HOME WORK I

DUE: JANUARY/25/2006

Theoretical Part:

- (1) Determine a formula which relates the number of iterations, n, required by the bisection method to converge to within an absolute error tolerance of ε , starting from the initial interval (a,b). (Hint: Use the Theorem 2 in my note or Theorem 2.1 in the text book.)
- (2) Show that when Newton's method is applied to the equation $x^2 a = 0$, the resulting iteration function is $g(x) = \frac{1}{2}(x + a/x)$.
- (3) Use the Bisection method to find p_3 for $f(x) = \sqrt{x} \cos(x)$ on [0, 1].
- (4) The function $f(x) = \sin(x)$ has a zero on the interval (3, 4), namely, $x = \pi$. Perform three iterations of Newton's method to approximate this zero, using $p_0 = 4$. Determine the absolute error in each of the computed approximations. What is the apparent order of convergence?

Computational Part:

(1) Apply the Newton's method to find the solution to

$$x^3 - x - 3 = 0$$

starting with $p_0 = 0$. Compute $p_1, p_2, p_3, p_4, p_5, p_6$ and p_7 and compare pair of numbers $(p_0, p_4), (p_1, p_5), (p_2, p_6)$ and (p_3, p_7) . What can you conclude from this computations?

- (2) Use the Bisection method to find solutions accurate to within 10^{-5} (absolute error) for $e^x x^2 + 3x 2 = 0$ for $0 \le x \le 1$.
- (3) Find an approximation to $\sqrt{3}$ correct to within 10^{-4} using the Bisection method (Hint: Consider $f(x) = x^2 3$.)