HOME WORK III

DUE: FEB/08/2006

The following homework are mostly from Chapter I, section 2 in your textbook.

(1) Compute the absolute error and relative error in approximations of p by p^* (Use calculator!).

a. $p = \pi$, $p^* = 22/7$

b. $p = \pi$, $p^* = 3.1416$

- (2) Find the largest interval in which p^* must lie to approximate $\sqrt{2}$ with relative error at most 10^{-5} for each value for p.
- (3) Use the 64-bit long real format to find the decimal equivalent of the following floating-point machine numbers.

a. 0 10000001010 100100110000000 \cdots 0

b. 1 10000001010 010100110000000 \cdots 0

- (4) Find the next largest and smallest machine numbers in decimal form for the numbers given in the above problem.
- (5) Use four-digit rounding arithmetic and the formulas to find the most accurate approximations to the roots of the following quadratic equations. Compute the relative error.

a. $\frac{1}{3}x^2 - \frac{123}{4}x + \frac{1}{6} = 0$

b. $1.002x^2 + 11.01x + 0.01265 = 0$.

(6) Suppose that fl(y) is a k-digit rounding approximation to y. Show that

 $\left| \frac{y - fl(y)}{y} \right| \le 0.5 \times 10^{-k+1}.$

1

(Hint: if $d_{k+1} < 5$, then $fl(y) = 0.d_1 \cdots d_k \times 10^n$. If $d_{k+1} \ge 5$, then $fl(y) = 0.d_1 \cdots d_k \times 10^n + 10^{n-k}$.)