (i) If 4 is meager, then 4 C |, F, with each F, closed and having no interior.
If I plays so. have II play s; such that the restrictions are satisfied and N (s1) N Fy = 0,
and in general let II play so that N (s2,41) N F, = (); then the point x determined at
the end will not be in A.

Suppose now that Il wins G**(4) via some strategy ¢ and let x € X. Call a sequence
s0.....,8, of even length good if it is the initial part of some play in G**(A), where the
restrictions have been followed, 1I plays by ¢ and x € N (s,)—the empty sequence is
good by definition. If every good sequence has a good extension, then (easily) x is the
point determined by some play where II plays o, hence x ¢ A4; thus

X € A = some s, ..., s, is maximal good (for x).
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Now if 59, ..., s, is any even sequence, put

B(so.....50) = {N(sy) \ N(c(s0.....50.5)) : N(s) C N(sy)
&radius(N (s)) < dradius(N(s,))}:
each B(sg.....s,) is easily closed and nowhere dense and we have shown
x € A = forsomesy,....S, x € B(sg,...,5,)

which establishes that 4 is meager.

(ii) suppose I wins G**(A4) via a strategy ¢ whose first move is s = sp; it is now
easy to check that II wins the game G**(N (s) \ A4) by following o. so that N(s) \ 4
is meager by (i). Conversely, if N (s) \ 4 is meager for some s, then I can easily win
G**(A) by playing s to begin with and then staying out of N (s) \ 4 as in the first part
of the argument above. -

6A.15. Suppose A is adequate, I19 C A, and for each 4 in A, either 4 is meager or
there is a nbhd N (s) such that N (s) \ 4 is meager. Prove that every pointset in A has
the property of Baire.

HINT. Given 4 in A, let
A* =U{N(s): N(s)\ 4 is meager}:

A* is open so it is enough to show that 4 A 4* is meager.
To begin with, 4* \ 4 CU{N(s)\ 4: N(s)\ 4 is meager}, so A* \ 4 is meager.
If A\ A* is not meager, since 4 \ A* € A by the hypotheses, there must be some
s such that N (s) \ (4 \ 4%) is meager. Clearly then the smaller set N (s) \ 4 is also
meager so that N (s) C A* by the definition of 4* and easily N(s)\ (4\ 4*) D N(s):
thus N (s) is meager, contradicting the Baire Category Theorem. -

6A.16. Prove that if A is adequate and closed under Borel substitution, then the
following two conditions are equivalent:

(i) Foreach 4 € A, G**(A) is determined.
(ii) Every pointset in A has the property of Baire.

Hence for such A, (67
Det,,(A) = every pointset in A has the property of Baire.

HINT. One direction is immediate from 6A.14 and 6A.15. For the other direction,
check easily that if 4 has the property of Baire, then in fact either 4 is meager or some
N(s) \ 4 is meager. -

Let us now go to o-finite Borel measures or simply measures for this discussion.
The definitions are given in 2H.

First recall a few simple facts.

If « is a measure on the Borel subsets of X', then for each Borel P C X,

n(P) = infimum{u(G) : G is open, P C G }.

This is immediate for open P and follows for closed P because closed sets are countable
intersections of open sets. Inductively, if P = |J, P, and for each n, P, C G, with
u(G, \ P,) <¢g/2". then P C G =J,G, and u(P\ G) = u(lJ, Gx \ U, Pn) <
>, u(G,\ P,) < e. The argument is even simpler when P = ), P, with P, of smaller
Borel order.
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AVAVA

DIAGRAM 6A.4. The covering game G*(A4,€).

It follows that u(P) = 0 precisely when we can find for each € > 0 an open set
G D P with u(G) < e.

We now describe the covering game G* (A, e) associated with the measure u on the
space ®2 and each set 4 C “2. This is a game on w, invented by Harrington.

Player I plays integers sg. 1, 52, ..., with each s; = 0 or s5; = 1. Thus he determines
at the end a binary sequence o € “2.
Player II plays integers 9, 1, . . . Where each 7, codes in some canonical way a finite

union of basic open sets G, such that
,U(Gn> < 6/22n+2.
For example, we may insist that Seq(¢,) and

Gn = N((ZH)O) U---u N((Zl’l)lh(ln) -~ 1)'

Here £ > 0 is fixed and if I does not play the right kind of z,, he loses. The moves are
made in the obvious order, as in Diagram 6A .4.
If I follows the rules, at the end he defines an open set

G :Un G"’

and we set

Iwins < a€4\G.

6A.17. Suppose u is a g-finite Borel measure on ®2, 4 C “2 has no Borel subsets
of u-measure > 0 and for each € > 0 the game G#(A, ) is determined. Prove that
u(4) =0.

HINT. Suppose first I wins G#(4, €) via ¢ and let
B = {0 %t : 7 is a strategy for II}.

Now B is a ! subset of 4, so it is u-measurable by 2H.8 and then easily x(B) = 0,
since B C A. We can easily find Gy, Gy, G», ... all finite unions of basic nbhds with
u(Gy,) < g/2*"*2 and B C |J, G,. which determines a strategy for II that beats o
contrary to hypothesis. Thus I cannot win G#(4, ¢).

It follows that IT wins, say by 7. Put

G =U{G(s0.....,8n) : (50.....5,) is a finite binary sequence
and G(sp.....s,) is the finite union of basic nbhds
coded by II's move #, (playing by 7) when I plays so. ..., s, }.
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It is immediate that A C G and G is open. But

w(G) <Y {u(G(so.....5)) :

(S0, ....S,) is a binary sequence}

= Zn Z{,u(G(SQ,...,Sn)) .

(50.....s,) a binary sequence of length n + 1}

<> (Zo«gznﬂ 5/22”2)
— Zn 2n+1 . 6/22n+2 —¢. -

6A.18 (Mycielski and Swierczkowski [1964].(67)). Suppose A is an adequate point-
class closed under Borel substitution and let u be a o-finite Borel measure on some X.
Prove that

Det,, (A) = every set A C X in A is u-measurable.

HINT. Suppose first X = ©2, let A C X. By 2H.7 there is a Borel set A such that
A C A and 4\ A contains no Borel set of u-measure > 0. Let B = A\ 4: clearly
B is in the dual class =A. The game G#“(B,¢) is easily in —=A, hence it is determined
by 6A.4; by 6A.17, u(B) = 0, so A is u-measurable.

Every perfect space X is Borel isomorphic with “2 and we can establish the result
for X by carrying to “2 any given measure on X. n

6B. The First Periodicity Theorem

We saw in 6A that if A is a reasonable pointclass, then the hypothesis Det,,(A)
implies that all the sets in A are “nice”: they have the property of Baire, they are
absolutely measurable and they are uncountable precisely when they have perfect
subsets. Put

PD <= every projective set 4 C N is determined:

this hypothesis of projective determinacy implies then that all projective sets are nice
in this sense.

In this section we will show that if PD holds, then the prewellordering property
oscillates between the £ and the IT sides of the analytical hierarchy, i.e., the normed
analytical pointclasses are those circled in Diagram 6B.6. These are Sector pointclasses
then, and the structure theory of Chapter 4 applies to them.

Since we will be playing games on w almost exclusively from now on, we will skip
the subscript and abbreviate

Det(A) <= Det,(A)
<= everyset A C N in A is determined.

In describing games on w, it is often convenient to think of I and II as playing
distinct sequences «, S, as we did in some of the exercises of the preceding section, see
Diagram 6B.1. The play then is the sequence

ag. bo. ay. by, ... .
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I ao a o

11 bo by -+ P

DiaGraMm 6B.1.
but we often say that I plays o and II plays f in this run. We also describe games in
this way, e.g., we may say that if I plays a and II plays £, then
I wins < P(a. f).
where P C N x N this is obviously the game G,,(A4), where
A= {(a(O),[)’(O),a(l),[)’(l), ) : P(a,ﬁ)}.

Clearly 4 and P can be obtained by recursive substitutions from each other.
We identify a strategy o for I in a game with the irrational ¢ defined by

o) = o(()o.....(w)a—1). ifSeq(u)&Ih(u) = niseven,
N 0, otherwise

and similarly for strategies for II. If ¢ instructs I to play a when II plays f, we write

a=0x*[f];
similarly, if 7 instructs II to play  when I plays a, we write
B =la]x1.

Clearly both functions
(0. ) = o * [B]. (a.7) = [a]* 7

are recursive on NV x N to V.
The key result is the following theorem, dual to 4B.3. (For the definitions see 4B
and the exercises of 4C.)

6B.1. THE FIRsT PERIODICITY THEOREM (Martin, Moschovakis®)). Assume that T
is adequate and Det(A) holds: if P C X x N is in I and admits a T-norm, then the set
vV P admits a N3N T-norm.

ProoOr. Assume the hypotheses and let ¢ be a I'-norm on P and
0(x) <= (Va)P(x,a).

We will define a prewellordering < on Q and then take w to be the associated norm,
such that <, = <.
Given x, y € X, consider the game G(x,y) on w, where I plays «, 11 plays  and

Iwins < (y.8) < (x.):
equivalently,
M wins <= —(y.p) <} (x.c)
= ~P(y.p)V(x.a) <, (r.f).
Put

(1) x <y <= II has a winning strategy in G(x, y).



6B.1] 6B. THE FIRST PERIODICITY THEOREM 231

I aO al P le%
II aop a «a

DiAGrRAM 6B.2.

We will prove that the restriction of < to Q is a prewellordering with the desired
properties.
The motivation for the proof comes from the natural attempt to define a norm

on Q by
w(x) = supremum{p(x,a) : a € N'}.

This is a norm of course, but more often than not it is a trivial norm—e.g., if ¢ is a
Ni-norm, then we are likely to have w(x) = N; for almost all x € Q. Definition (1)
can be interpreted as saying that x < y holds when supremum{p(x.a) : a € N}
is “effectively” < supremum{p(y.f) : B € N}, for y € Q. in the sense that we
have a strategy = which correlates with each o (given bit by bit) some f such that
e(x,a) < (¥, ). Because of this picture, we call G(x,y) the sup game for the
norm ¢.

We now establish the properties of < in a sequence of lemmas.

Lemma 1. Forevery x € Q, x < x.

Proof. Have Il play in G (x, x) simply by copying the moves of I, as in Diagram 6B.2.
Since x € Q, we have P(x. a). hence (x, ) <}, (x, ). and IT wins. 4 (Lemma 1)

Lemma 2. If x, y, z are all in Q, then
x<y&y<z)=x<z.

Proof. We are assuming that 11 has winning strategies in both G (x. y) and G(y, z).
and we must describe how II can play to win in G (x, z). Consider Diagram 6B.3.

1 ap ai o
G(x.y) A AN
I 't by b B
_________________________ ; T _;_ e e e e e e e e e oo -
1 by b p
G(J’ Z) ~ ~
1I Co C1 Y
1 61‘0 ai o
G(x, z) v v
11 Co Cl Y

DiaGraM 6B.3.
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I bo by by B
G(y.x) / Z /
11 ao X ap a
A A
I a0 I aj @
G(x.y)
¥ ¥
I bo b B
DiaGRraM 6B.4.

Suppose I plays ag in G (x. z). Then I copies aq in G(x, y) and II answers by in that
game by his winning strategy. Then I copies this by in G (y, z) and II answers cg in that
game by his winning strategy. Now II responds with this ¢q to ag in G(x, z).

Next I plays a; in G(x, z) and II responds by ¢;which is determined in the same way,
as indicated in the diagram, and similarly for the moves after that. In effect II plays in
G(y. z) by simulating runs of G(x, y) and G(y. z) on the side and watching the moves
of the second players in these games, which follow winning strategies.

It is a simple matter to give a formal definition of this strategy for Il in G(x, z) in
terms of the given strategies for Il in G (x, y) and G(y, z) and we will not bother.

At the end of the run, sequences «. f§, y have been played as in the diagram and we
know P(x,a). P(y.B). P(z.y) (since x, y, z are allin Q) and also ¢(x, ) < ¢(y. B).
w(y.B) < @z, 7). since I wins G(x.y) and G(y.z). Hence p(x.a) < ¢(z,7) and
II has also won G(x, z).

This describes a winning strategy for Il in G(x, z), hence x < z. - (Lemma 2)

Lemma 3. Forall x, y G(x, y) is determined.

Proof. If y ¢ Q, then II can win by playing any f such that ~P(y, 8). If y € Q,
then P(y. B) holds for each 8, so that

Iwins < (1.f8) <

*

7
= -(xv.a) <5 (0. 8)
and the payoff set is in A, hence the game is determined by the hypothesis of the
theorem. - (Lemma3)
Put

(x. )

x<y <= x<yp&-(y <x).
Lemma 4. If x, y are in Q, then
x <y <= Iwins G(y.x);
thus for x, y € Q,
x<yVvy<ux

Proof. If x < y then —~(y < x), so II does not win G(y, x) by definition, hence
I wins G(y, x) by Lemma 3.

Conversely, suppose I wins G (y, x); then certainly II does not win G(y, x), so to

establish x < y it is enough to show that II wins G (x, y).
Fix a winning strategy for I in G(y, x) and consider Diagram 6B.4.
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I a ay al a’

G(Xoxl) 1/ /
11 a al 1
R A SR S “
I a al’ ai ol

G(X] Xz) / /
I a? a* 2
N L SR S e
| a? a3 a?

G(X2X3) 3/ 3/
11 a a 3
A A “
I a ai’ a3 ol

G(X3X4) 4/ 4/
1I a a 4
A0 i «

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

DiAaGraM 6B.5.

We describe a strategy for II in G(x, y) as follows. Suppose I plays ag in G(x, y):
11 disregards the value of ag and answers by by, the first winning move of Iin G(y. x).
He then copies ao in G (y, x) and observes that I answers this move of I by b; in that
game. Suppose now I plays a; in G(x, y); again II disregards the value of a; and
responds by, but then copies a; in G(y. x) and observes the response b, etc.

At the end of the game, ., f§ have been played and I has won G(y, x), i.e., (x. @) <5
(. B): in particular (x, o) <% (», §). and so IT has won G (x. y). -4 (Lemma 4)

Lemma 5. The relation < is wellfounded.

Proof. We must show that there are no infinite descending chains, so assume towards
a contradiction that

Xg> X1 >Xp >0,
i.e., by Lemma 4. I wins G(x;, x,41) for every i. Fix winning strategies for I in all these

games and consider Diagram 6B.5. Here player I follows the fixed winning strategies

in all the games and the moves of II are filled in by copying along the dotted arrows.

At the end of the run, sequences o, al,a?, ... have been played and since I wins all

these games we have
p(x0.0”) > p(x1.a') > p(x.0?) > -

which is absurd. 4 (Lemma 5)

We have now shown that < is a prewellordering on Q, so let v : O — Ordinals be
the regular norm associated with it, i.e.,

x<y <= yx)<w(ly) (x.ye0).

Lemma 6. The norm y is a VN3N C-norm on 0.
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DiaGraM 6B.6. The normed Kleene pointclasses under PD.

Proof. From the definition,
x <y < 0(x) &Il wins G(x. y)
<= Q(x)&Idoesnot win G(x,y)
= 0(x)&(Va)(3B)[(x.a +[B]) <; (». B)].
Similarly, using Lemma 4,
x <3y < 0(x)&Iwins G(y,x)
<= QO(x) &1l does not win G(y, x)
—= 0(x) & (V1) 3a) [(x.a) <} (y.[a] * 7)]. — (Lemma 6)
This completes the proof of the theorem. -

6B.2. CorOLLARY. [If T is adequate, normed and VT C Tand if Det(A ) holds, then
VT is normed.

In particular, PD implies that 1}, £3, T}, =}, ... . T1} (n odd). X, (k even) are all
Spector pointclasses.

ProOF is immediate from 6B.1 and 4B.3. =

We often refer to this corollary instead of 6B.1 as the (first) Periodicity Theorem
for the obvious reason. Recall from 4B.13 that X} and IT! cannot both be normed.
so that the oscillating picture of the analytical pointclasses we get from PD is in fact
totally different from the picture when we assume N C L.

At this point, one should go back to sections 4B—4D and recall the structure theory
for Spector pointclasses developed there: these results have now been established for
all T} (n odd) and Z}( (k even), under the hypothesis of projective determinacy.

We should also point out here that the first periodicity theorem gives a new and
interesting proof of the prewellordering theorem for IT!, 4B.2. as follows.

By 4B.8. every pointset of type 1 in X! admits a X¢-norm. Now 3C.14 implies
immediately that

vVINE) = vV = ol
hence by 6B.1 every I} pointset of type 1 admits a I1}-norm, using the determinacy
of AY (clopen) sets. This yields immediately that I} is normed, by 4B.9.

This is one of the characteristic features of the game-theoretic proofs that we will
construct in this chapter; when we apply them to pointclasses whose determinacy is
known (like £¢, £? or £Y). we obtain new proofs of classical results about I} and ..

It is convenient to introduce the notations

=3 =1 A=A
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together with their boldface companions, so that e.g., é}] is the class of all clopen sets.
In many of the results below we will use the hypothesis Det(A}, ): now this makes
sense even when n = 0, in which case it is simply true, by the Gale-Stewart Theorem.

6C. The Second Periodicity Theorem; uniformization

The next obvious question is whether the hypothesis of projective determinacy
settles the uniformization problem: must each projective set be uniformizable by some
projective set? We show here that it does, but in a precise way which differs from the
situation in L and which reveals further the periodicity phenomenon we uncovered
in 6B.

We will show that if PD holds, then the scale property oscillates between the £ and
IT sides of the Kleene hierarchy together with the prewellordering property. Consider
first the analog for scales of 4B.3 which we did not establish in 4E—we had no use for
it then.

6C.1. LemMA (Moschovakis [1971a]). Suppose T is adequate, X is a space of type 1,
P C X xNisinT and P admits a T-scale; then N P admits a VYN T-scale.

Proor. By 4E.2, let g = {¢,} be a very good I'-scale on P and put
P(x.a) = (v)(vp)[(x.0) <5, (x. )}
we showed in 4E.3 that P* uniformizes P. Let
0(x) <= (Ba)P(x.a)
— (Fa)P*(x,a)
and define ¥ = {y,} on Q by
v, (x) = @,(x. a) for the unique « such that P*(x, a).

We verify that ¥ is a scale on Q.

If x9. x1.... areallin Q and w, (x;) = 4, for each n and all large i, choose o, o1., . . .
such that P*(x;, o, ), so that by definition

@n(xi. ) = wu(xi).
Thus ¢, (x;.a;) = A, for each n and all large i, and since @ is a very good scale, we
have x; — x., oy — « and

on(x. ) < 4, alln.
In particular of course, O(x). Now choose o* such that P*(x, a*) and notice that for
each n,

V/n(x> = SDn(Xaa*) < ‘pn(xaa) < A,
where the inequality ¢, (x, a*) < ¢,(x, a) follows from the definition of P*. Thus ¥
is a scale.
Thatyisa FVVN T-scale follows from the easy equivalence

x <y <= Fa)VR)[P*(x,a)&(x,a) <X (3.8)]

—V¥n —®n
and the similar one for <j, . -
6C.2. THEOREM (Moschovakis [1971a]). If £ C T and T is adequate, closed under
v and scaled, then INT is also scaled.

In particular, £}, £} are scaled.
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u(n) 1 ao a a=uln)"ao
Gnlx. ) NSNS
u(n) II bo by - BB =uln)"p’
Di1AGRAM 6C.1. The sup game on u(n).
ProOF is immediate from 6C.1. -

There is no immediate use at this point for the fact that £} is scaled, but we will apply
it later. For now, 6C.2 will serve only as an induction loading device, in conjunction
with the next result.

6C.3. THE SECOND PERIODICITY THEOREM (Moschovakis [1971a]). Suppose T is
adequate and Det(A) holds. If P C X x N isin T of type 1 and admits a T'-scale, then

the set VN P admits a VN 3V T-scale.
ProoF. Let g = {¢p,} be a fixed very good I'-scale on P and put
0(x) <= (Va)P(x,a).
It will be convenient to have an effective enumeration of all finite sequences of
integers, so put
u(0) = the empty sequence,
u(i) = the sequence coded by the i’th number v such that Seq(v).
It is immediate from this definition that if u(7) is a proper initial segment of u(j), then
l <If]L.l is a finite sequence and o € N, let
u < a <= uisan initial segment of «
and put
x €0y < (Va>u(n))P(x.a).

Clearly Q9 = Q and Q C Q, for every n. We will define a norm , on each Q,
by considering a game G,(x,y). very much as in the proof of the First Periodicity
Theorem 6B.1.

Suppose I and II play sequences o', ' in the usual fashion. We let

a=un)"ao =un)ag ai....)
B =uln)"p" =u(n)(bo.br....)
and we put
Lwins G,(x.y) <= (».8) <}, (x.a)
or equivalently,

I wins G, (x,y) <= —P(y.f)V (x.a) < (1. ).

We can think of G,(x,y) as a subgame of the sup game for the norm ¢, as we
defined this in 6B.1, where both players have been saddled with the same first few
moves—those in the sequence u(n). It will be useful to think of o and S8 as the plays
in G,(x. y) (instead of @’ and f’).
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Put now
x <, y <= Il has a winning strategy in G,(x, y).
Using the arguments in 6B.1, one easily checks that each <, is a prewellordering on Q,
and that the associated norm y,, on Q, is a N3N -norm. Moreover, the relations

Rn.x,y) <= x€0,&x <y b

S(n.x,y) <= x€ 0, &x < y

are also in VV3VT.
It will be very easy to turn the sequence ¥ = {y, } into a v~ 3N -scale on Q. after
we prove the following key fact.

Lemma. Suppose xg, x1, ... areallin Q, lim; ., x; = x and for each n and all large
i, wn(x;) = A,:then x € Q and for each n, y,,(x) < /,.

Proof. By passing to a subsequence if necessary, we may assume that
i>n = y,(x;) = Ay

To show first that x € Q. we must verify that for each fixed . P(x. ) holds. Choose
n; so that

u(n;) = (a(0).....ai — 1))
and consider the subsequence
xn()a xnl, an, e e o

Now n; < n;11, and hence

Wn, (xm) = Yy (Xni+l) = /’Lni’
so that
Xni Su X
and II has a winning strategy in all the games G, (x,,,,.x,,). Fix winning strategies
for II in all these games and consider Diagram 6C.2 which is constructed by the
following rules.

To begin with, I plays a(i) in Gy, (x,,,,.x,). After II responds to this (by his
winning strategy) with a move that we have labeled «; (i), I plays by copying o; (i) into
the preceding game G,,_, (x,,.x,,_,), as we have indicated by the dotted lines. Now
II plays again to win and I corresponds by copying, etc. ad infinitum.

At the end, plays oy, a1, a;, ... have been determined and it is obvious that

lim; o o = a,
since in fact
a;(j) = a(j) forj<i
Moreover, II wins all these runs, so we have for every 7,
gal‘l,‘ (xni+] s ai+1) S Son,- (xl’li ’ ai)'

Since the scale @ is very good, this implies that for each fixed k and all i which are
large enough (so that k < n;),

Pk (Xni“ s aiJrl) S Pk (xl’li P ai)%
so that in fact there are ordinals y; and

o (X, i) = g
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_________________________________________________________________

Y N
a(0).a(1).a(2) I @) as(4) a(5) L2
Gng (xmp xn;)
a(0).a(1).a(2) 11 as3(3) a(4) o3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,\,,,,,,,,\;‘,,,,,,,,,,,,,,,
a(0).a(1) I @ a;3(3) a3 (4) B
an (xnp xl’lz)
a(0).a(1) 11 (2) (3) @
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O
a(0) I o) (2) @(3) @
Gm (an, Xny ) \
a(0) 1I (1) ai(2) al
_______________________________________ _\________\_\__._____.______
I () ai(1) ai(2) ai
Gno (xnl H xno) \ \
11 ao(0) ap(1) )
DiaGram 6C.2

for all large i; hence P(x. ), since @ is a scale on P. Thus P(x, ) holds for every o
and x € Q.
We now prove that for each 7,
Wn(x) < .

If k < m, then w; (x;) = wi(x,,), hence x,, <x x; and II has a winning strategy in
each of the games Gy (x,,, x;) (k < m). Fix winning strategies for II in each of these
games and fix the number n. We will describe how II can play to win G, (x, x,). thus
showing x <, x,. i.e.. w,(x) < w,(x,) = 4,.

Player II will win by utilizing many of the strategies in the games G, (x,,. x;). In
fact, he will construct on the side a diagram of games much like the one above, and his
moves in G, (x. x,) will be copied from the appropriate places in that diagram. The
only additional complication in this argument is that II does not know ahead of time
which of the games Gy (x,,. x;) he wants to play on the side; these will depend on the
moves I makes in G, (x, x,).

Consider then Diagram 6C.3 which is constructed as follows.

Let ny = n and suppose that the sequence u () has length /—these are useful notation
conventions.

Suppose that I starts by playing a; in G,(x,x,). Choose nj so that u(n;) =
u(ng)(a;), so that ny < n; and start the game G,,(x,,,x,,) with I playing @, in
it. Have II respond by his winning strategy by some a(/) (g will be his eventual play
in this game) and have II play the same ag(/) in G, (x, x,).

Suppose now that I plays a;,; in G, (x, x,). Let u(ny) = u(ng) (a;.a;41) so that
n; < ny and start the game G, (x,,, x,,) with I playing a;,: II responds to win by
ai(l + 1), we copy this move in G, (xp,, Xp,), II responds by ag(/ + 1) and finally
II plays this ag(/ + 1) in G, (x, x,).
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u(ny)

an (xn3 > xnz)

II

u(ny)

a2

u(ny)

[e3]

II

u(ny)

Gn1 (xng H xn1 )

[e3
Qo

I
II

u(no)
u(no)

Gno (xm H xno)

i
!
ar+2

aj+1

|
|
ap

G, (X, xn)

Qo

II

u(n)

u(nf)) (al‘ul+l ~al+2)

u(ns)

u(”()) (al‘ul+l)

u(ny)

u(no) (ar)

u(ny)

239

DiaGgraMm 6C.3
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Continuing in this fashion as in the diagram, we determine successively games
Gy, (Xn, .. Xy, ) and plays «;, so that if « is the play of I in G, (x, x,), then
1imi—>oo a; = Q,
since in fact
j<l+i=a;=a(j)=oj).
Moreover, 11 wins all these games, so that
gal‘l,‘ (xni+] s ai+1) S Son,- (xl’li ’ ai)'

We now argue very much as in the first part of this proof: since @ is a very good
scale, we have

(*) Pk (xnm > ai+l) < @k (xm s ai)

for all i large enough so that k& < n;, hence all the norms ¢y (x,,. «;) are eventually
constant, and hence we have P(x, o) and for each k.,

() o (x. o) <limy_ o0 r (X, ;).
Takingk =n =ngin (x) fori =0,1,2,..., we have

Pny (xno= aO) > (Pno(xnp al) > Py (xnza aZ) > - 2> limy o Pno (xnp Oli),
so that by ()
Pnoy (xnoe C!(]) Z Pny (X, a)

and II wins the game G, (x, x,). - (Lemma)

Going back to the proof of the theorem, suppose all the norms w, are into the
ordinal &, let

(&n) = (Em)
be an order-preserving map of k x & (ordered lexicographically) into the ordinals and
put
W (x) = (wo(x), wa(x)).

It is easy to check (as in the proof of 4E.1) that y’ = {y} is a V" 3V I'-scale on Q.

6C.4. CorOLLARY. If TIY C T and T is adequate, scaled and INT CT.and if Det(A)
holds, then YT is also scaled.

In particular, PD implies that 1}, £3, T, =}, ... . T1} (n odd). X, (k even) are all
scaled. -

6C.5. THE UNIFORMIZATION THEOREM (Moschovakis [1971a]). If PD holds, then
every projective set can be uniformized by a projective set and every analytical set can be
uniformized by an analytical set.

More specifically, Det(één) implies that Hénﬂ, Zéwzs I;[%nﬂ, ;%Hz all have the
uniformization property.

ProorF is immediate from 6C.3 and 4E.7. =

6C.6. THE Basis THEOREM (Moschovakis [1971a]). If PD holds, then every non-
empty analytical pointset contains an analytical point.

More specifically, Det(A},) implies that Aén+2 is a basis for Zémz and Aénﬂ(x) isa
basis for 23, ,(x).

PrOOF is immediate as in 4E.5. -
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These two results are the most obvious and significant consequences of the Second
Periodicity Theorem, but there are others. We will consider some of them in the
exercises here and in the next two sections.

Recall the notational convention

=3

which we introduced in page 234. Many of the results in the exercises depend on the
hypothesis Det(A ;n) which is true when n = 0.

Exercises

Let us take up first a few facts about bases which complement 6C.6.

6C.7. Prove that if Det(A},) holds, then A} ., is not a basis for I}, —i.e., there is

2n+1
a non-empty IT}, set A C N which has no A}, ,-recursive member.

HINT. See 4D.10. -

6C.8. Prove that if Det(A} ) holds, then there exists a I}, set P C N x N which
cannot be uniformized by any £}, | set.

HINT. See 4D.11. -

Kleene’s Basis Theorem for | (4E.8) does not extend to all £}, . . but Martin and
Solovay have found a better basis for this pointclass than A}, +2- In our presentation

of their results here we will use the important notion of the (A})-hull of a pointset
introduced in Kechris [1975],

Hull, (4) = {a e N: (Vx)[x € 4 = a € AL(x)]}.
Recall the definition of «,, (for P a pointset of type 0) on page 180.

6C.9. (a) Assume Det(A} ) (n > 1) and prove the following three properties of
hulls.

(i) If Ais%), . then Hully, ;1 (4) is 1}, ;.
(i) If 4 # () and 4 is =}, . then there exists a I}, set B # (), B C N such that
B NHully,;1(4) = 0.
(iii) If Pisa X}, pointset of type 0 and ap is its contracted characteristic function,
then there is a non-empty Zén 41 set 4 such that ap € Hullp, (A4).
(b) (Martin-Solovay, cf. Kechris, Martin, and Solovay [1983]). Infer that for any

2}, set Poftype 0. {x : x € A}, ,(ap)} is not a basis for I1},,.

HiNT. (i) is a trivial computation using 4D.14.
To prove (ii) check first that it is enough to find a £} L1 5et B C N such that B # ()
but B N Hull,;1(4) = 0 and then (assuming for simplicity that A C N') take

B={(a.f):ac A&p ¢ Ayi(a)}.

Clearly B # () if A # 0, and if (a, f) € B N Hully,.1(A4), then a € 4 and hence
(o B) € AL, . () contradicting (a. ) € B.
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For (iii), assume for simplicity that P C w, let ¢ : Q — Ordinals be a H%n 4-horm
on Q = w \ P and put

a€Ad < {(n.m):a((n,m)) =1} is a prewellordering
& (vm) [0(m) = (vn) [(Q(n) & () < p(m)) = al(n.m)) =1]].

If a € A, then obviously {(n,m) : a({n,m)) = 1} is a prewellordering which extends
the prewellordering <* induced by ¢: thus

ac A= {(n.m): Q(n) & Q(m) & ¢(n) < p(m)} is recursive in
= ag is recursive in « = ap is recursive in «

so that ap € Hully,,1(4).
The last assertion follows immediately from (ii) and (iii). -

6C.10 (Martin-Solovay, cf. Kechris, Martin, and Solovay [1983]). Assume Det(A} )
and suppose o is a I1}, | singleton but g ¢ A, : prove that {x : x € A}, ,(a0)}

is a basis for 2} ;.
HiNT. It is of course enough to prove that if 4 is Hén and () # A C N. then there is

some o € A N A}, (ag). Given such an 4, let
B={a:acAd&ay A}, (a)}
and check first that B # (); because B = () means precisely that oy € Hull(4), and
then
()=t = (VP)[ped= (BaecA], (p)la=a&als)=1]]

which implies directly that o has I1}, ., graph and hence it is A}, | (recall that

{a:a =a}is I}, by hypothesis). Check also that B is =}, | since
a€B <= ac A&V €A, ()][f # )

Fix a very good I}, ,-scale @ on A and check that it is in fact a A}, , | -scale since
A is I1},. The idea is to pick some ap in 4 by choosing the leftmost branch on the
tree determined by @ on B; it will not in general be true that az € B, but of course
we only need some ag € A.

As in the proof of 4F.20 then, put

/s = least A such that (3B)[B € B & ¢, () = Al.
B, ={feB: ws(p) = s}
and check by a simple very-good-scale argument that each By # () and that there is a
unique ap € A4 such that if oy € By, a; € By, ..., then limg_ ., oy, = ap. It remains
to show that ap € A}, (a).
Computing,
ag(s) =t <= FPH(VII(p): € B&(Vi)(3j = )[(p);(s) =]}
so that it is enough to check that the relation
P(s.f) < p € By
isin X}, . ().
Put
0(s.p) <= (M)ly e B= <} 7]
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so that

peB, — BfecB&O(s.p)
and Qis obviously IT},, ;:sois {(0. @) : @ = ap} by hypothesis, solet G C w x (w xN)
be universal in I}, | let y be a I1},, ,-norm on G and choose k. . so that

a=o0y = G(ky.0. o)
0(s.p) <= G(ly.s.p).

Suppose that there is some f € B so that Q(s, f) and y(ko,0,0) < w(ly,s. B) for
some s; then

ag(m) =w <= (Va)[(lh.s. ) <}, (ko.0.0) V ar(m) = w]

and hence o € A}, , () which contradicts # € B. Hence for each s and each § € B,

0(s.f) < Gly.s.p)&y(ly.s. ) < wlko.0. )
= ~(ko. 0. a0) <;, (lo. . )

so that finally
fEB <— fe€ B&‘!(ko,o,ao) <;k/ (l(),S,ﬁ). =

This result takes a more interesting form if we add to it a simple observation.

6C.11 (Kechris, Martin, and Solovay [1983]). Assume Det(A} ) and prove that the

collection of IT}, | -singletons in A is prewellordered by the relation

[e% §2n+1 ﬁ — ac AénJrl(ﬂ)'

1

3.1 singletons in 13, . then the set

Thus if oy 1s <5, 1-minimal among the non-A g

{x:x €Al (a)}isabasisforx}, .

HINT. Let G(e.a) be I1}, . -universal, suppose fo. 7 are I}, -singletons and
choose m, n so that

p=p = Gm.p).
Y=y <= G(ny).

Let ¢ be a I1}, . -norm on G and suppose that ¢(m. fy) < ¢(n. ): then
Pols) =t <= 3B)[~(n. ) <, (m. B) & B(s) = 1].
so that By € A}, (7o) 8

In 7C.7 we will show that the X! set P of type 0 in Kleene’s Basis Theorem 4E.8
can be chosen so that ap is a H{-singleton; in this sense, the Martin-Solovay theorem
above gives a natural generalization to all odd # of the result of Kleene.

Recall the definition of the ordinals ¢ 1 on page 162. The next few results are easy,
but they are interesting as they reveal the nature of the second periodicity theorem as
a structure theorem for projective pointsets.

6C.12. Assume Det(A},): prove that every pointset in £}, ., is 4}, -Suslin and

every pointset in £}, .| is A-Suslin for some 2 < 8}, ,. (Moschovakis, Kechris.)
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HINT. For the first assertion it is enough to show that IT}, | sets are 1, ,-Suslin
(by 2B.2) and this follows immediately from 6C.4, 4C.9 and 2B.1.

For the second assertion, again it is enough to show that I}, sets are A-Suslin for
some A < d}, . . If AisinII}, thenitadmitsa T}, -scalep = {¢;} by 6C.4. Putting
together all the prewellorderings <%’ into one, we easily see that for some A =order
type of a A}, ., prewellordering < ), ., and each i, |p;| < 4: hence 4 is A-Suslin.

6C.13 (Moschovakis [1971a]). Assume Det(A},): prove that every A}, ., set is

1 l . . l . . 1
0,,,1-Borel, and every X;, ., set is the union of d,, | sets, each of which is 4, -
Borel.

HINT. The first assertion is immediate from 6C.12 and the Suslin Theorem 2E.2.
The second follows easily as in 2F.2 and 2F.3. -

This last exercise generalizes part of the Suslin Theorem 2E.2 and the Sierpinski
Theorem 2F.3 to all the odd levels of the hierarchy. How good this generalization is
depends on how large the ordinals d | are; this turns out to be a very difficult problem
and we will come back to it in the next two chapters.

6D. The game quantifier D

With each pointset P C X x N we associate the set D P,
X €OP < (Da)P(x.a)
<= 1 wins the game {a : P(x,a)};
O is a set operation, a quantifier like 3V and VV. We read Yo as “game a” or “gee
a.)9

Our main result here is that under reasonable closure and determinacy hypotheses,
the prewellordering property transfers from a pointclass I to

M ={DP:PCXxN, PeTl}
We will also show that if T is adequate and Det(I") holds, then
VI cr = or=3"r,
rcr—=or=v'r,
so that
oz =11}, oMl =32 95z =1 o1 =zl
Thus the transfer theorem gives an “explanation” of the periodicity phenomenon. It

will also have several concrete applications in the next section.
It is often very useful to think of D« as an infinite string of alternating quantifiers.

() (Oa)P(x.a) == {(3ap)(Va1)(3a2)(Vaz) - }P(x. (a0, ar. a2, ...)):

intuitively, I wins {a : P(x, )} if there is a beginning move aq for I such that whatever
move «a; Il makes, there is a next move a; for I, such that ... etc. ... eventually,
P (x, (ag, ar, as, . .. )) is true. Formally, (x) defines the expression on the right in terms
of O, for which we have a perfectly precise definition via strategies:

Da)P(x.a) <= (Fo)(Vr)P(x.0 *1).
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More generally, suppose

0=(00.01.0s....)
is an infinite string, where for each i,
Q;,=3orQ; =V,
and let A C N. We associate with O and 4 a game G with two players call them 3
and V; a run of G consists of their choosing an infinite sequence ag, a1, a;, ... with 3

choosing a; if Q; = Fand V choosing a; if Q; = V. When the play a = (ag. a1, az, . ..)
is determined, we put
Iwins <= «a € A.

The notions of strategy, winning strategy, etc. are defined for these more general
games in the obvious way. Of course the game G, (A4) which we defined in 6A
corresponds to the infinite alternating string

q.v.av,....

Now each such infinite string defines in a natural way a set operation,

{(Qoao)(Q1a1)(Q2a2) - - - } P(x. (a0, a1. a3, ...))

<= 3 has a winning strategy in the game G.

Let us call the string O = (Qy. O1. 0. ... ) recursive if the function
) 0, ifQ; =3,
fly=4> e
1, if Q,' =V
is recursive.
6D.1. LEMMA. Suppose T is a pointclass closed under recursive substitution, Q =
(Qo. O1. 0>, ...) is arecursive infinite string of quantifiers and P C X x N isin . Then
the relation
R(x) <= {(Qoa0)(Q1a1)(0Q2a2) -~ }P(x. (ag. ar....))
isin OT.
Moreover, if Det(T') holds, then for each x, the game G determined by Q and the set
{a: P(x,a)} is determined.
ProOF. Define g : o — w by

. 21, if Q; =3,
gli)=14_" .
2i+ 1, ifQ; =V,

so that g is recursive and (easily)

{(Qoao)(Qiar) -+~ }P(x. (ag.ay....))
> {(3ap)(Va1)(3az)(Va3) - - - }P(x. (ag(0) dg(r)- - --))

= (Da)P(x,i»—»a(g(i))). 4

This simple lemma implies directly all the closure properties of the pointclass OT.
6D.2. THEOREM. If T is an adequate pointclass, then the following hold.
(i) 9T is adequate and closed under 3” and V* .

(i) IVrcor; wWr cor.

(iii) 9T ¢ IVVVT.
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X Fay Sa—~Fa, Saz—- - - o'

wor | NSNS

y Sbo—~Fb, Sby—~Fbs ,8

DIAGRAM 6D.1. The game H (x, y).

If Det(I') holds. then DF c vWalr.

NT CI'=9T= VT,
If Det(T) holds and VT C T, then OT = vV T.
If T is Y-parametrized, then so is OT .

ProoF. For (i) we use the lemma and the obvious equivalences
(31)Oa)P(x.t.a) <= {(31)(3ag)(Vay)(3az) - -- }P(x. 1. (ap. ay. ...)).
(V1) (Oa)P(x.t.a) <= {(V1)(3ag)(Var)(3az)--- }P(x.1. (ap. ay....)).
For (ii):

(iv
(v) ¥
(vi

(vii

R N e AN

(3B)P(x. p) <= {(3b0)(3b1)(3by) - - - } P(x. (bo. by. by, .....)).
(VB)P(x. ) < {(Vbo)(Vb)(Vbs)---}P(x.(bo.by.bs....)).
For (iii) and (iv) we use the codings of strategies by irrationals,
(Da)P(x,a) <= (Fo)(V1)P(x,0 % 1)
< (V1)(30)P(x.0 * 1),

where the second equivalence depends of the determinacy of {« : P(x, @)}.
Finally, (v) and (vi) follow immediately from (ii) and (iii) and (vii) is trivial. =
We now come to the main result of this section. This is stated in a strong and detailed
form because it will have applications later beyond the transfer of the prewellordering
property from I' to OT" which concerns us here.

6D.3. THE NORM-TRANSFER THEOREM FOR D (Moschovakis). Suppose I is an ade-
quate pointclass, Det(L) holds, P C X x N isin T and

0(x) < {(Vao)(3a1)(Vaz)---}P(x.(ag.ai....)).
If v is a T'-norm on P, then there exists a OT'-norm y on Q such that
x <y = {(Va)(3bo)(Vh1)(3a1)(Vaz)(3b2)(Vh3)(3a3) - - - }
(x.(a0.ai....)) <o (y.(bo.by....)).
x <y, y <= {(3by)(Vao)(3a1)(Vb)(3b2)(Vaz)(3a3)(Vhs3) - - - }
(x.(ag.ar....)) <3 (. (bo.by....)).
In particular, if T is adequate and normed and if Det(L') holds, then OT is also normed.

ProOOF. Assume the hypothesis and for each x. y define the game H (x. y) which is
played as in Diagram 6D.1. There are two players, as usual, whom we have named
F (first) and S (second). We have also indicated in the diagram which player makes
each move. At the end of the game, plays « and f§ have been determined and

S wins the run <= (x.a) < (. )
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y Fbo Sbl ﬁ
A .
H(y.2) '~
z : Sco  Fey ! Y
____________________ R
X Fay : Z : Sa; «
A : : i ! ;
H(x.y) NG
y L Sby . Fb : B
""""""""""""" Ty
x| Fay : : Say  Fay o
H(x,z) * :
z Scy  Fey V
DiAGraM 6D.2.
1.€.,
F wins the run <= —P(x.a)V (. f) <; (x. ).
Put

x<*y < Swins H(x,y)
> {(Vao)(3bo)(Vb1)(3ay)---}
[(X, (ao,al,...)) S:; (y, (bo,bl,...»}.

By Lemma 6D.1 each H (x, y) is determined and the relation <* is in OT".
In H (x, y) we are (in effect) playing simultaneously two games, the one correspond-
ing to the assertion

(1) 0(x) < {(Vao)(3a1)(Vay) - - - } P(x. (ao.ay....))
on the top board and on the bottom board the game associated with the assertion
(2) 0(y) < {(Vby)(3b))(Vby)---}P(y.(bo.by....)).

Player S makes the moves of 3 on the top board and the moves of V on the bottom
board; to win he must win on the top board, producing some o such that P(x,a),
and either win also on the bottom board so that —P(y, ) or at least insure ¢ (x, o) <

©(y. ).

The sequence of moves by which we have interweaved these two games in defining
H (x. y) is important for the argument.
We now verify in a sequence of lemmas that there is a norm y on Q such that

* _ _o%
<=<,
and such that <j, satisfies the equivalence in the statement of the theorem.

Lemma 1. The relation <* is transitive.
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X2 | Fan(0) Sas(1) @
H(x2, x3) NN /

X3 Sa3(0) — Fos (1) o3

X1 Fal(O) Sal(l) ]
H (x1.x2) ‘ \ /

X2 SOQ(O)—>F012(1) a

X0 Fao(O) Sao(l) Qo
H (xo.x1) \

X1 So (0) — Foy (1) Q)
________________ e T TP PR T PP PEPPE PR PEPEE P
O(xo) X0 Vay(0) - 3ay(1) a

DiaGrAM 6D.3.

Proof. Assume x <* y and y <* z and consider Diagram 6D.2 which describes
a strategy of S in H(x, z), given winning strategies of S in H(x, y) and H(y,z). As
usual, broken arrows indicate copies of moves and solid arrows show responses by the
fixed winning strategies.

It is clear that this strategy is winning for S in H (x, z) since at the end of the run
we have plays «, f, y and

(x.a) < (0.8): .B) < (2.7). 4 (Lemma 1)

Lemma 2. There is no infinite sequence of points xo, X1, X3, ... such that Q(xq) and
for every i, F wins H(x;. Xi,1).

Proof. Assume towards a contradiction that there were such a sequence and fix
winning strategies for F in all the games H (x;, x;,1). Fix also a winning strategy for
3 in the game that verifies the assertion

0(xo) < {(Vao)(3a1)(Vaz) --- }P(xo. (ao.ar....))

and consider Diagram 6D.3; as usually, the moves of S (and V in the game for Q(xy))
are obtained by copying along the broken arrows and the moves for F and 3 are by
the fixed winning strategies.

At the end of the games plays ag, a;, s, ... have been determined and 3 wins the
game on the bottom line, so that we have P(x, ap); however, F wins each H (x;. x;11).
so that we have

—[(x0. o) <§ (x1. 1)), —[(x1. 1) <G (X2, )]
and successively P(x1, a1), P(x2. o), ... so that

e(x0. ) > p(x1,01) > p(x2.2) > - -
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Sap—~Fa, Sar~Fas
H'(x.y)
Fby Sb1—~Fb, Sby—- - - p

DIAGRAM 6D.4. The game H'(x, y).

which is absurd. -4 (Lemma 2)
Lemma 3. The restriction of <* to Q is a prewellordering.

Proof. We already know that <* is transitive. If x,y € Q and we do not have
x <* y, we have that F wins H(x,y): if F also won H(y, x). then the infinite

sequence X, y. X, y. ... would violate Lemma 2, so that S wins H(y, x) and y <* x.
The assertion x <* x (x € Q) is proved similarly and then the lemma follows
immediately. -4 (Lemma 3)

Let y be the regular norm on Q associated with <* i.e.,
x<y = ) <yly) (vye0).
Lemma 4. For every x, y,
x<,y &= x<"

Proof. Assume first x <} y. so that in particular x € Q. If also y € Q. then
x <* y since on Q the relations <j, and <* coincide by definition. If y ¢ 0, have S
play in H (x. y) to insure P(x, ) on the top board and —=P(y, ) on the bottom board.

Conversely, assume x <* y. If x € @, then immediately x <j . taking cases on
y € Qory¢ Q. Nut x <* y easily implies that x € Q, since S’s winning strategy
in H(x,y) restricted on the top board gives a winning strategy for 3 in the game
verifying Q(x). 4 (Lemma 4)

To prove that <, satisfies the formula in the statement of the theorem let H' (x.y)
be the game corresponding to this formula which is played as in Diagram 6D.4. The
payoff is given by

F wins <= (x.a) <} (».8)
and we must show:

Lemma 5. Foreach x, y,
X<, y <= Fwins H'(x, ).

Proof . Assume first x <j, y and x € Q but y ¢ Q. In this case F can easily win
H'(x, y) by playing on the top board to insure P(x, o) while playing on the bottom
board to insure - P(y. f).

If x < y and both x,y € Q. then by Lemma 4 we must have that —(y <* x)
so that F wins the game H (y. x). Assume also towards a contradiction that S wins
H'(x.y), fix winning strategies for these two games and fix also a strategy for 3 in
the game verifying that y € Q. Now play these three games against each other as in
Diagram 6D.5, where we indicate copied moves by broken arrows and moves by the
winning strategies by solid arrows in the usual way.
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Y| Fpo(0) ~3po(1) -+ fo
H(y,x)
(F wins)  x So (0)—Fo (1) Q)
,,,,,,,,,,,,,,,,,,,,,,,,, S
X Sall(O) Falv(l) a
H(x. y) _— T
(S wins) ¥ Fﬁl‘(O) Sﬁll(l) B
y| F1(0) Sp (1) i
H(y.x)
(F wins)  x Son(0)—Foa (1) (e%)
_________________________ T
X Sazl(O) Fa;(l) e%)
H'(x.y) / \
(S wins) y Fﬂz‘(O) Sﬁ%(l) i)
v | Fp:(0) Sp1) b
H(y. x)
(F wins) X Sag(O)—>Fa3|(l) a3
_________________________ Av
DiaGram 6D.5.

After all the games have been played we have determined plays Sy, o, f1. a2, . ..
and the following relations hold:
P(y. o). since I wins the game on the top row,
—(y. fo) <, (x. 1), hence (x, 1) <, (v, fo). since F wins H (y. x),
—(x.a1) < (». f1). hence (y, f1) < (x,a1). since S wins H'(x. y).

etc. But then we obviously have

oy, fo) > p(x.c1) > (1. p1) > p(x. fo) > -~
which is absurd.

Finally suppose F' wins H'(x.y) but =(x <y y). Since F’s winning strategy in
H'(x. y) restricted to the top board implies immediately that x € Q. we must then
have that y <} x so that S wins H (y. x). Fix then winning strategies for F in H'(x, y)
and S in H(y. x) and play them against each other as in Diagram 6D.6. We obtain
plays a, ff such that

(x.a) <G (0. B) & (y. B) < (x. )
which is absurd. - (Lemma 5)
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X Say Fa, «a
H'(x.y) ! |
(F wins) Y| Fby I Sby — B

S S S

””””””””” ¥ Z !

v Fp | Shy )
H(y, x) \ */
(S wins) X Sag Fa, o

DiAGrAM 6D.6.

To prove the second assertion of the theorem notice that

(9a)P(x.a) <= {(3a¢)(Va1)(3az) - }P(x.(ag.a1....))
> {(Vho)(3a)(Va)(3az) - - - } P(x. (ag. a1. az. ...))
— {(Vao)(3a1)(Vaz) - -- }P*(x. (ag. a1. as. ....))
with
P*(x.a) <= P(x.a").
so by the first part, if P € ", then 9 P admits a DI'-norm. n

This result combines with 6D.2 to give us a collection of new and interesting Spector
pointclasses.

6D.4. THEOREM (Kechris-Moschovakis). (i) If TIY C T and T is adequate, closed
under 3, normed and w-parametrized and if Det(L') holds, then 9T is a Spector
pointclass.

(ii) 99 = I} and DX are Spector pointclasses and so is each O (n > 3) granting
Det(Z7).

ProoOFr. Because of 6D.1 and 6D.2 we need only check the substitution property of
OT', as this was defined in 4C.
Suppose then that

0(y) <= (9a)0*(y.«)

and
P(x.s) < (9B)P*(x.s. p).

where P computes some partial function /' : X — ) on its domain. We must find
some R C X in OI such that

Sl = [R(x) <= 0(f(x))].
Fix a recursive surjection

7N =Y
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® Ta(0) ~ a(l) Ia(2) » Ia(3) - «

@ }(‘0)—>1y(1) \ y

® }cs(opua(n s

@ >%‘0)+Hﬁ<1> P
DIAGRAM 6D.7.

and consider the following game G (x) in which the two players I and II define se-
quences a, f3, 7, 0 as indicated in Diagram 6D.7. At the end of the run,

I wins <= Q*(xn(y).)
&{(‘v’j)[é(j) — 0= jis odd]
v (Elj)[é(j) >0& jiseven& (Vi < j)[i even = 6(i) = 0]
& [r(y) ¢ N(O(G) = 1)V P (x.0() = L BG +0)]| }.

Intuitively, I is attempting to define some y = 7(y) by giving y and then win the game
{a: 0*(y.a)} so as to guarantee (D) Q*(y, av); he must give the correct y however,
so that

(%) (Vs)ly € Ny = (Op)P(x.5. )]

and y = f(x). To insure this, II is allowed to give 6(0),5(1), ... which may all be 0,
but at any given j he may play

6(j)=s+1,

at which point either y = n(y) ¢ N, or I must win the game {f : P*(x, s, )} insuring

(OB)P*(x. 5. B).
We claim that if £ (x) = y so that () holds, then

O(y) = I wins G(x);

simply have I play y, so that z(y) = y. play on board (D so that ultimately O*(y. o)
and if and when II plays some 5(j) = s + 1 (with j even and i < j = J(i) = 0)
and with y € N,. have I play on board @ to define some ' =t — S(j + ¢) so that
P*(x,s, p').

Conversely, if f(x) = y and (x) holds,

I wins G(x) = O(»).

To check this consider Diagram 6D.8 where I plays in G(x) by his winning strategy.
We claim that z(y) = y and O*(y, @), so that this defines a winning strategy for I in

{a: 0*(y. @)} insuring O(y).
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©  la(0) Ha(l) Ia(2) Ha(B) - «
: ! \ f !
® Iy(0)~1Iy(1) ey
® 1o 110 e
O, . 15(0) 110 B
Io:(O) (1) Ia('Z) o (3)
DiaGrAM 6D.8.

To verify this, notice that if z(y) # y, then for some s y ¢ Ny but n(y) € Nj.
Choose j large enough and even so that

7()=7(j) = r()') € N,
and have II play against I (who is using his fixed winning strategy) by giving

6(i) =0fori< j, 6(j)=s+1

and then play on board @ to insure =P*(x. 5. ). which he can do since y ¢ N,. No
matter what y’ is played by I, we have 7(y’) € Ny, so I loses the run, contradicting the
assumption that he is following a winning strategy.

Once we know that z(y) = y and Q* (n(). ) (since I wins G (x)). we have Q% (y. &)
as required.

It follows from these claims that if £ (x)| and f(x) = y. then

0(y) <= Iwins G(x)

and we can take
R(x) <= Iwins G(x);

this is in 9T since G (x) is a game defined by a recursive infinite string of quantifiers
and payoff in ', by 6D.1.

The second assertion of the theorem follows immediately, except for the part 92(1) C
I1}; for this we express D P with P in X9 using strategies

(Da)P(x,a) <= (V1)(Fo)P(x.0 * 1)

and then we use closure of E(l) under IV ,3C.14. -

We will prove Det(X9) in 6F, so no determinacy hypotheses are needed to insure
that each DX (n > 2) is a Spector pointclass; in any case, we know this now for 99
by 6A.3.

These pointclasses are quite interesting and we will come back to them in the
exercises of the next section. See also 7C.10 for an important characterization of 9X)
due to Solovay.
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Exercises

We stated 6D.3 directly for relations of the form
{(Vao)(3a1)(Vaz)(3as) - - - } P(x. (ao. ar. . ..))
rather than
(Da)P(x.a) <= {(3a¢)(Va;)(3az)(Va3) - }P(x. (ag.ai....)).

This was because we will need the explicit formulas of 6D.3 in the next section, but of
course there are similar formulas for D P.

6D.5. Suppose I' is an adequate pointclass, Det(I") holds, P C X x Nisin I and

0(x) <= (Da)P(x,a).

If ¢ is a '-norm on P, show that there exists a DI'-norm w on Q such that

x <,y = {(3a0)(Va1)(Vby)(3b1)(3a2)(Va3)(Vhy)(3b3) - - - }

(x.(ag.ar....)) <5 (. (bo.by....)).
x <, ¥y <= {(Vbho)(3b1)(3ao)(Va1)(Vhy)(3b3)(as)(Vas) - - - }

(X, (ag,al,...)) <z; (y, (bo,b],...)).

In the next section we will show that the scale property also transfers from I" to 9T
Here we confine ourselves to a restatement of the second periodicity theorem in terms
of D.

6D.6. Assume that I' is adequate and P C X x A isin I of type 1 and admits
a T-scale. Prove that 3V P admits a OI'-scale; prove also that if Det(é) holds, then
vV P admits a O -scale.

HiNT. Look up the proofs of 6C.1, 6C.3 and 6D.2. -

6E. The Third Periodicity Theorem; definable winning strategies.

Suppose A C N is a X} set and player I has a winning strategy in the game 4. Now
the set W of strategies winning for I is IT.,

g W = (VB)(o*[Bl€ A).

hence it has a A} member (if Det(A}) holds) by the Basic Theorem 6C.6. We will show
here that in fact, if Det(X}) holds, then I has a A% winning strategy. In its proper,
general context, this is the last basic result we need in order to extend most of the
structure theory of T} and X} to all the higher levels—and to many other Spector
pointclasses besides.

For the first time here we will use the existence of scales as a hypothesis to obtain
results other than uniformization. Actually semiscales will suffice.

A T-semiscale on a pointset P is a sequence = {¢,} of norms on P which is a
semiscale in the sense of 2B and such that the relations

R(n.x,y) <= x < y.
S(n.x.y) <= x<j ».

are in I'. As with scales (which have the additional lower semicontinuity property),
we call @ very good if the following two conditions hold:
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u= <a0""’ak> Fak+1 SakJrz—»... a*
H(u,v) \ /
v ={bg,...,by) Shiy1— Fby 2 B*

DiaGraM 6E.1.

(1) If xg.x1,... are in P and if for each n and all large i. ¢,(x;) = A,. then there
exists some x € P such that lim,_,., x; = x.
(2) If x, yarein P and ¢,(x) < ¢,(y). then for each i < n, ¢;(x) < ¢;(y).

It is very easy to check (as in 4E.2) that if a pointset P of type 1 in an adequate
pointclass I' admits a I'-semiscale, then P admits a very good I'-semiscale.

6E.1. THE THIRD PERIODICITY THEOREM (Moschovakis [1973]). Suppose T is ade-
quate, Det(L') holds and A C N is in T and admits a T-semiscale: if player I wins the
game, then I has a DT -recursive winning strategy.

Proor. Fix a very good I'-semiscale @ on A and for each even integer k put
uc W, < Seq(u)&Ih(u) =k +1
&{(Vay 1) (Bar,2)(Var13) Bagq) -+ }

((w)o. W)i..... (W, dks1. agsa....) €A

so that W}, consists of all the winning positions for I in the game A—when it is next II’s
turn to play. Clearly each W isin OT".
If u = {ag.....a;), v = (by....,by). let H.(u,v) be the game played as in Dia-

gram 6E.1. At the end of each run plays

a=u"a" = (ap.ar.....ac Ayl Arso. ... ).

p=v"p" = (bOebh coos b, b1, by )
have been constructed and

S wins the run < « S:,k B
ie.,
Fwinstherun <= a ¢ AV < o

If we rewrite the definition of W in the form

ue Wi <= {(Var1)(3ara) -}
[Seq(u) &Ih(u) =k +1& ((w)o. ... (k. axs1....) € A].

it becomes completely obvious that this is a special case of the construction in 6D.3
with

P(u.a) < Seq(u)&lh(u) =k +1& ((u)o.....(u)r.a(0)....) € 4.
Thus we know that there is a 9I'-norm w; on W} such that for all u, v,

u <y v <= S wins the game H; (u.v).

It is worth for the motivation here to recall the meaning of the game H (u, v).

In H; (u. v), we are in effect playing simultaneously two runs of the game 4. On the
top board we are given the starting position ay, ..., a; and S makes the moves of I
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ap | Fa Say(2)
H \ /
a(0) Say(1) Fay(2)
A : )
,,,,,,,,,,,,,,,,,,,,,,,, O RREEEEEEEEPEEEL EEEPERERR
A Tap(0) Tap(1) Tay(2)

DiaGraM 6E.2. Stage 0.

while F makes the moves of II; on the bottom board we start from by, ..., by and the
roles are reversed, with F making the moves for I and S making the moves for II. Now
S wins Hj (u, v) if he wins A4 (as 1) on the top board and either he also wins 4 ( as II)
on the bottom board or at least he does not lose there with an ordinal ¢y () less than
the ordinal ¢y (o) assigned to his winning play on the top board.

It is obvious that the relations

R(k.u,v) <= Seq(u)&Seq(v) &lh(u)
S(k.u.v) <= Seq(u)&Seq(v) &Ih(u)

h(v) =k +1&u <} v,

— Wk

=1
=lh(v) =k +1&u <, v

are both in DI". To simplify notation we will write

u<pv &= u<, v U<pv = u<, v
Call an odd sequence code u = {(ay. . .., ar_1. ai) minimal if for every b,
(ag,....ak_1, ag) SZ (ag,....ar_1,b).

The next lemma is the crucial argument in the proof of this theorem.

Lemma. Suppose o = (ag, ay. as. .. .) is such that for every even k, the initial segment
(ao, . ...ay) is minimal; then o € A.

Proof. The argument is quite similar to the key lemma in the proof of the Second
Periodicity Theorem 6C.3, but a bit more elaborate. We will construct a master dia-
gram of games Hj, (1, v), one for each even k., which will determine plays ag. 1. a. . . .
in A4 such that lim; ., a; = o and all norms ¢y (aw;) are eventually fixed. This will
imply that o € A, since @ is a semiscale.

For each even k, we will have u = (ao. ..., a;) in the game Hy (u,v) which we will
play: but we will take v = (ay. ..., a,_1,b) with a certain b which will depend on the
various moves which are made as the construction of the diagram progresses.

To begin with, fix in every game Hy ({ay. . ..., a). (ao, . ..., ax_1.b)) a winning strat-
egy for S. Fix also some winning strategy for I in 4.

Suppose I's winning strategy in A4 starts with a move a(0). Take ug = (ap), vy =
{(ap(0)) and start the game Hy = Hy(uo, vo) as in Diagram 6E.2, with F playing a;.

It is obvious how this Stage 0 of the construction is built up. The play a»(2)
determined by S’s winning strategy in Hy is important, as it initiates Stage 2 of the
construction. Put

upy = {agp. ay. az). vy = (ag. a1, az(2))
Hy = H>(up. v2)
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ap. a1, a2 | Fa; So(4)
H; L 7
ag. ay., as(2) Sa,(3) For(4)
_____________________________ A

ao| Fa; San(2) Fa;(3) San(4)
Hy \ / \ /
QOEO) SaQ(l) Fa(z(2) Sa(3) Fa(z(4)
Tao(0) Haga) — Tay(2) Ha:)(S) — Ta(4)

DiaGraMm 6E.3. Stage 2.

and start H, with F playing a3;. The other moves in this second stage are filled in by
copying and using the fixed winning strategies in the obvious way; see Diagram 6E.3.
Now the key move is the last one by S in H,, a4(4). Put

uy = {ap, a1, as. as, as), v4 = (ao. ai. az. az, o4(4))
Hy = Hy(us. v4)

and start H4 with F playing as. This will be Stage 4 of the construction.

It is clear how we can continue this construction successively with stages numbered
by the even integers 0,2. 4,6, . ... At stage 2n we determine values ag(i). . . ., az,42(i)
foralli < 2n+ 2 and using ay,,2(2n +2) we can start the next stage. At the end plays
ag, o, oy, ... are determined and we have established that I wins A, so that oy € A

and S wins every Hy,, so that all a,, are in 4 and

Yant2(@ani2) < @ania(aan).

Using the fact that @ is a very good semiscale, it is easy to check (as in the proof
of 6C.3) that all the norms ¢;(a, ) are ultimately constant, as n — oo. It follows that
o = lim, o o2, € A. - (Lemma)

The import of the lemma is that I can win 4 by playing each time so that the
successive initial pieces of the run

<a0>, <a(), ap, a2>, <Cl(), ap, dyr, as, a4>, e

are minimal. We will complete the proof of the theorem by verifying that he can do
this by following a DT -recursive strategy.
Let u, v vary over sequence codes (integers) and put

Min(u) <= Seq(u) &Ih(u)is odd &u € Wiy, - |
& (Vv){[Seq(v) &Ih(v) = Ih(u) & (Vi < h(u) = 1)[(u); = (v);]]
= S wins Hy,) - 1 (u.v)}.

Using 6D.1, the relation Min(u) is easily in OT.
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Calla sequence code {ay, . . ., ax_1, ai ) best (k even) if it is minimal and if in addition
there is no b < ay. so that {ay. ..., ar_1,b) is minimal. Thus
Best((ag, e, Ap—q, ak>) <~ Min((ao, ces Ap—q, ak>)

& (Vb < ak)[(ag, e dp—1, ak) </t (a(), e di—1, b)]

Since the relation < is in T, so is the relation Best(u).
Finally we get a DI -recursive winning strategy for I by putting

a(ag.co.....ar_1.ck—1) = ay
= (Fag)--- Ba)[(V)j < k)Best((ag. co. ... a}))
& Best((a, co. . ... a;_y.cr_1.ar))]- —

There are many applications of this theorem which we will pursue in the exercises.
For some of them we will need to go into the proof of 6E.1 and use specifically
the notions of a minimal or a best strategy. It is important to notice that these are
defined for a given game A C A (which I can win) and a given semiscale % on A4
independently of any definability hypotheses: ¢ is minimal (or best) if each odd initial
segment {(a. .. ., a;) of a play following ¢ is minimal (or best).

Let us just put down here the main corollary of 6E.1 for the Kleene pointclasses.

6E.2. COROLLARY (Moschovakis [1973]). If Det(X} ) holds and 1 wins a £} (x)
game A, then | has a winning strategy in A%nﬂ (x).

Similarly, if Det(Al,) holds and 1 wins a H%Hl(x) game A, then 1 has a winning
strategy in A}, ,(x).

In particular, granting PD, for each Al game A either 1 or 11 has a A} 41 Wwinning
strategy, and similarly with Al (x), A}, (x).

PrOOF. The first assertion comes directly from 6E.1, taking I' = £} (x) so that
OT = 9%} (x) =1}, (x) by 6D.2 and using the fact that if o is I1}, | (x)-recursive
then surely o isin A}, (x).

The second assertion is a trivial consequence of the Basis Theorem 6C.6. If I wins
aTll},, (x) set 4. then the set

P={c:(Vt)A(o *1)}
is non-empty and in I}, | (x). so it has a member in A}, _,(x). 8

Taking n = 0 in this corollary, we get in particular that if I wins a E(l) (ie., a Z(l))
game, then I has a A] winning strategy. It is not too hard to see this directly, without
the elaborate analysis of games of 6E.1. (Kechris has aptly dubbed this and similar
results strategic basis theorems.)

Exercises

First we put down two simple results which are needed for completeness.

6E.3. Provethatif I"is adequate and a pointset P of type 1 in I" admits a ["-semiscale,
then P admits a very good I'-semiscale.

HiNT. See the proof of 4E.2. —|
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Tuy — lag Tu; — a, o a=uy (ao) " uy (ar)”- -

NN,/

DiaGraMm 6E 4.

p=(bo.by.bs....)

6E.4. Suppose I' is adequate, Det(I') holds and 4 C N is in ' and admits a
I'-semiscale, let
0=1(00.01.0....)
be a recursive infinite string of quantifiers and let G be the game determined by 4 and

Q; prove that if 3 wins, then 3 has a DI'-recursive winning strategy.
HINT. See the proof of 6D.1 and apply the Third Periodicity Theorem 6E.1. -

As a first application of the Third Periodicity Theorem, let us show that Harrison’s
result 4F.1 generalizes to all odd levels.

6E.5 (The Effective Perfect Set Theorem for odd levels, Martin). Assume Det(X} )
and suppose P C X isin X}, | and has at least one member not in A}, _: prove that
P has a perfect subset.

nt1s

Similarly, if P is ¥} (z) with some member not in A} . (z), then P has a perfect

2n+1 2n+1
subset.

In particular, if P C X' is 2}, ,(z) and countable, then P C A}, N X.

Hint. If the result holds for subsets of C = “2and P C X, letn : C —» X be a
Al isomorphism, take Q = 7~ ![P] and apply the result to Q to get a perfect subset
K—now use the fact that z[K] is an uncountable Borel subset of P and hence has a
perfect subset.

If PC Cand

Pla) < (3p)Q(a. B)

with Q in 1}, consider the game G played as in Diagram 6E.4. Here each u; is a
finite (non-empty binary) sequence

u; = cé,...,c,ii,
ajis0orlandb; € w, so that in effect I and II define an infinite binary sequence

a= (cg,...,c,?o,ao,cé,...,c,ll,al,...)

and an irrational

B = (bo.by....).
At the end of the game,

I wins <= QO(a. f).

Argue that this game is determined since it is essentially in H%n, then argue that if
I wins, then P has a perfect subset.

To complete the proof, we must show that if IT wins, then P C A}, .. Suppose then
that 7 is winning for Il and « € P, fix 8 so that Q(a., ) and call an initial part of the
game

(%) ug. ag. by, ur.ay.by. ... . u,, a,. by,
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good, if
o (ag) ™ "uy an) C @
and the part is played by 7, i.e.,

ap = 1t(ug), ay =t(ug, ag. by, u1), .... an=r1tug,...,u,).

If every good part had a good extension, then ~Q(c. f8). hence some good part has no
good extension, say the one in (*) above. It follows then thatif ug (ag) "™ - - "u, (a,) =
((0),a(1).....a(r)). then for all k > 2

ot +k)= 14‘c(uo,ao,bo,...,un,an,b,,,(a(t+l),...,a(l+k7 1)))

so that « is recursive in 7.
By the Third Periodicity Theorem (and specifically 6E.4) we may assume that 7 is

inAl,, . sothat P C A} . n

This result is both interesting in its own right and very useful. Here is one immediate
consequence.

6E.6. Assume Det(X},): prove thatif P C X x Y is A}, ., and all sections P, =

{y : P(x. y)} are countable, then P can be uniformized by some P* C PinA}, ...

HiINT. See 4F.6. =

Aset P C X x YinA}, ., with compact sections is uniformizablein A}, | by 4F.12
(granting Det(é%n)), but the corresponding generalization of the Arsenin-Kunugui
Theorem 4F.16 is still open. (Kechris and Martin have recently proved this for A}, but
they use methods that are quite deep and do not generalize immediately to arbitrary
A},.,.) On the other hand. 4F.19 and the resulting uniformization theorems for A}
sets with large sections (4F.20) generalize to all odd levels of the hierarchy, essentially
by the same arguments we gave in 4F.19, 4F.20. See Kechris [1973].

We now aim towards a generalization of the Spector-Gandy Theorem 4F.3 to all
odd levels. The proof is new even for I1!, and it is in some ways simpler than our
original proof in 4F.3.

6E.7 (The Spector-Gandy Theorem for odd levels, Moschovakis [1973]). Assume
Det(A},): prove that for every I}, , | set P C X there is some IT}, set R C X' x Y such
that

P(x) <= (3a €A}, (x))R(x.a).

HINT. Notice first that taking I' = Al (x) in 6E.1, Det(A},) implies that every
Al (x) game admits a A}, .1 (x) winning strategy for one of the players. Check also as
in 4F.3 that it is enough to prove the result for P C V.

Let

Gle.a) — (VB)R(e.a.p)

be universal in 1}, ; and choose e, such that

2n+
Pla) <= Gley, a).

Put on G the canonical I1},, ;-norm y which we defined in the proof of the First
Periodicity Theorem 6B.1. Using 4D.14, choose also some fixed k so that

B e, (a) < Gk (B.a)).
We claim that
Pla) <= (3 € Ay, i(@))(e0. ) <, (k. (B.a))l:



6E.8] 6E. THE THIRD PERIODICITY THEOREM 261

AVAVAV

DiaGraMm 6E.5.

I

II

because if this failed for some fixed @ € P, we would have
B €Ay, (a) = (k.(B.a)) <} (eo.c)
which implies that A}, (o) N N isin A}, () contradicting 4D.16.
By the construction in the proof of the First Periodicity Theorem 6B.1 there is a
fixed I}, relation S(a, B, 7) such that whenever G (k, (. ).
(0. @) <y, (k. (f.c)) <= 1l wins the game {y : S(a. f.7)}
< (31)(Vo)S(a.B.0 *1)
> (Fre A}, 1(a.B))(Vo)S(a.p.o ).
where for the last equivalence we have used the fact that for (k, (8. «)) € G, the
set {y : S(a.B.7)} is actually A} (. ) and of course we have also used the Third
Periodicity Theorem 6E.1. We now have
Pla) <= (3p € Al,1(0)) (3t € Ab,, (e B)) (Vo) S(a foo + 7)
which implies the result easily by contraction of quantifiers. -
There is a simple but interesting converse to 6E.2.

6E.8. Assume Det(A},): prove that for each a € A}, ;. thereis a A}, set A C N

such that II wins the game (with payoff) 4 and « is recursive in every winning strategy
for IT'in A.

Thus A}, ; NN is the smallest set which is closed under “recursive in” and contains
a winning strategy (for one of the players) for each A} game.

HINT. Let H C @ x (0 x ) be universal in IT}, | let y be the canonical IT},,, -
norm that is assigned to H by the First Periodicity Theorem 6B.1 and choose some kg
such that

a(s) =1t <= Hlko.s.1).
By the Covering Lemma 4C.11, there are fixed integers /y. /1. I, such that H(ly. /1. )
and
als) =1t <= wlko.s.t) <w(lo.l1.h).

It is now obvious from the proof of 6B.1 that (with the fixed ko, ly. /1. />) there are A%n
sets P(s.t,a) and Q(s. t. o) such that

(ko.s.1) <;, (lo. 1. ) <= Wwins {a: P(s.t,a)}
(lo. 1. ) <;, (ko.s.t) <= W wins {a: Q(s.t.a)}.
Define the game A played as in Diagram 6E.5 where
[l wins < i = O&P(s, t, (ag.ai. ... )) Vi>0& Q(s, t, (ag.ai. ... ))
and check that A4 has the required properties. —
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Taking n = 0 here, we have a new game-theoretic characterization of A} N A\ as the
smallest set which is closed under “recursive in” and contains a winning strategy for
every A game.

We now turn to the generalization of the largest thin IT} set theorem 4F.4.

6E.9 (The Largest Thin IT}, | Set Theorem, Kechris [1975]). Assume Det(A}, )
prove that for each perfect space X, there is a thin Hén 41 set Coppy (X) C X which

contains every thin, IT}, | subset of X.

In particular, if PD holds, then for each n, there is a largest, countable IT},, | subset
of X.

HinT. Follow the proof of 4F.4 until the point where we have produced a perfect set
F such that
(Vx € F)[R(g(x).x) & (g(x).x) < 2].
where 1 < & %n +1- The last part of the argument in 4F.4 depends on the fact that
41 =R, and we must replace it by something more sophisticated when n > 0.
Since F is uncountable and g : F — o, there exists a fixed k such that g(x) = k for
uncountably many x’s; and the set

{x:xe F&R(k,x)&p(k, x) < i}

is é%k ,1 and uncountable, so it must have a perfect subset, by the hypothesis
Det(A}, 1) and 6A.12. Calling this new perfect set F' again. we have

(Vx € F)[R(k.x) & p(k.x) < A).
On F we have an obvious A}, | prewellordering,
x <y <= plk.x)<pky)
such that every initial segment of {y : y < x} is countable, since
y<x = plk.y) < plk.x)
=JyE Aénﬂ(x)
by the definition of R(k, x).

We can consider F as a perfect Polish space with the topology induced on it by X,
so by 1A.3 there is a continuous injection

n:C— F;

this carries the prewellordering < on F toa A}, ., prewellordering on C whose initial
segment are again countable and which does not have the property of Baire (as a
subset of C x C) by 5A.10. Our assumption Det(é%nﬂ) and 6A.16 do not allow such
sets, so we have reached a contradiction and completed the proof of the first assertion.

The second assertion follows by 6A.12, since under PD every thin projective set is

countable. .

The hypothesis Det(Z %n) is sufficient for this result, see 6G.10 and 6G.11.
Granting PD, we can also find largest countable sets at the even levels, but on the X
side.

6E.10 (Kechris and Moschovakis [1972]). Assume Det(X}, . ,): prove that for each
perfect product space X', there is a largest countable X} 42 Subset of X'
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HINT. Let C = Cayy1(X x N) be the largest countable I}, , | subset of X x A" and
put
x €D <= (Fa)C(x,a).
Clearly D is 2%,, 4> and countable, since the map (x, ) — xisa surjection of C onto D.
If P C X is countable and X}, ,,. choose some IT}, .| set Q C X x A such that

P(x) <= (32)0(x. ).

let 0* C Q uniformize Q in Hén 41 by 6C.5 and notice that 0* must be countable, so
that O* C C; hence P C D. —

Assuming PD, put
C, = C,(N) = the largest countable IT! subset of A (if # is odd).
Cy = Ci(N) = the largest countable X} subset of " (if k even > 0).

Since the property of being countable and I1} or X} is obviously preserved under Al
isomorphisms, these sets Cy, Cj, ... determine the largest countable H}1 (n odd) and
E}C (k even > 0) sets in all the perfect product spaces.

6E.11 (Kechris [1975]). Assume PD; prove that there is no largest countable X} 41
subset of A and there is no largest countable I}, , subset of \V.

HINT. If 4 C N is countable and X}, .. then 4 C A}, | by 6E.5 above; on the
other hand. if 4 were the largest countable £}, set, then A}, NN C 4. since for
each o € A}, the singleton {a} is obviously X}, . . Thus the largest countable £}, |
set would have to be A}, | N N'—and this set is not in £}, . | by 4D.16.

The even case is easier: if A C N is countable and I1}, . then N\ A is £}, ., and
non-empty, hence '\ 4 has a member in A}, _, by the Basis Theorem 6C.6, hence
we cannot have A}, NV C A—which the largest countable I}, , set would have to

satisfy as above. -

According to these last two exercises, the property of possessing a largest countable
set of irrationals oscillates between the IT and X side of the Kleene hierarchy together
with the prewellordering property.

The sets Cy, Cy, ... have a very interesting structure which we will not pursue here—
see Kechris [1975].

A result which is somewhat related to the Spector-Gandy Theorem but which is
really mush deeper is the characterization of Al sets as precisely the injective, recursive
images of T1{ sets; similarly, the Borel sets are precisely the injective, continuous images
of closed sets, see 1G.5, 2E.7, 2E.8, 4A.7 and 4D.9. Before going into the extension
of this to all odd levels (with PD), let us look at a related and basic theorem about the
quantifier 9.

6E.12 (Moschovakis). Assume that I is adequate and w-parametrized. that every
pointset in I" admits a I'-semiscale and that Det(I") holds. Prove that every pointset
Q C X in DT satisfies a triple equivalence of the form

0(x) <= (Fo)(Va)P(x,0.a)
= (Alo)(Va)P(x.0.a)
<= (3o)[o is OI'(x)-recursive & (Va)P(x. 0, a)].
with Pin T,
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HINT. Choose a good parametrization of I" as in 3H, and denote (ambiguously)
by G C N x Y all good universal sets, no matter which ) is involved. Define “best
strategy” for a game A as in the proof of 6E.1 so that if I can win A4, then there is
exactly one ¢ € N which is I’s best strategy. Put

R(e,0,x) <= Iwins{a: G(e, x,a)}
& g is I's best strategy for {a : G(e, x. a)};
this relation is in DT by 6E.1, so there is a fixed recursive ¢* € A so that
R(e.0.x) < (9B)G(e*.e.0.x. ) < (9B)G(S(c*.e.0).x.B).

where S is the recursive function associated with the good parametrizations. Now for
any gp, compute

(9a)G (g9, x, ) < Twins {a: G(egp. x.a)}
< (Joo)[(VB)G (e0. x. 69 * [B]) & R(&o. 59, x)]
> (309)[(VB)G (0. x. 00 * [])
&I wins {a : G(S(e*.&.00). x. ) }]:
by repeating the computation on the last conjunct of this equivalence we get
(9a)G(eo. x. ) <= {(300)(301)(302) -}

[(v8)Geo. x.00 )
& (YB)G (S(e*, 0. a9). x. 01 * [B])
& (V)G (S (e*.S(e*.€0.00).01).02 * [ﬁ])
& - }
< {(309)(361)(3Fa2) --- }
][0 = & (D) [()isr = S (", ()in0)]

— (V)(VR)G((7)r.x.0, % [B) }.

where in fact if the left-hand-side holds, then by 6E.1 there are unique 6y.0y,...
which satisfy the right-hand-side and they are all 9T (&g, x)-recursive. Now choose an
arithmetical function 7 : v x N — N such that the map o — (n(O g).n(l,0)... )
is a bijection of A/ with “ N, replace in this formula each o; by 7(i, o) and the infinite
string (3o¢)(3o1) - - - by (o) and prove by a standard prewellordering argument that
if there exist 6y, g1, . .. which are 9I'(gg, x)-recursive and satisfy the DI" matrix above,
then (the unique) o which codes all the o; = 7(i, o) is also 9I'(gy, x)-recursive. This
yields equivalences of the form

(Oa)G(eo. x.a) <= (30)(VB)P(eo.x.0.f)
= (30)(VB)P(eo. x.0. B)
<= (Jo)[o is OI'(gg, x)-recursive & (VB) P(eo. x. 7, )]
which are what we need to complete the proof.
Note: The idea for this proof comes from an argument of Solovay. —|
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The representation of sets in A}, | as recursive, injective images of I1}, sets can be
shown by a minor variation of this proof. First a simple lemma of some independent
interest.

6E.13. Assume Det(A},). Show that
A%nﬂ = DA%I’!’

ie.Q C Xisin A}, if and only if there is some P C X x N in A}, such that

0(x) <= (Da)P(x, a).

HINT. Itis clear that DA}, C A}, .. To prove the converse inclusion, choose 4 C @
inTL}, ., \ A}, and such that 0 ¢ A, and for any Q in A}, ., put

2n+
Rk.x) <= ke AV[k=0&0(x)].

Now RisIl},  solet o beanyIl}, . -norm on R: an easy argument by contradiction
shows that there is some fixed k* € A4 so that
(Vx)R(k*, x),

0(x) < (0.x) < (k".x),

(otherwise 4 is X}, ).
Suppose now that

Rk, x) <—= (Va)P(k.x. o)
for some P in £} and ¢ comes from a £} -norm w on P by the construction of the
First Periodicity Theorem 6B.1. In this case,

0(x) <= (0.x) < (k" x)
= {(Vao)(3bo)(Var)(3b1) - }
[(0, X, (ao, ai, ... )) S;/ (k*, X, (bo,bl, .. ))]

The result follows easily from 6D.1 and the fact that (Vx)(VB) P(k*, x, ) which implies
that

{(a. p.x) : (0.x.0) <}, (k*.x.B)}isin A}, .

6E.14 (Moschovakis [1973]). Assume Det(£},). Prove thataset Q C XisinAl, .,

if and only if Q is the recursive, injective image of some I}, set P C N

Similarly, Q is in A}, (x) if and only if it is the recursive, injective image of some

I}, (x) set P C N and Qisin A}, ., if and only if it is the continuous, injective image
of some P C NinI1},.

HINT. We work with Aén . 1- therelativized case following similarly and then implying
immediately the boldface result.

By 3E.6 we may assume that X = A so that X x N is recursively homeomorphic
with AV and it is enough to produce a I}, set P* C X' x A so that

0(x) <= (30)P*(x.0)
< (3lo)P*(x.0).
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x>u:<a09~~-’am> Fay, Stpyp— - Olz(ao,m,...)
Hm(x’ u, y’U) \ /
y’v:<b0"-~>bm> Sbm+14’Fbm+2 ﬂ:(bo,bl.,...)

DiaGraM 6E.6.
Let I' = X},. We will modify the argument of 6E.12 to work with A = A}, instead
of I' so that ultimately we will have
0(x) <= (Fo)Va)P(x.,0.a)
< (Flo)(Va)P(x,0,a)
with P in A and then we can take
P*(x,0) <= (Va)P(x,0.a)

so that P* is in VVA = I1}, as required. Since A is not parametrized, we must work
with codes of sets rather than universal sets.

Choose then a good parametrization for ' = £} and forany 4 C ), calle a A-code
of 4if

yeAd < G((e).y)
= =G ((e). ).

where G C N x Y is a good universal set.
If Qisin A}, . then by 6E.13 there is a A}, set P so that Q = 9P and if P has
recursive code €*, we have

0(x) < (9a)G((e*)o.x.a) <> (Doz)G(S((s*)o,x),oz)
= (Pa)=G((e)1.x.a) <= (92)=G(S(()1.x).a)

where S is the recursive function associated with the good parametrization and we
have used the fact that X = N is of type 1. Taking

u(x) = (S((e")o. x). S (€)1 x)).
we have a recursive u such that for each x, u(x) codesa A} set 4, C A and
(1) Q(x) <= 1wins the game 4, with A} -code u(x).

Next we need a uniformity result.

Lemma. There is a recursive function v : N x N — N such that whenever ¢ is a
Al,-code of some set A(e), then for each a, v(e,a) is a A}, -code of some set B(e. o)
such that

1 wins B(e, o)
<= I wins A(e) & o is the best winning strategy for I in 4(¢)
This can be checked easily by going through the proof of the Third Periodicity The-

orem 6E.1 and using the fact that we can pass uniformly from a A} -code of 4 to a
A} -code of some scale on 4 (using a fixed £} -scale on a good universal =} set).
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Finally as in 6E.12,
0(x) <= {(360)(301)(3a2) --- }

{O‘g wins 4° with A}, -code u(x)
&y wins A}, with A}, -code v(u(x). )
& oy wins 4% with A}, -code v(v(u(x), 00). 01)
& - }

= {(300)(301)(3a2) - - - }
(v {[G)o = u(x) & (70) [ = ¥(()r. )]
— (Vi)[o; wins the game with A}, -code (y)i]}.
The result follows as in 6E.12, noticing that for y that satisfy the hypothesis above,
o; wins the game with A} -code (y); < (VB)-G (((y)i)l,ai * [ﬁ]). 4

We now come to the relationship between the operation O and scales.

6E.15 (Scale Transfer Theorem, Moschovakis). Suppose I is an adequate point-
class, Det(l:) holdsand P C X x N isin I' and admits a I"-scale; show that D P admits
a DI -scale.

HinT. The argument is an elaboration of the proofs of the Second and Third Peri-
odicity Theorems.
Suppose
0(x) <= (Da)P(x.a)
with P in I" and put for each even m,

Q;;(X,u) — (ElaO)"'(Elam)[u = <Cl(),...,am>
& A{(Vami1) Fami2) Vami3) - - YP(x. (ag. ay. ... . ams1. ... ))].

Given a sequence of norms g, 1, ... on P, we can define a norm y, on Q}, for each
even m using (,,, by the construction in 6D.3. To recall this and set up notation for
the proof, consider the game H,,(x, u, y,v) for each even m, x, u = (ag, ..., am), y
and v = (by, ..., b,) which is played as in Diagram 6E.6. At the end of the game,
S wins the run <= (x,a) < (1. B)

and by 6D.3, the norms y;, satisfy

() <5 (n0) = () <5, (y.0) <= S wins Hy, (x,u, p.v).
Moreover from the formulas of 6D.3, if g = {(, } is a I'-semiscale on P, then y; is a
OI'-norm on Qj, and in fact the relations

Rlxu.y.v) <= Op(xu)&(x.u) <5 (n0)  (m=Ih(w)= 1)
S(xupv) = O (v.u) & (x.u) <l (3.0)

are in 9T
We now assume that P is of type | and that i is a very good I'-scale on P. We will
use the y;, to construct a DI'-scale on Q and then the result will follow by 4E.6.
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Let u(i) be the i’th sequence code (essentially) as in the proof of 6C.3, with u(0) =
1 = the code of the empty sequence and so that if (i) is an initial segment of u(;),
we must have i < j. For each n and each x € Q. let w(x, n) be the code of the initial
segment of length 21h(u(n)) + 1 in the game establishing Q(x), where 1 follows his best
winning strategy and 11 plays following u(n). To clear this up, suppose

u(n) = <b().,...,bk_1>l,

let ag. ay. . ... ay be the first k + 1 moves of I in the game {a : P(x, @)} where I plays
his best (winning) strategy as we defined it in 6E.1 and set

w(x,n) = {ag. by, ....ax_1.bk_1, ag).

It goes without saying that in defining the best strategy for I we use the scale . By
the construction in 6E.1 then, the best strategy is minimal so in particular for every
ay., if w(x, n) is as above,
(x, (ag. bo.....ax_1.bx_1.ax)) <5 (x.{ao.bo.....ar_1.br_1.ay)).
Finally, if
u(n) = <b(), ey bk,1>,
choose ny. ...,n;,_; = n such that

u(l’l[)=<b0,...,b[> (l<k)
and for x € Q put

va() = (g (% w(x,0)) w(x.0). v (x.w(x. no)). w(x. mo).

v (x.w(x me—y)). w(x. ng—y))

where (as always) we use an order-preserving map (- - - ) from the alphabetic ordering
of tuples of ordinals into the ordinals. We now proceed to show that 7 = {y,} is a
OI'-scale on Q.

The definability part is quite easy and we will omit it.

It remains to check that ¥ is a scale on Q, so suppose xg, x;,... are all in Q,
lim; . x; = x and all w,(x;) are ultimately fixed for large i; we must show that
x € Q and for each n,

Yn (x) <Iim; o0 Wi (xi)~

The hypothesis means in particular that lim; _ ., w(x;.n) = w, for each n, i.e., the
best strategy for establishing Q(x;) converges as i — oco. We will call this the limiting
best strategy o*. In particular

d*(0) = ap = w(x;,0) for all large i.

In addition, all z//z‘k(xi, w,) are eventually constant. We will assume without loss of
generality that both @y = w(x;,0) and w{ (x;. (ao)) are fixed for all i > 0.
We will show that

(x. (a0)) <g (x0. (a0)):

this will establish in particular that x € Q and that

wi (x. (a0)) < g (x0. {(ao))
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Xk, » {ao) Fby Say(2)
Hy(xk,. (ao). x0. {ao)) 4l\‘ /
xo. (ao) Saq(l) FaoEZ)
x. <a0> Flbg ap Fb;
Hy(x. {ao). xo. {ao)) t -
xo. {ap) Sap(1)  Foyg(2)

DiaGraMm 6E.7. Stage 1.

and hence (easily) wo(x) < wo(x;) for all i. A slight modification of the argument
shows that for given by, ..., by_1,1f aq. ..., a; are the first kK + 1 moves of the limiting
best strategy for the x;, then for all large i,

(x.(ao.bo. ... ax—1.bi_1.ar)) <i (xi.{ao.bo,....ak_1,br_1.ax))

from which the result follows easily.
Suppose then that in the game Hy(x, (ao). xo. (ap)) F starts with a move by. Suppose

a*(ag. by) = ay

and choose k| > 0 large enough so that if u(j) = (bo). then y;(x;) is constant for all
i > k. Since also

(k. (a0)) <p (x0. (a0)).
fix a winning strategy for S in Ho(xy,. (o), xo, {(ap)) and construct Diagram 6E.7 in
the usual way.

In this first stage of the construction we see how S can play in his first two moves
of the “master game” Hoy(x, (ao), xo. (ao)), by copying a(1) and then playing a;. The
key moves that allow us to start the next stage are the numbers o (2) (by the winning
strategy of S in Hoy(xy,. (o), X0, {(ap))) and by, which is F’s next move in the master
game.

To begin with, by the choice of k| we know that

(xk,» (@0. bo. a1)) <5 (xx,. (@0 bo. @1 (2)))
so fix a strategy for S in the game witnessing this. Also let
a*(ag. bo. ai.by) = a;

and choose k; so large that if u(j) = (bg, b1), then 1//_,-(xi) 1s constant for all i > k».
By the choice of k|, we have
(X, (a0, bo. ar)) <5 (xx,. (a0, bo. ar))
so we can fix a winning strategy for S in the game witnessing this and construct the
second stage by starting with Fb; at the top; see Diagram 6E.8.
In this second stage we obtained the moves ap(3) and a, for S in the master game.
The new key moves that start the third stage are a»(4) and b3 and from then on

we proceed in the obvious fashion. It is clear that at the end we will have plays
o, a1, 1, @z, Ba, ... and that the following will hold:



Xy » (ao,bo,a1> Fby Sa2(4)
4
: \ /
Xk, (@0, bo. a1) E) Fpi(4)
, }
¥ .
Xk, (0. bo. a1) Fpi(3) Spi(4)
Xpe, - {@0. bo, 1(2)) Sa;(3) Foy (4)
N '
N :
Xk,» (ao0) | Fby Sa(2) Sa(3) S (4)
4
AN s . e
X0, <Cl()> ' Sag(l) Fa0(2) Sa0(3) Fa0(4)
| A ! A
X, <a0> Fé)g é E aj Flbl é l a Fb,
¢ | } |
x0. {ao) Sap(1)  Fop(2) San(3)  Foo(4)

DiaGraMm 6E.8. Second Stage.
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(1) P(xk,. 1), P(xp,. p1). P(xpy. ), P(xpy. B). ..
(2) for a suitable increasing sequence of integers 0 = jo < ji1 < jo < -,

(g, 1) <5, (%0, @0),
@i (X, B1) < @y (X, n).
@i (X, 02) < g, (k. 1),
@i (X f2) < @ (Xp,. ).
(3) lim; oo (s, @) = (x. (0. bo. ar.by....)).

Since  is a very good scale on P, (x, (ag. by, ay. by, ... )) € Pand
@o(x. (a. bo.ay.by....)) < @(xo. ).
(unless =P(xp. o)) so that S wins the master game. -

The results in this section make it clear that almost everything we have proved about
the analytical pointclasses Z,L (k even) I} (n odd) can be extended to an arbitrary

I'=95I".

where ITY C Ty, T is adequate, w-parametrized and scaled. Only occasionally we
need the additional hypothesis that I" is closed under vV or 3V,

We end this section with a simple result which implies that all the pointclasses DX,
9930, etc. are scaled.

6E.16 (Kechris [1973]). Show that for each n > 1, each X! pointset of type 1 admits
a XV-scale.

Infer that 9%, 99XV, etc. all have the scale property, granting the appropriate
determinacy hypotheses.

HINT. Call g = {9, } a weak-I1-scale on P if it is a scale on P and if the relations
R(n.x,y) <= P(x)&P(y) &pn(x) < pul(y).
S(n.x.y) <= P(x)&P(y) & pa(x) < pu(y).

are both in I19. Prove by induction on k > 1 that each IT} set of type 1 admits a

weak-TI)-scale and each X set of type 1 admits a X0-scale. The basis case k = 1 is
trivial. If

0(x) <= (Vm)P(x,m)
and @ is a X -scale on P, put
wa(x) = (po(x.0).
@1(x.0). po(x. 1), @1 (x. 1),
©2(x.0). pa(x. 1). o (x.2). o1(x.2). a(x.2).

en(x.0).....on(x.n = 1). o (x.n). 1 (x.1n)..... pu(x. 1))
and check that ¥ is a weak—l'[,g 4i-scaleon Q. If

0(x) <= (3m)P(x.m)
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andpisa Weak-l'[g,-scale on P, put
wo(x) = least m, P(x.m)
W1 (x) = <l//o(x), Pn (X» l//O(X))>

and check that ¥ is a 22 ,1-scale on Q. (here the tuples of ordinals are ordered
lexicographically.) =

6F. The determinacy of Borel sets>-?

By 6A.12, we know that Det(X!) cannot be established in ZFC, but the next best
result can be proved in this theory: every Borel game is determined. We prove
here this important result of Martin [1975], [1985], which answered a long-standing
question and lent considerable respectability to the practice of adopting determinacy
hypotheses. Martin’s proof shows, in fact, that Borel games on arbitrary sets X are
determined, and it is easier to explain if we add some structure to our view of games.

It is often convenient to describe a game on a set X by giving a payoff set 4 C “X
and a set of rules, i.e., a tree T on X. The game G (A, T) specified by 4 and T must
proceed along some branch of 7', otherwise the first player who gets outside 7" loses.
Formally, I wins a run of the game which results in the play ' = (xo, x1, x2,...) if

(Eln)[(XQ,...,in) eT& (Xo,...,in,)Qn_H) §é TV (Xo,xl,...) ce[T]INA,
i.e., in the notation of 6A, the payoff A7 of G(A4, X) is the set of f € ®X which satisfy
this condition; it follows easily, that II wins if
(XO) ¢ T \/ (Hn)[(x()t e ’le’l—l) E T& (Xos e ’xzn—leXZI’l) ¢ T]
V (x0,X1,...) € [T]\ 4.

We describe the strategies for players I and II by the trees of runs played according
to them. Formally, a tree ¢ C T is a strategy for I if:

1. There is exactly one uq such that (uy) € o.

2. Forall (u. ... .uxy41) € o, there is exactly one y such that
(uo.... .uzy41.y) € 0.
3. Forall (ug,... . usy) € g andall y, if (ug,... . us.y) € T, then
(ug, ... .ux.y) €o.
We let

¥(T) = {0 C T | gisastrategy for Iin T}

and we define Z''(7") analogously.
We will also need the partial strategies for 1 and 1 in G (A, T). which instruct each
player how to play in some initial part of the game: let for any tree 7 and number 7,

T n={ueT:length(u)<n+1}={(x0,....x;) €T :i <n},
and set
2U(T) =U,, 2T | 2m)). ZNT)=U, =T | 2m+1)).

For example, if ¢ € (7). then ¢ | (2m) € ZL(T): but there are partial strategies
which cannot be extended to full 7-strategies for I, for example {0, ()}. in the tree

{0.(a). (a.b)}.
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Notice that the games G (A4, T) and G(AN[T]. T) are equivalent in every way: they
have the same full and partial strategies for both players, and if a player wins one of
them then he also wins the other.

Typically we will define the rules of a game informally, by putting down restrictions
on the choice of x,, (by the appropriate player) which depend on the preceding moves
X0, ..., X,_1. One obtains a tree 7' from such restrictions in the obvious way,

(x9.....x,) € T <= foreachi < n, x; is allowed by the restrictions.

In some cases, the requirement to obey the rules (i.e., the tree T') is more significant
for the outcome than the payoff set 4. For example, IT wins G (4. {0}) for every 4,
simply because I cannot make a legal first move; and if 7 = {0, (a)}, then I wins
G(A.{(a)}) for every 4 (even A = (), because he can make a legal, first move, to
which II cannot respond because (a) is a node with no successor. If T is a wellfounded
tree, then G (A4, T') is independent of the set A since the loser of a run is determined
before the run is completed—it is the player who is first forced to move outside the
tree T. Just above these games in complexity are those in which the payoff set A4 is
clopen, for example 4 = {x | xo = 0}; in any run of such a game, whether player I
has a chance to force the run into 4 is determined at some finite stage, and after this
the game is completely determined by the tree 7', specifically by whether the player
who has not already lost the chance to get into “his” side of A4 can keep the play in T
forever, or at least longer than his opponent. Martin’s proof proceeds by “reducing”
in a canonical way every Borel game to games of this type, with clopen payoff sets and
complex rules.

6F.1. THEOREM (AC, Martin [1975]. [1985]%)). For each X # 0. each tree T on X .
and each Borel set A C X, the game G (A, T) is determined, and in particular, every
Borel set A C N is determined.

The plan for Martin’s proof is to introduce a class U [ ®X of subsets of “X, for
every X, such that:

(1) If 4 € U | “X then, for every tree T on X, G(A4, T) is determined.
(2) Everyclosedset F C“X isin U | “X.

(3) U | “X is closed under complementation.

(4) U | “X is closed under countable intersections.

It follows immediately that all Borel subsets of “X are in U, and hence determined.

Of these four facts, (1) and (3) follow trivially from the definition of U—which,
however, is quite complex; (2) is the heart of the proof; and the proof of (4) involves
some inescapable technicalities. It is an essential feature of the proof that the argument
for U | ®X requires the analysis of U | “Y for several ¥ # X, so that the result really
is about the (generalized) pointclass U.

We will give the definition of U in stages, starting with the following, most basic of
its ingredients.

A covering¢: S ~» T ofatree T on X by atree S on Y is a triple

c=(c.c M)
satisfying the following conditions (C1) — (C3).
(Cl) ¢ : S — T is a monotone, length-preserving mapping, i.e., forallu € S,

length(c(u)) = length(u),
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andifu”(x) € S. then ¢(u”(x)) = ¢(u)" (). for some y, We will use the same name
for the induced mapping ¢ : [S] — [T'] on the bodies of the trees,

c(f)=U,elf In)

which is obviously continuous.
In the typical applications of coverings, ¥ = X x D for some set D,

c((x0.do). ... . (xp.dy)) = (x0.....%n).

and we can think of games in Y as auxiliaries of games in X', in which the players make
side moves in D, witnessing various facts, making deals with their opponent, etc. The
remaining two conditions insure that these auxilliary games on S are “canonically”
equivalent to the games on 7" with which they are associated.

(C2) The mapping ¢! : ZL(S) — XL (T') assigns a partial T-strategy ¢! (o) for player
I to every partial S-strategy o for 1. so that

o =0 | 2m)=cl(a’) = (o) | 2m).
This coherence condition allows us to extend ¢' to ¢ € ZI(S),
do)=U,, c(a | (2m)).

The idea is that player I can use a partial strategy o € X!(S) to play in a game on T,
and in such a way that he can compute his possible moves in 7" at stage 2m knowing
only the moves in S by ¢ at stages < 2m.

We also assume the analogous condition for ¢!, with 2m + 1 in place of 2m.

(C3) The liftup or simulation condition: for every o € XL(S).
uec(e)= 3vea)cl) =ul
and for ¢ € ZI(S),
[ €lel(o)l= (3¢ € [oDlc(g) = /1.

Notice that there is no coherence assumption in (C3), i.e., it may happen that
u™(x) € /(o). u = ¢(v). but v has no extension which projects to u~(x). This is why
we need to postulate separately the existence of liftups for infinite plays.

We also assume the symmetric condition for II.

We can now formulate the first key property we need: a covering ¢ : S ~» T unravels
agame G (A4, T). if the inverse image ¢ ~'[4] = ¢ ~'[AN[T]]is a (strong) clopen subset
of the space [S], i.e., for some open and closed C C “Y,

feC < c(f)ed (f<[SD.

Notice that if ¢ : S ~ T unravels G (A4, T), then it also unravels G(“X \ 4, T).

6F.2. LEmMA (AC). If some ¢ : S ~ T unravels G(A.T), then G(A.T) is deter-
mined.

PrOOF. Let B = ¢~![A4]. so that ¢[B] C 4. and the game G (B, S) is determined, by
the Gale-Stewart Theorem 6A.2 because B is closed.

Suppose first that ¢ is a winning strategy for I in G(B. S). and let 67 = ¢!(c) be
the strategy on T associated with ¢ by ¢. To prove that o7 is winning, we need only
verify that [c7] C A, and this follows immediately from the liftup condition (3) on
coverings: because if f € [o7]. then f = ¢(g) for some g € [6]; so g € B, since ¢ is
winning in G (B, S); and hence f € A since ¢[B] C A.
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The same argument shows that every winning strategy for Il in G (B, S) induces a
winning strategy for Il in G (A4, T). =

A covering ¢ : S ~ T is n-fixing (an n-covering) if it just copies up to stage n,
ie,Sn=T]|n ifm<n, thenc((xg,....xp)) = (x0,...,%m); if 2m < n and
o € XI(S | (2m). then ¢'(¢) = o: and the corresponding condition for 7 € (S |
(2m +1)).

If i < n, then every n-covering is also an i-covering.

Finally, a set A C X unravels fully if for every tree T, every continuous function f :
[T] — “X and every k, some k-covering ¢ : S ~» T unravels the game G(f ~'[4]. T).
We let

U |®X ={A4 C*X : A unravels fully}.

so that U is the class of sets in all spaces X which unravel fully.

The class U is obviously closed under continuous preimages, and it is also closed
under complementation, simply because if ¢ : S ~» T unravels G(f ~![4]. T). then ¢
also unravels G (f ~'[“X \ 4]. T).

The central construction of the proof of Borel determinacy is the next result.

6F.3. LemMA (AC). Every closed set unravels fully.

ProOF. Since continuous preimages of closed sets are closed, it is enough to prove
that for every closed F' C “X, every tree T on X and every k, there exists a k-covering
¢ : S ~ T which unravels F. We give the detailed argument for £ = 0, the general
case being a simple variation.

Fix a tree J such that F = [J].

The precise definitions of ¥ = X x D and the covering ¢ will be easy to extract from
the following description of the rules in the auxilliary game, which runs like this:

1 <x0, P> X2 X4
11 (xi.u) X3 Xs
Here are the rules:

(1) Both players must play so that (xq,....x,) € T.

This means that there is only one side move by player I in stage 0 and one side move
by player II in stage 1.

(2) In Is first move, P C T and (xq) € P.

By making this side move, player I offers to allow II to move “anywhere” in P, if I1
promises to keep the play in J. The precise meaning of this offer is embodied in the
last three rules.

(3) In I’s first move, either u = 0 or u = (xo. x1.x5. x5.... .x},,) € P\ J.

(4) The side move u = 0, signifies that II accepts I’s offer, which means that from
now on:

(4a) I must play at the position (xo. ... , x»_1) so that for every y,
(x0,....x0.y) €T = (x0,....%2.,y) €EP.
(4b) II must play at each position (xo. ... . x;) so that (xq.....xy41) € J.

(5) A side move u # 0 signifies that II rejects Is offer, and extracts (for considering
it!) the priviledge of determining the next 2/ — 1 moves in the run: both players are
now committed to play consistently with the sequence u = (xq, x1. X3, X5 ..., XY, " ).
(Neither player is restricted in his further moves by P or J in this case.)
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These rules determine the tree S, and the projection mapping is the obvious
c((x0, P), (x1,u). X2, .. . Xp) = (X0, X1, X2, ..+ L Xp).
The required clopen set is
B = {((x0. P).{(x1,u). x2,...) : (x0) € PC T &u =0},
which satisfies ¢ ~![F] = [S] N B. because
({x0, P), (x1.0), x2,...) € [S] = (Vn)[(x0.x1,....X,) €J]
= (x0.x1....) € E
and for u # 0,
({x0, P), (x1.u), x2....) € [S] = (x¢.x1,...) is consistent with u
= (x0,x1,....,) ¢ F.

since u ¢ J by Rule (3).

It remains to define the mappings c'. ¢! and to verify the liftup condition. and we
do this by describing how I and II can play in 7" using partial strategies for S

Case 1. Given o € ZL(S). player I moves (for a while) in 7 so that
({x0, P), (x1,0),x2....x,) €0,
i.e., he assumes, temporarily, that IT accepted his offer in the game on S. He can do
this, as long as ¢ moves so that (x, ... ., xy41) € J. If at some stage Il moves (for the

first time) such that (xo, x1.... ,x2,1) ¢ J, I revises his assumption and resimulates
II’s first move by

(Xl, <X1, (Xo,xl, cee ,X21+1>),
which is legal, since I's latest move was legal, and so (x.... . X, Xxy+1) € P. Now

the rules insure that the resimulation is consistent with all the moves in 7" up to xy;, 1,
and I can continue to play so that

({x0, P), (x1, (X0, X1, - . » X2141)).X2... . Xy) € T,
consistently, by Rule (5).

It is clear that this construction associates with each ¢ € (S | (2m)) a partial
strategy ¢'(¢) € Z(T | (2m). so that the coherence and finite liftup properties hold.
For the infinite liftup property. we simply observe that. if f € [¢'(¢)]. then the finite
liftups g(,,,) of /| (2m) converge (because the simulation changes at most once). and
they give us some g € [¢] such that ¢!(g) = f.

Case 11. Given some t € X!1(S), II must simulate some first side move by I in order
to play in 7', and he chooses (initially) the following:

P={uecT: (forall sets Q C T and all x)[({x0, Q). (x1,u)) & 7).

(This, incidentally, is the key trick of the proof.) Notice that for every u # 0,
({x0, P), {x1.u)) ¢ 7: because the opposite assumption yields u € P, by Rule (2)
(which must be adhered to by 7) contradicting the definition of P. Suppose now that at
some stage, I moves (for the first time) so that, for some xp (1, (xo. ... , X2/, Xo41) & P.
By the definition of P, there exists some Q such that

((x0. Q). (x1. (x0. ... . X241))) € 7.
and II can resimulate Is first move in S by (x¢. Q) and can continue to play so that

((x0. Q). (x1. (X0. ... . X241)). X2, ... . Xp) € T.
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The construction, again, makes it clear that we only need a partial strategy 7 €
SIS | (2m + 1)) to define the required ¢''(z) € (T | (2m + 1)), and that the
coherence and liftup properties hold.

In the proof for arbitrary even k = 2m (which suffices) the auxilliary game looks
like

I x ... Xom—2 (x2m. P) X2m+42

I x .. X2om—1 (Xom1. 1) Xom+3
with the crucial side moves at the stages 2m, 2m + 1, and the argument is almost
identical. =

It remains to show that U is clossed under countable intersections, and for this we
need two operations on coverings.

6F.4. LemMma (Composition). For any two coverings
T ~~e 11 ~¢ T,
define the composition ¢ = cye; = (¢, ¢l V) : Tr ~ Ty by
c(u) = cole1(). (o) = elei(a)). ¢(o) = e (e ().
This is a covering ¢ : Ty ~ Ty, and if ¢| and ¢y are both k-fixing, then so is c.

ProoOF is simple, by direct verification. -

6F.5. LEMMA. The intersection AN B C “X of two sets which unravel fully, unravels
Sfully.

ProOF. Let us just show that for every tree 7 on X, some ¢ : S ~ T unravels
G(ANB.T).

The hypothesis gives us a covering ¢y : T ~ T which unravels G(A4, T). Since B
unravels fully, some covering ¢; : S ~ T unravels the game

G(cy '[B]. Th).
and then the composition covering
c=cyc;:S~T
unravels 4 N B, because the inverse image
¢ '[AN B] = c Al N ¢y ' [B*]. with B* = ¢; '[B]
is the intersection of two clopen sets, and hence clopen. -

To prove that U is closed under countable intersections we need to iterate this
construction an infinite number of times, and this requires the following result about
coverings.

6F.6. Lemma (Inverse limits). If. for each i, ¢; : Tiy1 ~ Tj is a (k + i)-covering,
then there exists a tree S and, for each i, a (k + i)-covering d; : S ~ T;. such that

(1) di =cd;.
Proor. The given chain of coverings
o Tigy e Ti~oovovog Ty oy T,
determines a covering ¢;; : T; ~ T, for every j > i:
¢;; = the identity covering

Cj+li = €jiCj.
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By an easy induction,
cicii=cii (j>1>1).

and each ¢;; is (k + i)-fixing.

We now set

S = {u : for all sufficiently large j.u € T},

which is a tree since every 7 is a tree.

Lemmal.u €S < (Vj> length(u))u € T}].

Proof. For the non-trivial direction of this, suppose u = (ug,....u;) and j > i
and compute:

ueS = forsomem > jucT,
= ¢p,(u) €T,
= u € T because ¢ ; is j-fixing and length(u) < j. 4 (Lemma 1)

Lemma 2. If u € S and s, ¢ are sufficiently large (greater than length(u) and i), then
ci(u) = ci(u).

Proof. This is because, if s < 1,

crilu) = csiles(u) = egilu),

the last step because c;, is s-fixing and s > length(u). - (Lemma 2)

We can now define the projection mappings for the required coverings:

di(u) = ¢j;(u). with j > length(u).
These preserve length and they are monotone, because each c;; has these properties.
For the commutativity condition (1), as far as the projections go, we compute, for all
large j:
ci(dip1(u)) = Ci+1_i(cj,i+l(u))
=Cji (u)
=d;(u).
To define the mapping d! : = (S) — XL (T;), verify first that
j>2m+1=3(S | 2m)) C ZN(T; | (2m)).
This is because. for ¢ € ZI(S | (2m)).
uco = ucS&length(u) <2m+1<j
= u € T; (becauselength(u) <2m+1< j).

sothata C T; | (2m), and by hypothesis. o is a strategy for I for runs up to the 2mth
stage, so that ¢ € ZX(T; | (2m)). Moreover, as above, if i < s < ¢ and s, 7 are both
greater than 2m + 1, the same hypotheses on ¢ and j imply that for any i < j,

C;,i (U) = ci.i (c}.x (U)) = ci.i(a)’
and so we can define for any ¢ € (S | (2m)).

d(o) = c}’i(a) where j > 2m + 1.

The remaining properties of these mappings and the corresponding facts about d}!
follow as before and we will not repeat the arguments. -

Martin’s Theorem 6F.1 follows from 6F.2 and the next, stronger result.
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6F.7. THEOREM (Martin [1985]). The class U of sets which unravel fully is closed
under countable intersections.

Proor. Since U is closed under continuous preimages, it is enough to show that if
each 4; C “X unravels fully, 4 = N;A; and T is a tree on X, then, for every k, some
k-covering of T unravels the game G (A4, T).

Fix k and start a construction of a chain of coverings

wTig1 e Tivo oo T gy T,
which will satisfy the hypothesis of 6F.6 by choosing some k-covering
Cp - T1 ~ T() =T

which unravels G(A4y, T). This means that 77 is a tree on some X;, and for some
clopen set By C “X,

(2) S €By = clf) €4y (fe[T]).
At the i’th stage of the construction we have a finite chain
Tiv1 ~e Ti ~ve ) oo~ T1 e T,
and we can define the coverings ¢;; fori +1 > j >/ > 0 as in the proof of 6F.6. Let
Aiy =S €[Tliv1: cinolf) € din}.

This is a continous preimage of 4;,1 € U, so fixa (k + i + 1)-covering

Civ1: Tiva~ Tig
which unravels G(Alﬁl, T;+1); this means that for some clopen set B;,;, and all
S €Tl
(3) S €Biy <= cin(f) €4},

= ciyrolciviri(f)) € 4in

> cinnolf) € 41

At the end of the construction we have the required chain, and also clopen sets
B; Cc ®X ;.1 such that, putting together (2) and (3), for all 7,

feB <= cinolf)edi (felTinl.
Let S be the limit tree guaranteed by 6F.6, and let
B ={f c[S]: (Vi)ldi:(f) € Bi]}.
This is a closed set, so by 6F.3 there is a further k-covering
e: K~ S
which unravels it, so that for some clopen set C,
feC < e(f)eB (f€[K])

We claim that the k-covering

d()e K~ T()
unravels 4, and to prove this it is enough to show that
(4) feC < (Vi)ldole(f)) € 4] (f €[K).

The key to this is the equation
dy = ¢iod;.
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which certainly holds at 0, and, inductively,
dy = cipcidiy g by 6F.6
= ¢i0Cit1idit1 = Civ10di+1.
Using this and the equivalences above, we compute:

feC < e(f)eB
> (Vi)ldiz1(e(f)) € Bi]
= (Vi)lcivrodipi(e(f))) € 4i]
> (Vi)[do(e(f)) € 4i]. "

6G. Measurable cardinals!?)

Before proving the determinacy of Borel sets, Martin [1970] showed that Det(X})
follows from a “large cardinal hypothesis,” the existence of measurable cardinals. Our
main purpose in this section is to define measurable cardinals and prove this result.

Recall that a filter on a set X is a collection F of subsets of X such that

i) Ve¢F. XerF,

(i) if A € Fand A C B, then B € F,

(iii) if 4, B € F,then AN B € F.
For any cardinal number &, a filter F is k-complete if whenever A < x and {A4:}:, is
a family of A subsets of X, then

(V&< NA: e F=(

Finally, F is an ultrafilter (maximal filter) if for each 4 C X, either 4 € F or
X\AdekF.
Each point xy € X determines a principal ultrafilter

U(xg) ={AC X :xp€ A}

which is obviously k-complete for every k. To get non-principal ultrafilters one
generally needs the Axiom of Choice; with it one can prove in fact that every filter F
on X is contained in some ultrafilter, which must be non-principal if F contains all
complements of singletons, e.g., if F = {4 C X : X \ 4 is finite}.

A cardinal number & is measurable if k > w and some set X of cardinality x carries
a k-complete non-principal ultrafilter. By the usual conventions of set theory, « itself
is a specific set of cardinality » (the set of ordinals preceding it) and so & is measurable
exactly when it carries k-complete non-principal ultrafilter.

Let us abbreviate the hypothesis that we will be using:

Afef.

E<A

MC <= there exists at least one measurable cardinal.

It is easy to check that MC is equivalent to the assumption that some set carries an
N;-complete, non-principal ultrafilter (6G.8).

We cannot hope to prove MC in Zermelo-Fraenkel set theory because, as we will
see, it fails in the constructible universe L. On the other hand, although one could
theoretically refute MC, this does not appear likely on the basis of the presently
available evidence. We will discuss the plausibility of MC and similar hypotheses in
Chapter 8.
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With each ultrafilter 2/ on k we associate the (two-valued) measure u = py; on the

power of k,
1 ifdel
u(A4) = .
0 ifrk\A4del.

If U is k-complete, then easily u is k-additive, i.e., whenever 4 < k and {A:}:<; is a
A-sequence of pairwise disjoint subsets of x, then

IL‘(U§<2 Ai) = Z§</‘. #(Aé)-

(To check this take cases on whether some 4; € U or not.) Conversely, if u is a
k-additive two-valued measure on the power of & such that u(x) = 1 and for each &,
u({&}) =0.thend, = {4 : u(A4) = 1} is a k-complete non-principal ultrafilter on
and « is measurable. We will speak interchangeably of x and &/ when they are related
in this way—e.g.. we will often refer to members of U as sets of measure 1.

For each ultrafilter &/ on & and for any two functions f, g : kK — &, put

f<g = {&:f)<gl)}eu.

6G.1. LEMMA. If U is an Ri-complete ultrafilter on k, then the associated relation <
is a prewellordering on the set "k of functions on k to k.

Proor. Clearly f < f for each f and since

{€: /() <h(@)2{¢: /(&) <g(@))n{¢:g(&) <h(&)}.
if f <gandg <hthen f <h. Also,if -~(f < g). then

{¢: /)<t ¢u

so that {¢& : g(¢&) < f(&)} € U, which implies immediately g < f. Thus < is a
prewellordering. Finally, if

So>f1>---,
then each set
An = {ffn(f) >fn+l(‘f)}

is of measure 1 and hence (), 4, has measure 1 and in particular (), 4, # 0; for any
4 €, An then,

fol2) > f1(2) > f2(4) > -+
which is absurd. -

It follows that with each X;-complete ultrafilter on x we can associate a rank function
p : "k — Ordinals

such that
p(f)<plg) <= {Eer: f(&)<g@)}eu.
An ultrafilter ¢/ (or the corresponding measure ) on & is normal if U is non-
principal, k-complete and such that for each function f : k — &,

{er: f(&) <&} eU < thereisa fixed A9 < & such that
{er: f(&)=l}el.

6G.2. LEMMA. Every measurable cardinal carries a normal ultrafilter.
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PrOOF. Let U be a k-complete, non-principal ultrafilter on x with associated func-
tion p and for each 4 < & let C; be the constant function with value 4,

Ci(&) = L.
Clearly
A<= p(C;) < p(Cy)
so that
p(C;) <A
If id is the identity function,
id(¢) = ¢,

then for each 4
{€: GO <id(O)} =\ =Nk \ {E}) €U
so p(C;) < p(id) and hence

p(id) > k.
It follows that for some fy we must have
p(fo) = k.

Fix such an f then and define &/* by
AcU* — [ AleU
— {¢:fo(é)edtel.

Proof that U* is k-complete and non-principal is routine. To check that U* is

normal, suppose {& : /(&) < &} € U*. so that {& : f(fo(&)) < fo(&)} eU. If gis
the composition

g(&) = 1 (fo(&)).

we have p(g) < p(fo) = x which implies easily by k-completeness that for some A < &,
{&: f(fo(&)) = 2} € U. By the definition of ¢/* then, we have {¢ : f(&) = A} € U*
which is what we needed to show. -

Suppose {4:}:«x is a k-sequence of subsets of k. The diagonal intersection of

{A¢}ecy is defined by
LEA = (VE<A[LeE Ae).

6G.3. LEMMA. Suppose U is a normal ultrafilter on x and each A: (¢ < k) is inU;
then the diagonal intersection A = {2 : (V& < A)[A € A¢]} is also inU.

PRrOOFE. Assume not, so that (k \ 4) € U and for each 1 € k \ 4 choose /(1) < 4
sothat 2 ¢ A,(;) (and set f(1) =0 for 2 € A). Now f(4) < Z on a set of measure 1,
so by normality, £ (1) = A* for a fixed A* and all 1 in a set B of measure 1. But then
BN A, has measure 1, so it contains some 1 > 1*, 1 € k \ 4; this A then satisfies both
€ Aj-and 2 ¢ A,(;) = A;- which is absurd. -

After these preliminary results we are ready to state and prove the key partition
property of measurable cardinals which will be our main tool.

Foreachn > 1 let

&!" = all subsets of x with exactly » members
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and put
k<? = all finite subsets of k
= U, &,
A map
F gl —)

is often called a partition of x!"! into A parts. A subset I C & is homogeneous for F if
for all 4, B € "

ACLBCI= F(4)=F(B).
1.e., if all the n-element subsets of I are put into the same bin by the partition F'.

6G.4. TaueoreM (Rowbottom [1971]). LetU be a normal ultrafilter on k and suppose
F : k"l — ) is a partition of the n-element subsets of k into J. < k parts. Then there
exists a set I in U which is homogeneous for F .

PrOOF is by induction on n with the basis » = 1 being an immediate consequence
of the fact that U/ is k-complete.
Suppose then that F : kI"*11 — /. For each fixed ¢ < &, define a partition

F: P
by the formulas
FA(4)= F({&}ud) ifeg A
F:(4)=0 if & € A,
and by the induction hypothesis choose /: in U to be homogeneous for F; and put
G (&) = F:(A) for any n-element 4 C I:.
Since G : k — A, by k-completeness easily there is a set J/ C & in U/ and an ordinal
Ao < A so that
EedJ = G(&) =
Put then
F=JnI
and let / be the diagonal intersection of the 1;7s.
Lel <= LeJ&VE<I)LE L]

It remains to verify that / is homogeneous for F.
Givena (n+ 1)-element 4 C 1. let & be its least member, let B = 4\ {£} and notice
that B C [ this is because if A € B, then 4 € [ and also & < A, so that 4 € I-. Thus

F(B) = F:(A) by the definition of F:
=G(¢) sinceleJand A4 C I;
=0
so that F is constant on the (n + 1)-element subsets of 1. —

A map
F:x<° =]
is a partition of the finite subsets of x into A parts. We call I C « homogeneous for F
iffor 4, B € k<©

ACI B CI andcard(4) = card(B) < Xg = F(A4) = F(B).
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6G.5. COROLLARY. LetU be a normal ultrafilter on &, and for each i let F; : k<° — A
be a partition of the finite subsets of k into 4 < k parts. Then there exists a set I in U
which is simultaneously homogeneous for all the F;.

PrOOF. Define F;, : k" — L by
Fin(4) = Fi(4) (4 €xM)
let 7; , be homogeneous for F;, in U and take I = (), , i.n. a
We will not study partition calculus here, but it will be useful to have around a bit of
notation from this part of combinatorial set theory. For given cardinals &’ < k. put
k — (k') <= for each sequence {F;};c,, of partitions
F; i k<° — , there existsa set I C k of
cardinality x” which is homogeneous for all the F;.
We say that x is Ramsey if & — (k), so that by 6G.5 every measurable cardinal is
Ramsey. (This is equivalent to the more usual definition of Ramsey cardinals, see

Drake [1974].) All the applications of measurable cardinals to descriptive set theory
follow from the (weaker) consequence of 6G.5, that

x measurable => k — (X;);

This is due to Erdos and Hajnal [1958].
To simplify the proof of Martin’s theorems, we first reformulate the basic represen-
tation theorem for I} sets, 4A.3.

6G.6. LeMMA. If A C N isall} set of irrationals, then there exists a function D with
the following properties:

(i) The domain of D consists of all codes u of finite sequences of even length. i.e.,
{u : Seq(u) &1h(u) is even}.
(i) If Seq(u) & 1h(u) = 2n, then D(u) is an ordering with field some set of n integers.
(iii) If't < s. then D (@(2t)) is a subordering of D (a(2s)).
(iv) The following equivalence holds:
a €A < |J,D(a(2t)) is a wellordering.

Proor. By 4A.3 fix a continuous function f : N' — N such that for each o,
f(a) € LO and
ac A < f(a)c WO,
and let R be such that
"<k = fla)lak) =1
— (3s)R(als).n.k).
If u = (ug, ..., ux—_1) is a sequence code with even length 2¢, put
C(u)={(2n,2k) : (3s <26)R({ug,....us_1).n.k)&n, k <t}
so that in particular, for each a, ¢

C(E(Zt)) ={(2n,2k): (3s < 2[)R(a,n,k) &n. k <t}

Clearly each C (a(2t)) is a partial ordering whose domain consists of even numbers
< 2t,
s <t = C(a(2s)) C C(a(2r))
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I ao ar /
II ai. & az, & -
DiaGraMm 6G.1.

foreacha, |, C (E(Zt)) is a total ordering and
ac€Ad < |J,C(al2t)) is a wellordering.
We can now define D (u) with the required properties so that
D(a(2t)) = Dy U Dy,

where D is a totally ordered subrelation of C (6(2t)) and D, is a finite tail end of odd
integers. In detail, take
D(a@(2t)) =D(1) =10

and let D (@(2¢ +2)) be the extension of D (a(2¢)) obtained as follows. If the smallest
even number in the field of C(@(2¢ + 2)) which is not in the field of D (a(21)) is
comparable in C(a(2r + 2)) to every even number in the field of D (@(2¢)). then
extend D (6(21)) by adding this number to its field and putting it in the appropriate
place. If this fails to hold (or if C (@(2¢ + 2)) has the same even numbers in its field
as D (a(2t))). then extend D (@(2¢)) by adding some unused odd numbers at the top.

It is now easy to check (i) — (iii), and (iv) follows from the fact that for each o,
U, D (a(2r)) differs from (J, C (a(2¢)) only by (possibly) having some odd integers
at its top, with their natural ordering. (To prove this check by induction on 2n € w
that if 27 is in the field of J, C (@(21)). then 2n is in the field of |J, D (@(21)).) -

6G.7. TaeoreM (Martin [1970]). If there exists a cardinal k such that k — (N1),
then Det(E1) holds.

PrOOF. Given 4 C N in X}, choose D as in the lemma so that in particular
a¢ A < |, D(a(2r)) is a wellordering.

We define a new game 4* where player 11 makes additional auxiliary moves in « as
in Diagram 6G.1. At the end of the run an irrational

o= (ag, ai,...)
has been played as well as an infinite sequence of ordinals &, &, ... below . For each
t, let
Field (D (@(20) ) = {x1.....x}
so that

Field(UtD(EQl))) = {x0.x1.,... };
now II wins the run if the map
x; =&
is order-preserving from | J, D (@(2t)) into the natural ordering on .
It is obvious that the game 4* is open, so it is determined. Also, if II wins A%,
then obviously II wins A since he can play in 4 with the same strategy he has in 4*

(disregarding his ordinal moves) and at the end he has an order-preserving map from
U, D (@(21)) into &, so |J, D (@(21)) is a wellordering and o ¢ A.
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Assume then that I wins 4* by some strategy ¢*—we must show that I can also
win A.

Given ¢ distinct ordinals &;,....&, and a sequence code u = (ay....,ax_1), let
En1)s - - - » En(r) be some ordering of {&y...., & } and consider the sequence of moves in
Diagram 6G.2 as an initial piece of a play in 4*. Clearly, there is exactly one ordering
of {&,....&,} so that IT has not already lost after these first # moves; let us denote it
by

én(u,l)’ cees én(uet)'

Now for each sequence code u = {(ay, . ..., ax—1) of length 2¢ consider the partition
F,: &l > o
given by
F.({&.....&}) = 0" (ao. (a1. &) - - - az—a. (@21, Epur)- )

and let J C k be of cardinality X; and homogeneous for all these partitions. Finally,
put

alag.ar.....ay—1) = F,({&.....&})

where u = {(ag.ay,...,ax—1) and &y, ..., ¢ are arbitrary distinct members of J. We
will show that ¢ is a winning strategy for I in the game 4.

In effect we define o from ¢* by simulating the ordinal moves of II in 4* in some
homogeneous set / whose members give no information to I in that game.

Suppose then that I follows ¢ in some run of 4 and the play

o= (ag, ai,...)

results, but & ¢ A. Then |J, D(@(2r)) is a wellordering of countable rank, so if
{x1.x2....} isits field, there is some order-preserving map

X =&

with all the &, in J, since J has cardinality X;. It is now obvious that in the run of
A* pictured in Diagram 6G.3 player I is following his winning strategy ¢* and yet he
loses, which is a contradiction. a

One can extend this method to prove the determinacy of simple combinations of X}
sets (e.g., differences) granting that some x — (X;). In fact, Martin has established the
determinacy of a reasonably large subclass of A} from the hypothesis that there exist
long (infinite) sequences of measurable cardinals. On the other hand, it is known that
the existence of any number of measurable cardinals does not imply Det(A}), whose

proof requires much stronger large cardinal hypotheses.*
I ao a e az—2
11 ar., &y asz. &) . az 1. &)

DIAGRAM 6G.2.
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I ao a
II ar, & az, &

DiaGram 6G.3.

Exercises

6G.8. Prove that if some cardinal carries an N;-complete non-principal ultrafilter,
then there exists a measurable cardinal.

HINT. Let « be the least cardinal which carries an N;-complete non-principal ul-
trafilter &/ and suppose towards a contradiction that for some A < k, there are sets
A, of measure 0 (not in &) such that |J,_; 4, € U. Pick the least 4 for which such
a sequence exists and take B, = 4, \ U;., 4¢. so that the B, are pairwise disjoint of
measure 0 and | B, € U. Now for X C 4, put

XeU < UyexB el

n<i

and verify that &/* is X;-complete on A contradicting the choice of k. -

We have been referring to “large cardinal hypotheses” but there is no hint in what
we have proved that measurable cardinals are large. In fact it is consistent with the
axioms of Zermelo-Fraenkel set theory (without the Axiom of Choice) that N; is
measurable—granting that the hypothesis MC is consistent at all, Jech [1968]. On
the other hand, the Axiom of Choice implies that measurable cardinals are very large
indeed. We will give here only a glimpse of the results that can be proved in this
direction.

Recall that x is regular if there is no unbounded function f : A — k with 1 < k.
Also. & is strongly inaccessible if k is regular, and for each 1 < k. card(power(1)) =
2 < K.

6G.9. Prove that a measurable cardinal is regular and if AC holds, then it is strongly
inaccessible.

Hint. If f : 2 — & is unbounded, then
K= U;7<)_{5 : 5 < f(’?)}

and each of the sets in this union has measure 0 by x-completeness.
Suppose now there is a 4 < k so that k < 2% where we have used the axiom of
choice in comparing x with power(4). There is then an injection

E— X: C A
i.e., such that
¢#Fn= X: # X,
= (A< D¢ € (Xe\ Xy) v e (X, \ X))
Choose then some function f (&, #) such that
E#En= f(&n) € (Xe\ Xy) v f(En) € (X, \ Xe).

Define now a partition of x!?! into A parts by
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friew ie<y
F({f’”}){ﬂn,f) iy <

and using 6G.5, let I C x be a homogeneous set for this partition, card(/) = x.
Now check that we cannot have &; < & < &3 with &), &, &3 € T without an obvious
contradiction. -

The proof obviously shows that if every partition of ! into 1 < & parts has a
homogeneous set of cardinality at least 3, then 2* < x. Much stronger results can be
proved about a measurable cardinal k—it cannot be the first strongly inaccessible, it
must have k strongly inaccessibles below it, it cannot be the least 4 with A strongly
inaccessibles below it, etc.

In 6A we saw that the hypothesis Det(A) implies a good deal of regularity for the
pointsets in A. By modifying a bit those proofs, we can establish the same results for
the sets in VA, so in particular Det(X}) (which is equivalent to Det(IT}) by 6A.4)
implies that every £} pointset P is absolutely measurable, it has the property of Baire
and it is either countable or it has a perfect subset. These regulation results for X}
then follow from the hypothesis that some x — (X;).

We now give brief outlines of these arguments.

6G.10. (a) (Martin). Suppose A is an adequate pointclass closed under Borel
substitution and assume Det(A); prove that every uncountable set P in FVA has a
perfect subset.

(b) (Solovay [1969]). Infer that if there exists some cardinal  such that &k — (X;),
then every uncountable £} set has a perfect subset.

HINT. Itis enough to prove the result for P C A as in 6A.12, so assume

Pla) <= (3p)0(c. p)
with Q in A and recall the game G which we associated with Q in the hint to 6E.5.
Following the same hint, G is determined and if I wins G then easily P has a perfect
subset; if IT wins G then any winning strategy 7 for Il can be used to enumerate P.
The second assertion follows immediately by Martin’s theorem 6G.7. -

6G.11. (a) (Kechris [1973]). Suppose A is an adequate pointclass closed under
Borel substitution and assume Det(A): prove that every pointset in VA has the
property of Baire.

(b) (Solovay). Infer that if there exists a cardinal  such that & — (X;), then every
X! pointset has the property of Baire.

Hint. We will prove that under the hypotheses, each 4 in FVA is either meager or
there is an s such that N (s) \ 4 is meager, from which the result follows by 6A.15.

Suppose
xe€d < (3a)0(x.a)

with Q in 4 and consider the following game which is a modification of the game G**
used in 6A.14. The players move as in Diagram 6G.4. The restrictions of the players
are the same as in G**; if both players follow the rules to the end, then

I wins the run <= Q(x. @)

where x is the unique point in al the basic nbhds N (s;) € X and a = (ag. a1. as....).
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I So aop, dy, 52 ap, as, S4
II S $3 ..
DiaGram 6G 4.

Clearly G is determined and it is easy to see as in 6A.14 that if A4 is meager then
1I wins G. Conversely, if I wins G via ¢ and Q(x, &) holds, call a sequence s, . . ., s,
of even length good (for x, o, ) if

50, 51.0(0), (1), ....a(n —1),a(n —2), 5,1, sn

is the initial part of some play in G in which the restrictions have been obeyed, II has
followed ¢ and x € N(s,). If Q(x. ). then clearly there must be a good sequence
with no good extension; hence,

x € A = for some g, ay, ag. a1, ..., Sn., An_1,dp,
x € N{N(sy) \ N(c(s0.51.a0.a1.....50. an—1.an.5))
N(s) C N(s,)&radius(N (s)) < iradius(N(s,))}
and the set on the right is clearly meager. Thus
(1) Il wins G <= A is meager.
We also claim that
I wins G = for some s, N (s) \ A4 is meager.

To check this, let s = s¢ be the first move of I by a winning strategy ¢ and for any x
call a sequence sg. 51.dg., a1, . ...S, (n even) good (for x and o) if it is played by the
rules with I following ¢ and x € N (s,). Easily. if x € (N (so) \ 4) then there must be
a maximal good sequence (which may be the one-term sequence sp) or else we would
get a play establishing that O(x, o) holds for some o; thus

x € (N(sp) \ 4) = for some s1.dg.ai..... s,
x € ﬂ{ﬁ(sn) \N(a*(so,sl, .. .,sn,s)) :
N(s) C N(s,)&radius(N(s)) < iradius(N(s,))}

where 0. (5. 51, . . .. Su. s)j Snt2 18 the “nbhd code response” of I to II’s play s. This
implies immediately that N (so) \ 4 is meager. -

6G.12. (a) (Kechris). Suppose A is an adequate pointclass closed under Borel
substitution and assume Det(A); prove that every pointset 4 C X in FVAis absolutely
measurable.

(b) (Solovay). Infer that if there exists a s such that & — (), then every £}
pointset is absolutely measurable.

HinT. Suppose first A C ®2 and for some P C “2 x ®2,
(%) a€A = (AP c?2)P(a.p).

For each fixed Borel measure u on ®2 and each € > 0 consider the modified covering
game Gi (A.e) defined as follows. Players I and I make moves as in Diagram 6G.5.
The restrictions are exactly like those in G#(A4.¢) defined in 6A.17, except that the
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I o, bo 81, bl
11 to 1
DiAGRrRAM 6G.5.
additional moves by, by, ... of I must also be 0 or 1 and we insist that the sets G,

produced by IT satisfy u(G,) < e/2*"+!. At the end of the run, binary sequences

o= (s, 51,...)
p = (by.bi....).

have been played by I and II has defined a sequence { G, },¢c., of finite unions of basic
nbhds in “2 with special properties. Set

G =U, G,

and put
I wins the run <= o ¢ G & P(a, ).

It is now easy to mimic the proof of 6A.17 and show that if G| (4. ¢) is determined
for each ¢ > 0 and A4 has no Borel subsets of u-measure > 0, then u(4) = 0.

Assume now the hypotheses on A and check first that if 4 C “2isin FVA. then A4
can be define from some P as in (x) above, using the Al isomorphism of 2 with .
It follows that for each 4 C @2, if A € IV A, then the game G1'(A4,¢) is determined
and hence if 4 € IV A and A has no Borel subsets of u-measure > 0, then u(A) = 0.

Given 4 C 2 in EINA, let C = ®2\ A4 and choose a Borel set CoC by 2H.7 so
that C \ C = C N 4 contains no Borel set of u-measure > 0. Since C € FVA. we
then have that x(C N 4) = 0 so that C and hence 4 = “2\ C is u-measurable.

The result holds for arbitrary product spaces X’ because it is clearly preserved under
Borel isomorphisms. -

Solovay’s original proofs of these regularity results for £} depended heavily on
metamathematical ideas. We will come back to them in Chapter 8, as the metamath-
ematical approach illuminates these theorems from an interesting and very different
point of view.

6H. Historical remarks

! As with so many other basic notions of our subject, infinite games were introduced
into descriptive set theory by the Polish mathematicians of the period between the two
world wars. Mazur invented the **-game (for the reals) and conjectured its connection
with category, 6A.14; Banach verified the conjecture but did not publish the proof.
(Later Oxtoby [1957] proved a generalization of 6A.14 to arbitrary topological spaces. )

2Gale and Stewart [1953] introduced into the literature the general notion of an
infinite game of perfect information and began a systematic study of these games.
They proved that closed (and open) games are determined and that not all games
are determined and they asked some basic questions, e.g., if all Borel games are
determined.
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3Wolfe [1955] proved Det(X9) and some time later, Davis [1964] established Det(X9)
in one of the fundamental early papers on the subject. For many years this was
the strongest result in the direction of establishing determinacy, until Martin [1970]
proved Det(Z1) granting MC (the hypothesis that there exists at least one measurable
cardinal). Using the new methods introduced by Martin and ideas of Baumgartner,
Paris [1972] established Det(gg) in ZFC. Finally Martin [1975] completed this circle
of results by proving the determinacy of all Borel sets in ZFC. The argument in
Section 6F is a version of Martin’s considerably simpler, second proof of this basic
result in Martin [1985].

4By 6A.12, Det(X!}) is not a theorem of ZFC, and all proofs of determinacy for
larger pointclasses similarly depend on large cardinal axioms, typically much stronger
than MC; and while determinacy hypotheses cannot directly imply the existence of
large cardinals (larger than some strongly inaccessible), it is often the case that for
reasonable A, Det(A) is equivalent to the “analytical content™ of some natural large
cardinal hypothesis, suitably defined, cf. the remarks at the end of Section 8H. p. 468.
This fundamental connection between two very different kinds of extensions of ZFC
was realized gradually through the 1970s, primarily because of work of Martin, but it
developed very rapidly after 1980 and it has produced the deepest and foundationally
most significant results of our subject since the first edition of this book. For an
expository account and a history of these developments, the reader can consult the
introduction to Neeman [2004] and Steel [2007]. Here we will confine ourselves to a
few remarks, necessarily somewhat vague because we do not have at hand the precise
definitions of the relevant large cardinal axioms.

Martin [1980] showed that Det(X}) follows from the existence of a non-trivial, iter-
able elementary imbedding of some V into itself, and later Woodin established PD on
the basis of similar, stronger axioms. These axioms can be viewed as natural extensions
of MC, but they are very powerful, and the proofs of Martin and Woodin created the
impression that PD was also an extremely strong hypothesis, stronger than all the then
known large cardinal axioms. But in fact it is not: the seminal Foreman, Magidor,
and Shelah [1988] (which was not primarily concerned with problems in descriptive
set theory) introduced far-reaching new ideas and techniques and established that
all sets in L(N') are Lebesgue measurable from the existence of a supercompact cardi-
nal, a relatively mild axiom in this context. Following this, Martin and Steel [1988],
[1989] proved PD by assuming the existence of infinitely many Woodin cardinals, an
axiom substantially weaker than the existence of a supercompact cardinal. Combined
with Woodin [1988]. this work also shows that a slightly stronger large cardinal hy-
pothesis (still much weaker than the existence of a supercompact) implies that a//
sets in L(N) are determined, a powerful proposition which we will discuss briefly in
Section 7D and again in Chapter 8, with the proper definitions at hand. The Martin-
Steel-Woodin Theorem has been without doubt the most fundamental advance in
descriptive set theory since 1980.

3In addition to proving Det(XY), Davis [1964] introduced the *-game (which he
attributed to L. Dubins) and established the connection of this game with perfect sets,
6A.10 and 6A.11.

This interpretation of consequences of determinacy hypotheses was considered at
about the same time by Mycielski and Steinhaus [1962], who introduced the false (in



292 6. THE PLAYFUL UNIVERSE [6H

ZFC) Axiom of (full) Determinacy
AD <= Det(Power(N))
<= every subset of A is determined.

They suggested that it may be useful to study an axiomatic set theory in which AC is
replaced by AD, because it excludes peculiar counterexamples—all sets are absolutely
measurable, they have the property of Baire, etc. (Mycielski [1964] further suggested
that AD may be satisfied in some universe of sets smaller than the standard collection
of all sets, perhaps one which contains A/'—which in retrospect may be viewed as
conjecturing the Martin-Steel-Woodin Theorem, proved more than 40 years later.)

"Proofs of the regularity results from AD were given in the sequence of papers
Mycielski [1964], Mycielski and Swierczkowski [1964] and Mycielski [1966]. In our
exposition in 6A we have taken the point of view that these results relate Det(A)
with the regularity of the pointsets in A, whenever A is an arbitrary pointclass with
certain reasonable closure properties. Now 6G.10-6G.12 appear as refinements which
establish the regularity of sets in FVA from Det(A).

8 At the same time, the proposal in Mycielski and Steinhaus [1962] to study conse-
quences of the false hypothesis AD has led to a non-trivial and significant program.
We will discuss it briefly in 7D. Let us just notice here Solovay’s early result

AD = X, ia a measurable cardinal,

(7D.18) which witnessed in a spectacular fashion the power of AD beyond descriptive
set theory.

°In the most important single contribution to the theory presented in this chapter,
Blackwell [1967] gave a new proof of the Separation Theorem for X! sets which
used the Gale-Stewart Theorem. Addison and Martin instantly saw the possibilities
of this approach and independently established that Det(A}) = Reduction(T1});
then Martin again and Moschovakis (who heard Addison lecture on his results)
proved independently the First Periodicity Theorem 6B.1. These theorems appeared
in Addison and Moschovakis [1968] and Martin [1968] and started the sequence of
results which has led to the present substantial structure theory for the projective sets
and pointclasses on the basis of the hypothesis of Projective Determinacy.

10T he few results on measurable and Ramsey cardinals which we covered in 6G are
well-known and we will not attempt to trace their history here: see Drake [1974].

T As we pointed out in the introduction to this chapter, Solovay’s regularity results
about X} sets were the first applications of the hypothesis MC (or any strong axioms
for that matter) to problems in descriptive set theory. These were established at
about 1965 and they were very well known among set theorists long before their
(partial) publication in Solovay [1969]; they were instrumental in creating the climate
where the use of strong hypotheses in descriptive set theory became tenable. Solovay’s
proofs were metamathematical (he used forcing) and had a very different flavor from
the game-theoretic arguments we gave in 6G.10, 6G.11 and 6G.12. We will come back
to them in Chapter 8.



CHAPTER 7

THE RECURSION THEOREM

Kleene’s Recursion Theorem is a very simple fact with remarkably broad and impor-
tant consequences. Combined with techniques also pioneered by Kleene, it allows
us in effect to define recursive partial functions by transfinite recursion and to obtain
uniform versions of many results, in the sense of 3H.

After proving the Recursion Theorem in a wide context in 7A, we will use it in 7B to
establish the Sus/in-Kleene Theorem, the central result of the effective theory. In 7C we
will consider briefly the general theory of inductive definability (of relations) and in 7D
we will look at some of the consequences of the so-called Axiom of (full) Determinacy.

It is perhaps an indication of the significance of the Recursion Theorem that this
section on full determinacy come in this chapter; as it happens, one of the key lemmas
in this most set theoretic part of our subject depends on the Recursion Theorem for
its proof.

7A. Recursion in a X*-pointclass

Let us call for convenience I' a X*-pointclass if it is a X-pointclass which is w-
parametrized and has the substitution property, as in 3G—these are the pointclasses
which carry a very smooth theory of I'-recursion.

For each space X, let

G =GCNxXxo

be the fixed (good) universal set for the ' -subsets of X x w and for each ) define the
partial function
UrX'y:U:NxXAy
as follows:
U(e.x)| <= there exists a unique y € ) such that
(Vs)[y € Ny < G(e.x.9)].
U (e. x) = the unique y such that (Vs)[y € Ny, < G(e. x.9)];

in other words, U is the largest partial function on X to ) which is computed on its
domain by G. Finally, for each ¢ € N define the partial function

e}ty ={e}:x =Y
by
{e}(x) = Ule. x).

(Sometimes ¢. of f is used for {e} but Kleene’s original notation is well established
and really easier to use in the long run.)

293
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We will always omit the cumbersome superscripts and subscripts X', ), I', unless
they are necessary for clarity.

7A.1. TaeoreM (Kleene). Let T be a fixed £*-pointclass.
(1)] For each X, Y. the partial function

UrX'y:U:NxXAy
is T'-recursive on its domain.

(ii) 4 partial function [ : X — Y is T -recursive on its domain, if and only if there is
some e € N such that f C {e}, i.e.,

Sl = f(x) ={e}x).

(iil) 4 partial function f : X — Y is T-recursive on its domain, if and only if there is
some recursive e € N such that f C {e}, i.e.,

f )] = f(x) ={e}x).
(iv) For each space X of type 0 or 1 and each W, Y, there is a recursive function
SEWY =8N x X - N
such that foralle e N', x € X,
{e}(x.w) = {S(e. x)}(w).

Proor. (i) is immediate and (ii) and (iii) follow trivially from the properties of a
good parametrization, 3H.1. To prove (iv), let

S NxX—->N
be chosen by 3H.1 so that for all ¢, x, w, s,
Gle.x,w,5) < G(S(e,x).,w,s). -

The Recursion Theorem follows from this result by a simple (if somewhat subtle)
diagonalization argument.

7A.2. KLEENE’S RECURSION THEOREM.!") Let T be a *-pointclass and suppose
fNxX =Y
is I -recursive on its domain; then there exists a fixed e* € N such that for all x € X,
(%) flemx)l = [f(e".x) = {e"Hx)].

In fact, there is a fixed recursive function R(a) depending only on the spaces X, so
that if a is a code of [ in the sense that

fle.x)] = fle.x) = {a}(e.x).

then we can take

in (x).
In particular, if f is I'-recursive on its domain, then we can find a recursive €* which

satisfies (x).
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Proor. Given X and ), define
g NXNxX—=Y
by
g(p.a.x)={a}(S(B.B.a).x).
where
S NXNXN) =N

is recursive and satisfies (iv) of 7A.1. Clearly g is I'-recursive on its domain, so by 7A.1
there is a fixed recursive g; so that

g(fa. X)) = g x) = {eo} (B o x) = {S(e0. . @) }(x)
by the key property of the function S. Taking § = ¢ in this implication, we obtain
{a}(S(Eoﬁo,Oé),.x) = {S(gg. €0, ) }(x)
and we can satisfy () by setting

e* = R(a) = S(eg. g0, @). -

The Recursion Theorem has been described as a fixed point theorem for maps on
the collection of I'-recursive partial functions which are uniform in the coding for
these objects introduced in 7A.1. This point of view is a little artificial when we
consider partial functions whose domain is not in I', but in any case, the applications
of the theorem are hard to couch in topological terms. They tend rather to exhibit a
connection between this result and definition by recursion as the next result plainly
shows.

7A.3. TaeoreM. If T is a T*-pointclass, then the collection of T-recursive (total)
functions is closed under primitive recursion.

ProOF. We are given total I'-recursive maps
g:X—-)y
h:YxoxX =Y,

and we define
froxX =Y

by the recursion

{ J0.x) = g(x)
=h

f(m+1.x) (f (m.x).m,x).
To see that f is also I'-recursive, let
(e.m.x) = g(x), ifm=0,
pre )= h({e}(m —1.x).m —1.x). ifm>0,

where
{e}(k.x) = Ule.k.x)

is [-recursive on its domain as a function of €, k, x by 7A.1. It is easy to check (using
the substitution property) that ¢ is ['-recursive on its domain, so by the Recursion
Theorem there is a fixed recursive £* so that

ple*.m.x)| = [p(e*.m. x) = {e*}(m. x)].
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For this €*, then we have
{e7}(0.x) = g(x).
{e*}(m +1.x) = H({e*}(m. x).m. x)

which implies by a trivial induction on m that {e*}(m, x) is always defined and for
each m, x,

(e Hom.x) = £ (m. x).
Now f is I'-recursive by 7A.1, since £* is recursive. -

We will see in the exercises that the collection of partial functions which are I'-
recursive on their domain is also closed under primitive recursion (when I' is a X*-
pointclass), but this simple result already shows the power of the Recursion Theorem.
Even for the simple case I' = 2? of ordinary recursion, this is the simplest known
proof of 7A.3 (for functions into spaces ) which are not of type 0).

Exercises

Let us first consider a simple case of definition by effective transfinite recursion.
Suppose < is a (strict) wellfounded relation with Field(<) C X and

f : Field(<) — Y

is defined by recursion on <, 1.e., f satisfies the equation
(1) f(x)zG({(u,f(u)) :u<x},x)

which determines it uniquely on Field(<) (by induction). Now the map G is defined
on

Domain(G) = {(h.x) : x € Field(<) and & : X — Y is a partial
function with Domain(h) = {u : u < x}}:
we will say that G is [-effective (I" a £*-pointclass) if there is a partial function
g NxX—=Y
which is I'-recursive on its domain and such that foreach e € A" andeach x € Field(<),
(Vu)[u < x = {e}(u)l]
— gle.x)]| &gle.x) = G({(u, {e}(w)) ru =< x},x).

If f is defined by (1) with a [-effective G, we say that f is defined by I'-effective
recursion on <.

7A.4 (Kleene.V). Show that if I' is a Z*-pointclass and f : X — Y is defined by
I'-effective recursion on some wellfounded relation < such that Field(<) C X, then f
is ['-recursive on Field(<).

HINT. Let g “compute” G as above and and choose a recursive ¢* € A by the
Recursion Theorem so that

gle™. x)| = {e"}(x) = g(e". x):
now show by induction on x € Field(=<) that f(x) = {e*}(x). =
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Notice that there are no effectivity hypotheses on the relation < in this result and in
fact we can obtain €* in the proof directly from g, with no knowledge of the relation <;
this is important in more subtle applications of this method where we define ¢* before
we even know that < is wellfounded and then show that it has whatever properties we
need if the relevant relation < happens to be wellfounded.

7A.5. Provethatif I is a Z*-pointclass, then the collection of partial functions which
are I'-recursive of their domain is closed under both minimalization and primitive
recursion.

HiNT. One must be a bit careful with the definitions. For minimalization,
nilg(x,i) =0l=w <= glx.w) =0& Vi< w)(3j)[g(x.i) = j+1]

and the argument uses only the assumption that I" is a Z-pointclass. For primitive
recursion we must understand the basic equations literally for partial functions g, /,

70, x) = g(x),
Sm+1.x)=h(f(m.x).mx).

so that for example if f(m, x)], we must have (0, x),..., f(m — 1, x) all defined.
The proof is the same as that of 7A.3. -

It is occasionally useful (particularly in the effective theory) to give a coding in @
for the partial functions which are I'-recursive on their domain. Fix a £*-pointclass I
then and choose G* C w x X for each X to be universal for I' [ X by 3H.3, so that
the parametrization system {G*} is good. Using the same notation as in the case of
parametrizations in A/ (no conflict can arise), define the partial function

UY =U:oxX =Y
by
U(e.x)| <= there exists a unique y € Y such that
(Vs)[y € Ny < Gle,x.s)].
U (e, x) = the unique y such that (Vs)[y € Ny < G(e, x,s)]
and for each e € w. define the partial function
XY =fe}: X~V
by
{e}(x) = Ule, x).
7A.6. Let T be a *-pointclass and define U, {e}1~ as above.
(i) Show that each Ulf( Y is T recursive on its domain.

(i) Show that a partial function f : X — ) is I'-recursive on its domain if and only
if there is some e € w so that

f(x) = f(x) = {e}(x).
(iii) Show that for each space X of type 0 and all W. Y, there is a recursive function
S?’W*yzS:wxX%w
such that for alle € w, x € X,

{e} = {S(e.x)}.
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re.,forallecw, x e X, wewWw,
{e}(x,w) = {S(e.x)}(w).

(iv) Show that if /' : @ x X — Y is I'-recursive on its domain, then there exists
some e¢* € w so that for all x € X,
flem.x)l = [f(e".x) = {e"}(X)I:

in fact we can take e* = r(a) where r is a fixed recursive function (depending only on
X.Y) and a is any member of @ such that

fle.x)l = fle.x) ={a}(e.x).

HinT. Follow the proofs of 7A.1 and 74.2. -

In the simple case I = 2(1) and on spaces of type 0, this result gives Kleene’s original
calculus of recursive partial functions.

7B. The Suslin-Kleene Theorem

The key ingredient in the proof of this central result of the effective theory is the
method of definition by effective transfinite recursion which we described first in 7A.4.
In fact the “constructive proof” of the Strong Separation Theorem 2E.1 which we
gave in Chapter 2 defines the separation sets by an effective recursion and all we have
to do here is to recast that argument in the language of codings.

Let us first introduce a new coding of Borel sets which is somewhat easier to work
with than the coding of 3H. In this definition and in the rest of this section recursive
always means XV-recursive, i.e..

{£3(0) = {e)m ).

We define by recursion on the countable ordinal ¢ the set BC: of Borel Codes for 22
as follows:

BCy = {a: a(0) = 0},
BC;: = {a ca(0) = 1& (Vn)[{a*}(n)] & {a*}(n) € Uf?<i BCn]},
if & > 0, where
of(t) =a(t+1)

and {a*} : @ — N is the partial function of 7A which is (X{-) recursive on its domain.
For each fixed space X and each &, we define the coding

me :BC: » 20 | X
by the recursion

ney (@) = N(X.a(1)).
ned(a) = U, (¥ \ e, (fa"}(n))

where
n(n) = least 5 so that {a*}(n) € BC,,.
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Finally, put
BC= : BC: = the set of Borel codes,
e = c ncgf( .

We will call 7e® (o) the set with Borel code o.

In addition to starting with the basic nbhds rather than arbitrary open sets, this
coding differs from that of 3H in the way we choose to code infinite sequences of
irrationals: instead of the simple mapping

a = (a)o. (@)1 (@), . ..
we took
a = {a"}0). {a*}(1). {a*} 2).....
which depends on the messy basic definitions of X¢-recursion and is not defined for
all a. There are technical advantages to this new coding which will become clear
soon—and it is equivalent to the coding of 3H as we will show in 7B.8.

Let us first prove a couple of simple lemmas about this coding.
7B.1. LemMmA. (i) 7 < & = BC, C BC: &, = 7z | BC,. so that 7 is a coding of
the Borel subsets of X with BC the set of codes.
(ii) The class of Borel subsets of X is uniformly closed under complementation, count-
able union and