
Midterm Review

Igor Yanovsky (Math 151A TA)

1 Root-Finding Methods

Rootfinding methods are designed to find a zero of a function f , that is, to find a value of
x such that

f(x) = 0.

1.1 Bisection Method

To apply Bisection Method, we first choose an interval [a, b] where f(a) and f(b) are of
different signs. We define a midpoint

p =
a + b

2
.

If f(p) = 0, then p is a root and we stop.
Else if f(a)f(p) < 0, then a root lies in [a, p], and we assign b = p. Otherwise, a = p.
We then consider this new interval [a, b], and repeat the procedure.

The formula for midpoint above generates values pn. We can bound an error of each
iterate pn for the bisection method:

|pn − p| =
b − a

2n
.

Note, as n → ∞, pn → p.

Practice Problem: The function f(x) = sinx satisfies f(−π/2) = −1 and f(π/2) = 1.
Using bisection method, how many iterations are needed to find an interval of length at
most 10−4 which contains a root of a function?

Solution: We need to find n such that:
b− a

2n
≤ 10−4.

We have
π

2n
≤ 10−4.

2n ≥ π

10−4
,

2n ≥ π104,

n log 2 ≥ log(π104),

n ≥
log
(
π104

)

log 2
= 14.94.

That is, n = 15 iterations are needed to find an interval of length at most 10−4 which
contains the root.
See Problems 1 and 3 in Homework 1 for other examples of bisection method.
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1.2 Newton’s Method

The Newton’s iteration is defined as:

pn = pn−1 −
f(pn−1)
f ′(pn−1)

.

The iteration converges for smooth functions if f ′(p0) 6= 0 and |p − p0| is small enough.

Practice Problem: Consider the equation x = x2 + 5. Write down an algorithm based
on Newton’s method to solve this equation.

Solution: We define f(x) = x2 − x + 5, and we want to find x such that f(x) = 0.
We have

xn+1 = xn − f(xn)
f ′(xn)

= xn − x2
n − xn + 5
2xn − 1

.

This equation can be and should be simplified further.

Practice Problem: What is the order of convergence of Newton’s method?

Solution: Newton’s method is quadratically convergent (second order of convergence),
which means that

|x∗ − xn+1| ≤ C|x∗ − xn|2.

Practice Problem: Suppose g(x), a smooth function, has a fixed point x∗; that is g(x∗) =
x∗. Write a Taylor expansion of g(xn) around x∗.
Solution:

g(xn) = g(x∗) + (xn − x∗)g′(x∗) +
(xn − x∗)2

2
g′′(ξn).

We can use the information that is given to us by the problem. A fixed point iteration is
defined as xn+1 = g(xn). Also, g(x∗) = x∗. Using this, we can rewrite the equation as

xn+1 = x∗ + (xn − x∗)g′(x∗) +
(xn − x∗)2

2
g′′(ξn),

or

xn+1 − x∗ = (xn − x∗)g′(x∗) +
(xn − x∗)2

2
g′′(ξn).

Quite a few observations can be made using this equation if additional information is given
by a problem.

1.3 Secant Method

The Secant method is derived from Newton’s method by replacing f ′(pn−1) with the
following approximation:

f ′(pn−1) ≈ f(pn−2) − f(pn−1)
pn−2 − pn−1

.

Then, the Newton’s iteration can be rewritten as follows. This iteration is called the
Secant method.

pn = pn−1 −
f(pn−1)(pn−2 − pn−1)

f(pn−2) − f(pn−1)
.
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2 Computer Arithmetic

Given a binary number (also known as a machine number), for example

0︸︷︷︸
s

10000001010︸ ︷︷ ︸
c

10010011000000 · · ·0︸ ︷︷ ︸
f

a decimal number (also known as a floating-point decimal number) is of the form:

(−1)s2c−1023(1 + f). (1)

Therefore, in order to find a decimal representation of a binary number, we need to find
s, c, and f and plug these into (1).
Problems 3 and 4 in Homework 3 are good applications of this idea. If you understand
how to do such problems, consider a similar problem below.
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Practice Problem: Consider a binary number (also known as a machine number)

0 10000001010 10010011000000 · · ·00

Find the floating point decimal number it represents as well as the next largest floating
point decimal number.

Solution: A decimal number (also known as a floating-point decimal number) is of the
form:

(−1)s2c−1023(1 + f).

Therefore, in order to find a decimal representation of a binary number, we need to find
s, c, and f .
The leftmost bit is zero, i.e. s = 0, which indicates that the number is positive.
The next 11 bits, 10000001010, giving the characteristic, are equivalent to the decimal
number:

c = 1 · 210 + 0 · 29 + · · ·+ 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20

= 1024 + 8 + 2 = 1034.

The exponent part of the number is therefore 21034−1023 = 211.
The final 52 bits specify that the mantissa is

f = 1 ·
(

1
2

)1

+ 1 ·
(

1
2

)4

+ 1 ·
(

1
2

)7

+ 1 ·
(

1
2

)8

.

Therefore, this binary number represents the decimal number

(−1)s2c−1023(1 + f) = (−1)0 · 21034−1023 ·

(
1 +

(
1
2

)1

+
(

1
2

)4

+
(

1
2

)7

+
(

1
2

)8
)

= 211 ·

(
1 +

(
1
2

)1

+
(

1
2

)4

+
(

1
2

)7

+
(

1
2

)8
)

= 211 + 210 + 27 + 24 + 23.

It won’t be necessary to further simplify this number on the test.

The next largest machine number is

0 10000001010 10010011000000 · · ·01 .

We already know that s = 0 and c = 1034 for this number. We find f :

f = 1 ·
(

1
2

)1

+ 1 ·
(

1
2

)4

+ 1 ·
(

1
2

)7

+ 1 ·
(

1
2

)8

+ 1 ·
(

1
2

)52

.

Therefore, this binary number represents the decimal number

(−1)s2c−1023(1 + f) = 211

(
1 +

(
1
2

)1

+
(

1
2

)4

+
(

1
2

)7

+
(

1
2

)8

+
(

1
2

)52
)

= 211 + 210 + 27 + 24 + 23 +
(

1
2

)41

.

It won’t be necessary to further simplify this number on the test.
Note how these two numbers differ.
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3 Interpolation

3.1 Lagrange Polynomials

We can construct a polynomial of degree at most n that passes through n + 1 points:

(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)).

Such polynomial is unique.

Linear (first order) interpolation is achieved by constructing the Lagrange polynomial
P1 of order 1, connecting the two points. We have:

P1(x) = L0(x)f(x0) + L1(x)f(x1),

where 1

L0(x) =
x − x1

x0 − x1
,

L1(x) =
x − x0

x1 − x0
.

Quadratic (second order) interpolation is achieved by constructing the Lagrange polyno-
mial P2 of order 2, connecting the three points. We have:

P2(x) = L0(x)f(x0) + L1(x)f(x1) + L2(x)f(x2),

where

L0(x) =
(x − x1)(x− x2)

(x0 − x1)(x0 − x2)
,

L1(x) =
(x − x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2(x) =
(x − x0)(x− x1)

(x2 − x0)(x2 − x1)
.

In general, to construct a polynomial of order n, connecting n + 1 points, we have

Pn(x) = L0(x)f(x0) + L1(x)f(x1) + . . . + Ln(x)f(xn),

where

Lk(x) =
(x − x0) · · ·(x − xk−1)(x− xk+1) · · ·(x − xn)

(xk − x0) · · ·(xk − xk−1)(xk − xk+1) · · ·(xk − xn)
.

Lk are called the k−Lagrange basis functions.
1Note that in some sources, Ln,k notation is used for functions below, where n designates the order of

polynomial. To avoid confusion, I omit n-index since it is usually obvious what order of the polynomial
we are considering. I write those functions as Lk.
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3.2 Newton’s Divided Differences

The polynomial of degree n, interpolating n+1 points, can be written in terms of Newton’s
divided differences:

Pn(x) = f [x0] + f [x0, x1](x − x0) + f [x0, x1, x2](x− x0)(x − x1)
+ . . . + f [x0, x1, . . . , xn](x− x0)(x − x1) · · ·(x − xn−1).

The zeroth divided difference of f with respect to xi is

f [xi] = f(xi).

The first divided difference of f with respect to xi and xi+1 is

f [xi, xi+1] =
f [xi+1] − f [xi]

xi+1 − xi
.

The second divided difference is

f [xi, xi+1, xi+2] =
f [xi+1, xi+2] − f [xi, xi+1]

xi+2 − xi
.
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