Homework 8 Solutions

Igor Yanovsky (Math 151B TA)

Problem 1: Consider the data in the following table

i 1 2 45
yi 2 3 5 6 (1)

We want to find the least squares polynomial of degree 2
P(z) = ag + aiz + aza? (2)
for the data in the following ways.

(a) Write the normal equations and solve them analytically.

(b) Write a linear least squares problem min,crs E = ||Au — b||2 for the data, where
u = (ap,a1,a2)”. Solve this linear least squares problem analytically with QR decompo-
sition. Compute the error E.

(c) Write a program for part (b) to verify your solutions.

Solution:
Note that in the formulation above,

9 A

1 1 7 Y1
1 zo 3 a0 Yo
A= 2 u=|a |, b=
1 z3 x3 Y3
2 a2
1 x4 x| Ya

Plugging in the values of x; and y; into Au = b, we obtain

11 1 . 2
1 2 4 0 3
Au=11"4 16 21_5_1"
1 5 25 2 6

It is better to approach part (b) first. From part (b), we see that the polynomial in (2) is
a line.

a) Note: The solution to the normal equations described in this part is a simplifica-
tion. Consult pages 484-486 of textbook for a proper procedure of writing out normal
equations.

We have a linear least squares problem

min F = ||Au — bl].
u€R3

The normal equations associated to this problem are

AT Ay = ATh.



For the problem above, we have

(11 1 1 1; 411 11 1 1 g
L2 4 5 11 qefu=|124 51,
|1 4 16 25 L 5 o5 1 4 16 25 6
[ 4 12 46 16
12 46 198 |u=| 58
| 46 198 898 244
Thus,
1
u=(ATA)ATh=|1]|. v
0

Thus the polynomial in (2) is written as

P(z)=1+=x.

b) We now use Gram-Schmidt process to compute the QR decomposition of A. Be-
low, a1, a2, as are the columns of matrix A, not the elements of vector u. First compute
the columns of Q:

1
o 1
qgq = ap = 1
1
1 1
q 1 1 i
Q1 = f]l = — = % 5
l1G1]2 1 ?
1 2
1 z ~2
G2 = a2 — (qra2)q1 = A -6 1| = E
2
1
5 3 2
__2
2] |V
(jg 1 -1 V10
q2 = = = — = \{7 5
la2ll2 /10 ; Vio
V10
2
1 ! T 3
- T T 4 5 60 _% -3
@ = a3—(qra3)q — (g a3)q2 = 16 -23 i - f = _3 ’
3 1
2 2
_ B 15| =3
BT Mel 3| -3 | -3
3 1
2 2



We now compute the elements of R. The elements of R on the diagonal are:

rin = @l =2,
2 = |||z = V10,
r33 = ||gs]l2 = 3.

The elements of R in the upper triangular part are:

re=gqiay = 6,
7’13=q1Ta3 = 23,
. 60
23 =(gza3 = \/TT)
Thus,
1 __2 1
o0
Q = [aeal=|1 YO 31|,
T L
2 V1o 2
I@llz afaz g a3 2 6 23
R = 0 llz gdas | =|0 V10 %
0 0 Jlgsll2 0 0 3

@ is 4 x 3 matrix with orthonormal columns. We can assume [Q, g4] is a square orthogonal
matrix for a vector g4. This vector can be obtained by choosing any nonzero vector a4 such
that a1, as,as, aq are linearly independent, and then continuing the above Gram-Schmidt
process. )

Thus, we have

|Au—bll3 = [|QRu—0l3
= ||[Q,qa)” QRU—b)H

[
_Q4 2

= ||Ru—Q"b|j3 + ||a b]|3,

which is minimized with

[

v=R1QTb=1|1|. v

o

Thus the polynomial in (2) is written as
P(z)=1+=,

which agrees with part (a).
The error is

11 1 . 2 0
. 12 o4 3 o B

[ Au _b||2_H 1 4 16 (1) |5 _H 0 =0
15 25 6 o'

That is, the error to this minimization is 0. But this is not surprising, since this polynomial
describes the relationship between x; and y; exactly.
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¢) Implementing the QR factorization and running it to decompose A, we obtain the
following matrices:

[ 0.5 —0.6325 0.5
- 0.5 —-0.3162 —-0.5
@ = 0.5 0.3162 —-0.5 |’
| 0.5 0.6325 0.5
[ 2.0 6.0 23.0
R = 0 3.1623 18.9737
0 0 3.0

This agrees with our computation in part (b). The rest of calculations above can also be
verified.



Problem 2: For the data in problem 1, construct the least squares approximation of the

form be®”, and compute the error.

Solution:
y = be™”,
we can convert this problem to

logy = logb + ax.

The resulting system is

1 e log Y1
Ay — 1 29 logb _ log y2 b
1 x3 a log y3
1 @y log ¥4
For the data given in (1), we have
11 log 2
1 2 logb | | log3
1 4 a | logh |
15 log 6
QR factorization of A gives
1 _ 2
2
P
Q = [aeal=|1 Y°/,
2 V1o
1 2
2 V1o
r o~ | llalk Q{GQ _|12 6 |
0 llg2ll 0 V10

Instead directly minimizing the least squares error to

Thus, (don’t confuse two different entities denoted as b below)

logb | 1,7, | 0.4858
[ a ]_R Qb_[0.2708
"
Hence, logb = 0.4858, a = 0.2708, or
b= 04858 ¢ = 0.2708.
The error is
11
. _ 1 2 0.4858
[ Au” = bll2 = H 1 4 [ 0.2708
15

]_

log 2
log 3
log 5
log 6

(3)
0.063482
—0.071178

H _H 0.040304 H —0.114195.
2 0.048090

Note that this error corresponds to the modified problem (3).



Problem 3: In the Gram-Schmidt QR process for A = [aj, az, - ,a,] € R™*", assume
we have obtained j —1 (j < n) orthogonal columns ¢i, g2, - - - ,¢j—1. During step j we have
the following formulas

G =ai — (g1 aj)ar — (3 ap)2 — -+~ = (g5 105)q5-1, 73 = 4] a,
q; = 4 . (4)
15112

Show that ||g;||2 = q;‘-raj.

Solution: Hint: One way to approach this problem is to observe that
g = Pja;
T 1Pagl2

where P; denotes an orthogonal projector.
Also, note note a simple fact:

=3

1
1

I

q1 = aq, Q=
1G]l

=}

we have ||q1]]2 = qlTal.



Section 8.5, Problem 4: Find the general continuous least squares trigonometric poly-
nomial S, (z) for f(z) =e® on [—m, 7]

Solution: The continuous least squares approximation S, (z) is in the form

Sp(z) = % + Z(ak cos kx + by sin kx),

k=1
where

-t

ag = — x) dx

0 ) . )
1 ™

ap = / f(x) cos kx dx,
™ —T
1 (7 .

b, = / f(z) sin kz dz,
™ —T

with £ =1,2,.... Thus,

1 (7 1 = 1
ay = / e’ dr = —e® =—(e"—€e), V
™ J_x ™ rT=—T ™
1 ™
ap = / e’ coskx dz,
™ —Tr
1 ™
by = / e’ sin kx dx.
™ —T

To determine aj and by we need to evaluate / e® cos kx dr and / e® sin kx dzx, respectively.

Integrating the first integral by parts twice, we have

3Csink‘x_/ gSinkr 2:sin/’m:_k mcosk:c_/ L coskx
k: ef——dr=e"— e —3 e 5

xX.

/excosk:md:c =e
Multiplying both sides by k?, we obtain

k2 / e’ coskxr dr = ke*sinkx + €* coskx — /e‘” coskx dx,

or
/ex cos ko di — ke” sin kx N e’ coskx
k241 k2417
Thus,
1 ™
ap = / e” cos kx dx
™ —T
I [kex sin kx + €* cos kx] o
a 7'('(,1{?2 + 1) T=—T
(_1)k T -7
7r(k2+1)(e e ) v
Similarly,
/ * gin ko d — _ ke'coskx n e’ sinkx
B IS R



Thus,

1 ™
b, = / e” sin kx dx
7T —T
1 T T 3 =
— m[—ke coskx + e smk:x] -
k(_l)k T -
= e e v

Thus, the continuous least squares trigonometric polynomial is

1 - k- (=1)* ™ -7\ o
Sp(z) = 27Te —e —I—Z[ k2—|—1 e —e )cosk:r—7r(k(2+)1)(e —e )smkx

e —e Tl (D) -
— 7T{2+;(k2+1)(coskx—ksmkx). v



Section 8.5, Problem 6: Find the general continuous least squares trigonometric poly-
nomial Sy (z) for

fz) =

-1, if —m <2<,
1, ifo<z<m.

Solution: The continuous least squares approximation S,(z) is in the form

Sp(z) = a0 + Z(ak cos kx + by sinkzx),

2
k=1
where, for k=1,2,...,
1 ™
ag = — f(z)dz,
™ -7
10 I
L - ™ Jo
1 ™
ap = — f(x) cos kx dx,
™ —T
1 0 1 s
= / —1‘COSk$d$+/ 1-coskxdx,
™ J_x T 0
_ _lsink:c =0 lsinkx x=W:0+0:O’ Y
T k r=—T ™ k =0
1 v
by = — f(x)sin kz dz
™ —Tr
1 /0 I
= / —l-sinkxda:—i—/ 1 sin kx dx,
™ J_x ™ Jo
B lcos ka |z=0 B lcos kax |z=m
N ™ k T=—T ™ k =0

(-1 -1
<1 — (161)’“>
(=)

- 1(1 - (k—l)'“> _

1
™
1
™



Section 8.5, Problem 7(a): Determine the discrete least squares trigonometric polyno-
mial S, (x) for f(z) = cos2z, using m = 4, n = 2, on the interval [—m, 7).

Solution:  We use the notation of Theorem 8.13, which states that the constants in
the summation

n—1
Sp(x) = % + a, cosnx + Z(ak cos kx + by sin kx),
k=1
are
1 2m—1
ak:% Zyjcosk:xj, for each Kk =0,1,...,n,
7=0
and

12m71
b, = — isin kx; f hk=1,2,...,n—1.
k= jz;)yjsm T, or eac ,2,...,m

For our problem, we will find the discrete least squares polynomial of degree n = 2, Sy(x).
For m = 4, the nodes are
rj=—m+ L and yj = f(zj) =cos2x;, for 7=0,1,...,7. 2m—-1=7)
m

The trigonometric polynomial is

Sa(x) = % + ag cos 2z + (aj cosx + by sinz), (5)
where
1« 1«
ar = Zyj coskx; = 1 ZCOS 2z;coskx;j, foreach k=0,1,2. (n=2),
§=0 §=0
1« 1 <
by = 1 yjsinkz; = 1 ZCOS 2xjsinkx;, for k=1,
§=0 j=0

and the coefficients are

o = §> s [o(ns I eosfo- (< 2n)]

2

O =

jz:;)cos {2<—n+iw>}cos [1-(—7r+i )]

= i(cos(—%r) cos(—m) + cos ( — 3%) cos ( — %) + cos(—m) cos ( - g)
+

ap =

B~ =

T T T T 3T 3T
cos(— —) cos(— 7) +COSOCOSO+COS§COSZ —l—coswcosE + Ccos — cos —

4 2 4

10

2

)

37r>

37 m 7r
cos(—2m) + cos ( - 7) + cos(—m) + cos ( - 7) + cos 0 + cos 5 Teosm+cos -



v = jlécos[z(_ﬂiﬂ)}cos[z.(_Hiﬂ)]

= l(cos(—%r) cos(—2m) + cos ( — 3%) cos ( — 3%) + cos(—) cos(—)

o5 (= 2 ) cos (= 2) +cos0cos 0+ cos - cos - + + cos 2T cos 3T
cos 5 cos 5 cos 0 cos cos 5 Cos 5 COS 7T COS T + COS 5 cos >
= 17
1 ¢ j j
by = 4ZOCOS[Q<—7T+4TF>}Sin|:1‘(—7T+47T>:|
J:

1 3 3
= 1 (cos(—27r) sin(—m) + cos ( - g) sin ( - ZW) + cos(—) sin ( - g)
+cos (= 2 )sin (= T) + cos0sin0 +cos = sin % +cos wsin T + 37 gin 57
cos sin cos 0sin 0 + cos o sin o + coswsin o + cos —-sin —
= 0.

Thus, the trigonometric least squares polynomial Sy (z) defined in equation (5) is Sa(z) =
cos2z. Vv
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Section 8.5, Problem 12:

a) Determine the discrete least squares trigonometric polynomial Sy(z), using m = 16,
for f(x) = x?sinx on the interval [0, 1].

b) Compute fol Sy(z) de.

c) Compare the integral in part (b) to fol 22 sinx du.

Solution: Note that here you have to make a choice how to define m and the values
j can take.
To find the discrete least squares approximation Sy(z) for the data {(z;, yj)}}ig, where !

Joq_J
16 16

first requires a transformation from [0, 1] to [—m, 7]. This linear transformation is

and y]:f(x]):$251nx]7 ‘7’20’]_"."]_57

xj:O+ j

zj =m(2x; —1).

Zj 1
Thus, given z; we can transform to x; with z; = =L 4+ — which maps [—7, m] back to

27 2
[0, 1].
The transformed data is of the form

A 1 15
{(51GE )}

(This transformation distributes the data of f defined on [0, 1] onto [—m,7].)
The least squares trigonometric polynomial is, consequently,

3
Sa(z) = % + a4 cosdz + Z(ak coskz + by sin kz),
k=1
where
1.z 1
ak_lﬁgf<27jr+2> coskzj, foreach k=0,1,2,3,4, (n=4)
and

15
1 |
by = 6 JE:O f(%r + 5) sinkzj, foreach k=1,2,3.

Evaluating these sums produces the approximation S4(z), which can be converted back to
the variable z.

Note that j = m — 1, and not 2m — 1, as in the book, since the problem is different.
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Section 8.5, Problem 15: Show that the functions

¢o(z) = 3,
¢1(x) =cosz,...,dn(x) = cosnz, (6)
Gni1(z) =sinz, ..., dop—1(z) =sin(n — 1)z

are orthogonal on [—7, 7] with respect to w(x) = 1.

Solution:  {¢o, P1,...,Pn} is said to be an orthogonal set of functions for the interval
[a, b] with respect to the weight function w if

0, when j # k,
ar >0, when j=E.

b
/¢j(3«")¢k($)w(x)dm — {

Note that

g . 0, when j # k,
cos jx cos kx dx

—r m, when j=k.

w, when k=k.

1 1 T
—.—dr = —,
/W2 2 2

—T

g 0 h | £ k
/ sinjrsinkrdr = {’ when j 7k,

™
/ cosjrsinkxdr = 0, forallj, k

—T

/ %coskxdm = 0, forallk

/ %sink‘xdm = 0, forallk

—Tr

Thus, the functions in (6) are orthogonal on [—m, 7| with respect to w(z) = 1.
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