Homework 3 Solutions

Igor Yanovsky (Math 151B TA)

Section 5.11, Problem 10: Show that the fourth-order Runge-Kutta method,
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when applied to the differential equation ¥’ = Ay, can be written in the form
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Solution: We have
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Section 5.11, Problem 15(a): Show that the Implicit Trapezoidal method

h
Wit1 = w; + 5 [f(ti+lu wiy1) + f(ti, wi)l,

is A-stable.

Solution:  The region R of absolute stability is R = {hA € C | |Q(h))| < 1}, where
wi+1 = Q(hN)w;. A numerical method is said to be A-stable if its region of stability R
contains the entire left half-plane.

In other words, in order to show that the method is A-stable, we need to show that
when it is applied to the scalar test equation 3y = Ay = f, whose solutions tend to zero
for A < 0, all the solutions of the method also tend to zero for a fixed h > 0 as ¢ — oco.

For the Implicit Trapezoidal method, we have
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Note that for Re(hA) < 0, |Q(hA)| < 1, and for Re(hX) > 0, |Q(hA)| > 1. Therefore,
the region of absolute stability R for the Implicit Trapezoidal methods is the entire left
half-plane, and hence, the method is A-stable.

Section 5.11, Problem 7(b): Solve the following stiff initial-value problem using the
Trapezoidal Algorithm with TOL = 107°

y =20y —t)>+2t, 0<t<1,
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y(0) = 3.
with h = 0.1. Compare the results with the actual solution y(t) = t? + Le=2".

Solution: Slightly modifying the code I posted on my homepage for the problem above
and running it gives the following results:
N =10,h =0.1,t = 1.0,w = 1.0488, y = 1.0000, error = 4.87754e — 002.



Section 5.6, Problem 6(a): THERE IS A TYPO IN THE BOOK. THE SOLUTION
TO THE INITIAL VALUE PROBLEM DOES NOT MATCH THE ACTUAL SOLU-
TION. WE WILL BE USING A DIFFERENT ODE.

Use Adams Fourth-Order Predictor-Corrector algorithm of section 5.6 to approximate
the solutions to the initial-value problem
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with h = 0.1. Compare the results with the actual solution y(t) = 3 +e 2,

Solution: For this problem, we compute starting values w;, i = 1,2,3 using the fourth
order Runge-Kutta method:
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For i = 4,5,... we use Adams Fourth-Order Predictor-Corrector method, which consists

of the predictor Adams-Bashforth, and corrector Adams-Moulton techniques.
The fourth-order Adams-Bashforth technique, an explicit four-step method, is defined as:

Wit1 = W; + 2%1 55 f (ti, w;) — 59f (tim1, wi—1) + 37f (ti—2, wi—2) — 9f (ti—g, wi—3)]. (5)

The fourth-order Adams-Moulton technique, an implicit three-step method, is defined as:

Wil = w; + % (9 (ig1, wig1) + 19 (s, wi) — 5f (tim1, wi1) + f(tio, wi—2)].  (6)

Running the Adams Fourth-Order Predictor-Corrector algorithm gives the following re-
sults at the final step:

N =10, h = 1.0000000e — 001, ¢ = 1.00,

w = 4.6864787414e — 001,y = 4.6866861657e¢ — 001, error = 2.0742429498e — 005.

You can verify that the solutions obtained with the method are indeed satisfying the
fourth order accuracy. Check this, for example, running the code with h = 0.01 and
h = 0.005 and calculate the order of convergence using the formula from homework 2.



Section 5.6, Problem 12: Derive the Adams-Bashforth three-step explicit method

h
Wi = wi + 75 [23f (ti,wi) — 16 f (ti—1, wi1) + 5 (tim2, wi—2)] (7)
by the following method. Set
Y(tiv1) = y(t:) +ahf(ti,y(t:)) + Ohf(ti—1, y(ti-1)) + chf(ti—2, y(ti-2)). (8)
Expand y(tit1), f(ti—2,y(ti—2)), and f(ti—1,y(ti—1)) in Taylor series about (¢;,y(t;)), and
equate the coefficients of h, h%, and h3 to obtain a, b, and c.
Solution: Since y'(t;) = f(t;,y(t;)), we can write equation (8) as
y(tiv1) = y(ti) + ahy'(t;) + bhy'(ti-1) + chy/ (ti—2). (9)
Expanding both sides of (9) in Taylor series about ¢;, we obtain
y(t;) + hy'(t;) + %th”(ti) + %h‘gy”’(ti) + O(h*)
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Thus, equating the coefficients, we obtain
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hich gi =—, b= 16 —EPI ing these into (8), we obtain
which gives a = 5, b= —15, ¢= 5. Plugging these into (8), we obta

y(tiv1) = y(ti) + % [23f (i, y(t:)) — 16f (ti1, y(tiz1)) + 5f (tim2, y(ti—2))] + O(h%),
or
Wiyl = w; + % (23 f(ti,w;) — 16 f (tim1, wi—1) + 5 (ti—2, wi—2)].

The order of the local truncation for the Adams-Bashforth three-step explicit method is,
therefore, 7(h) = O(h?).



