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1. Notation

Throughout this text, we will be regularly referring to the spacetime norms

(1.1)
∥∥u∥∥

LqtL
r
x(R×Rd)

:=

(∫
R

[ ∫
Rd
|u(t, x)|r dx

] q
r

dt

) 1
q

,

with obvious changes if q or r are infinity. We will often use the abbreviation

‖f‖r := ‖f‖Lrx and ‖u‖q,r := ‖u‖LqtLrx .
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We write X . Y to indicate that X ≤ CY for some constant C, which is
permitted to depend on the ambient spatial dimension, d, without further comment.
Other dependencies of C will be indicated with subscripts, for example, X .u Y .
We will write X ∼ Y to indicate that X . Y . X.

We use the ‘Japanese bracket’ convention: 〈x〉 := (1 + |x|2)1/2 as well as 〈∇〉 :=
(1−∆)1/2. Similarly, |∇|s denotes the Fourier multiplier with symbol |ξ|s. These
are used to define the Sobolev norms

‖f‖Hs,r := ‖〈∇〉sf‖Lrx and ‖f‖Ḣs,r := ‖|∇|sf‖Lrx .

When r = 2 we abbreviate Hs = Hs,2 and Ḣs = Ḣs,2.
Our convention for the Fourier transform is

f̂(ξ) = (2π)−
d
2

∫
Rd
e−ix·ξf(x) dx

so that

f(x) = (2π)−
d
2

∫
Rd
eix·ξ f̂(ξ) dξ and

∫
Rd
|f̂(ξ)|2 dξ =

∫
Rd
|f(x)|2 dx.

Notations associated to Littlewood–Paley projections are discussed in Appendix A.

2. Dispersive and Strichartz estimates

What all linear dispersive-type equations have in common is a dispersive-type
estimate, which expresses the fact that wave-packets spread out as time goes by.
An expression of this on the Fourier side is the fact that different frequencies move
with different speeds and/or in different directions. Below we will discuss several
instances of this phenomenon.

2.1. The linear Schrödinger equation. The initial-value problem for the linear
Schrödinger equation takes the form

(2.1) i∂tu = −∆u with u(0, x) = u0(x).

Here u denotes a complex-valued function of spacetime Rt × Rdx with the spatial
dimension d ≥ 1. By taking Fourier transforms, we observe that

û(t, ξ) = e−it|ξ|
2

û0(ξ).(2.2)

In particular, solutions with Schwartz initial data are Schwartz for all t ∈ R.
Using (2.2) and Plancherel, it is easy to see that solutions to (2.1) conserve mass,

that is,

‖eit∆u0‖2L2
x

= ‖u0‖2L2
x
,(2.3)

and kinetic energy, that is,

‖∇eit∆u0‖2L2
x

= ‖∇u0‖2L2
x
.

To derive an explicit formula for solutions to (2.1), we will first study the par-
ticular case of modulated Gaussian initial data, namely,

u0(x) = exp
{
− |x|

2

4σ2 + ixξ0
}

with σ > 0 and ξ0 ∈ Rd.
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This initial data is a Gaussian that lives at scale σ and has wave vector ξ0, that is, it
has wave length 2π

|ξ0| and the wave fronts are perpendicular to ξ0. A straightforward

computation yields that the solution u to (2.1) with this initial data is given by

[eit∆u0](x) = (2π)−
d
2

∫
Rd
eixξ−it|ξ|

2

û0(ξ) dξ

= (2π)−d
∫
Rd

∫
Rd
eixξ−it|ξ|

2

e−iyξe−
|y|2

4σ2
+iyξ0 dy dξ

= (2π)−d
∫
Rd

∫
Rd
eixξ−it|ξ|

2

e−σ
2|ξ−ξ0|2e−|

y
2σ+iσ(ξ−ξ0)|2 dy dξ

= (2π)−d(4πσ2)
d
2 e
−it|ξ0|2+ixξ0− |x−2tξ0|

2

4(σ2+it)

∫
Rd
e
−(σ2+it)

∣∣ξ− ix+2σ2ξ0
2(σ2+it)

∣∣2
dξ

=
( σ2

σ2 + it

) d
2

exp
{
−it|ξ0|2 + ixξ0 − |x−2tξ0|2

4(σ2+it)

}
.(2.4)

In the formulas above, |v|2 :=
∑d
j=1 v

2
j for all vectors v ∈ Cd.

Exercise 2.1. Justify all steps in the derivation of (2.4).

Remark. From the exact formula (2.4), we read the following:
• the wave-packet travels at speed 2ξ0 (called the group velocity)
• the wave vector is still ξ0 (called the phase velocity)
• while the amplitude of the wave packet decreases with time, the wave-packet also

spreads out: Re 1
4(σ2+it) <

1
4σ2 . This is consistent with the conservation of mass.

We are now ready to derive an exact formula for solutions to (2.1), at least for
Schwartz initial data u0 ∈ S(Rd). Using the linearity of the propagator eit∆ and
(2.4), we get

eit∆
[
(4πσ2)−

d
2

∫
Rd
e−
|x−y|2

4σ2 u0(y) dy
]

= [4π(σ2 + it)]−
d
2

∫
Rd
e
− |x−y|

2

4(σ2+it)u0(y) dy.

To continue, the key observation is that for u0 ∈ S(Rd),

lim
σ→0

(4πσ2)−
d
2

∫
Rd
e−
|x−y|2

4σ2 u0(y) dy = u0(x)(2.5)

both pointwise in x and in the L2
x topology. Using also that the propagator eit∆ is

continuous in the L2
x topology (on Schwartz space), we get the exact formula

[eit∆u0](x) = (4πit)−
d
2

∫
Rd
e
i|x−y|2

4t u0(y) dy for t 6= 0(2.6)

for all u0 ∈ S(Rd), where the equality is meant in the L2
x sense.

This leads directly to the dispersive inequality for the linear Schrödinger propa-
gator:

‖eit∆u0‖L∞x . |t|
− d2 ‖u0‖L1

x
for t 6= 0.(2.7)

Interpolating with (2.3), we obtain the full range of dispersive estimates for the
linear Schrödinger propagator:

‖eit∆u0‖Lpx . |t|
d
2 ( 1
p−

1
p′ )‖u0‖Lp′x for t 6= 0(2.8)

for all 2 ≤ p ≤ ∞, where p′ denotes the exponent conjugate to p, that is, 1
p + 1

p′ = 1.
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Exercise 2.2. Prove that for all u0 ∈ L2
x, the equality (2.5) holds both a.e. in x

and in the L2
x topology.

2.2. The Airy equation. The initial-value problem for the Airy equation takes
the form

(2.9) ∂tu = −∂3
xu with u(0, x) = u0(x).

Here u denotes a real-valued function of spacetime Rt × Rx. Note that complex-
valued solutions to (2.9) have the property that their real and imaginary parts
individually solve (2.9).

Using the Fourier transform, we arrive at

[e−t∂
3
xu0](x) = (3t)−1/3

∫
R

Ai
(
x−y

(3t)1/3

)
u0(y) dy for t 6= 0,(2.10)

where

Ai(x) := π−1

∫ ∞
0

cos( 1
3ξ

3 + xξ) dξ

denotes the Airy function of the first kind.

Exercise 2.3. Prove that the Airy function is uniformly bounded. Indeed, show
that Ai(x)→ 0 as x→ ±∞.
Hint: Use non-stationary phase when x ≥ 1; van der Corput for |x| ≤ 1; van der
Corput for x ≤ −1 on |ξ| ∼ |x|1/2 and the complementary region, separately.

As a consequence of this exercise and (2.10), we obtain the dispersive estimate
for the Airy equation:

‖e−t∂
3
xu0‖L∞x . |t|

− 1
3 ‖u0‖L1

x
for t 6= 0.(2.11)

Interpolating with the conservation law

‖e−t∂
3
xu0‖L2

x
= ‖u0‖L2

x
,

we obtain the full range of dispersive estimates, namely,

‖e−t∂
3
xu0‖Lpx . |t|

1
3 ( 1
p−

1
p′ )‖u0‖Lp′x for t 6= 0(2.12)

for all 2 ≤ p ≤ ∞, where p′ denotes the exponent conjugate to p, that is, 1
p + 1

p′ = 1.

We may strengthen the dispersive estimate (2.11) by localizing in frequency:

Exercise 2.4 (Frequency-localized dispersive estimate for the Airy propagator).
Let f ∈ S(R). Prove that

‖e−t∂
3
xPNu0‖L∞x . min{|t|− 1

3 , (N |t|)− 1
2 }‖PNu0‖L1

x

uniformly for N ∈ 2Z and t 6= 0. Here PN denotes the Littlewood–Paley projection
to frequencies |ξ| ∼ N ; see Appendix (A) for definitions and basic properties.

2.3. The linear wave equation. The initial-value problem for the linear wave
equation takes the form

(2.13) ∂2
t u = ∆u with u(0, x) = u0(x) and ∂tu(0, x) = u1(x).

Here u denotes a real-valued function of spacetime Rt×Rdx with the spatial dimen-
sion d ≥ 1.
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Using the Fourier transform, we find(
u
ut

)
(t) =

(
cos(t|∇|) |∇|−1 sin(t|∇|)

−|∇| sin(t|∇|) cos(t|∇|)

)(
u0

u1

)
.

One can derive an explicit formula for the wave propagator in spatial variables;
see, for example, [31]. One advantage of this expression is that it immediately yields
Huygens’ principle. This exact formula can also be used to derive the dispersive
estimate we give below; however, we prefer to take a Fourier analytic approach that
generalizes to more equations.

Lemma 2.1 (Frequency-localized dispersive estimate for the half-wave propaga-
tor). For any d ≥ 1 and any frequency N ∈ 2Z, we have

‖e±it|∇|PNf‖L∞x .
(
1 + |t|N

)− d−1
2 Nd‖PNf‖L1

x
.(2.14)

In particular, interpolating with ‖eit|∇|PNf‖L2
x

= ‖PNf‖L2
x

we get

‖e±it|∇|PNf‖Lpx .
(
1 + |t|N

)− (d−1)(p−2)
2p N

d(p−2)
p ‖PNf‖Lp′x ,(2.15)

for all 2 ≤ p ≤ ∞, where p′ denotes the exponent conjugate to p, that is, 1
p + 1

p′ = 1.

Proof. By symmetry, it suffices to prove the dispersive estimate for the propagator
eit|∇|. If d = 1 or d ≥ 2 and |t| . N−1, the claim (2.14) follows easily from the
Bernstein inequality:

‖eit|∇|PNf‖L∞x . N
d
2 ‖eit|∇|PNf‖L2

x
. N

d
2 ‖PNf‖L2

x
. Nd‖PNf‖L1

x
.

It thus remains to prove the claim for d ≥ 2 and |t| � N−1, to which we now
turn. We write

eit|∇|PNf = eit|∇|P̃NfN =
[
eit|ξ|ψ̃

(
ξ
N

)
f̂N (ξ)

]∨
=
[
eit|ξ|ψ̃

(
ξ
N

)]∨ ∗ fN ,
where P̃N = PN/2 + PN + P2N denotes the fattened Littlewood–Paley projection,

ψ denotes the Fourier multiplier associated with P1, and ψ̃ denotes the Fourier
multiplier associated with P̃1. To establish (2.14), it thus suffices to show∣∣∣∣∫

Rd
eixξ+it|ξ|ψ̃

(
ξ
N

)
dξ

∣∣∣∣ . N d+1
2 |t|−

d−1
2(2.16)

for all d ≥ 2 and |t| � N−1.
Using a change of variables and switching to polar coordinates, we write∫

Rd
eixξ+it|ξ|ψ̃

(
ξ
N

)
dξ = Nd

∫ ∞
0

∫
Sd−1

eixNrω+itNrψ̃(r) dσ(ω)rd−1 dr(2.17)

= Nd

∫ ∞
0

eitNrψ̃(r)σ̌(Nr|x|)rd−1 dr,(2.18)

where dσ denotes the surface measure on the sphere Sd−1 ⊂ Rd.
If |x| � |t|, we note that the phase φ(r) := Nrxω + Nrt has no critical points;

indeed, |φ′(r)| & N |t|. Thus, writing eiφ(r) = 1
iφ′(r)∂re

iφ(r) and integrating by parts

k times in (2.17), we get the bound∣∣∣∣∫
Rd
eixξ+it|ξ|ψ̃

(
ξ
N

)
dξ

∣∣∣∣ .k Nd(N |t|)−k . N
d+1
2 |t|−

d−1
2 .
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To obtain the last inequality, we take k = d−1
2 if the dimension d is odd, or k = d

2

if the dimension d is even (recalling that |t| � N−1).
It remains to consider the case |x| & |t|. In this case we use (2.18) together with

the following lemma:

Lemma 2.2. Let d ≥ 2 and let dσ denote the surface measure on the sphere
Sd−1 ⊂ Rd. Then

|σ̌(x)| . 〈x〉−
d−1
2 .

Proof. Exercise! Hint: Using the fact that dσ is rotationally invariant, we may
write

σ̌(x) = (2π)−
d
2

∫
Sd−1

ei|x|ξddσ(ξ) ∼
∫ π

0

ei|x| cos θ(sin θ)d−2 dθ,

where θ is the angle x makes with ed. Now use stationary phase and van der
Corput. �

Returning to the proof of Lemma 2.1, for |x| & |t| � N−1 we use (2.18) and
Lemma 2.2 to estimate∣∣∣∣∫

Rd
eixξ+it|ξ|ψ̃

(
ξ
N

)
dξ

∣∣∣∣ . Nd

∫
Rd
|ψ̃(r)|(Nr|x|)−

d−1
2 rd−1 dr . N

d+1
2 |t|−

d−1
2 ,

which gives (2.16) in this case. This completes the proof of (2.16) and so the proof
of Lemma 2.14. �

2.4. From dispersive to Strichartz estimates. In this subsection, we will only
present details for the derivation of Strichartz estimates for the wave equation.
Strichartz estimates for Schrödinger and Airy are left as exercises for the reader.

Definition 2.3. We say that (q, r) is wave admissible if

1

q
+
d− 1

2r
≤ d− 1

4
, q, r, d ≥ 2, and (q, r, d) 6= (2,∞, 3).

Proposition 2.4 (Frequency-localized Strichartz estimates for the half-wave prop-
agator). Let d ≥ 2 and (q, r) be wave admissible such that 1

q + d
r = d

2 − γ for some

γ > 0. Then

‖e±it|∇|PNf‖LqtLrx . N
γ‖PNf‖L2

x
(2.19) ∥∥∥∫

R
e∓it|∇|PNF (t) dt

∥∥∥
L2
x

. Nγ‖PNF‖Lq′t Lr′x .(2.20)

Moreover, if (q̃, r̃) is also a wave admissible pair, then we have the retarded estimate∥∥∥∫
s<t

e±i(t−s)|∇|PNF (s) ds
∥∥∥
LqtL

r
x

. Nd− 1
q−

1
q̃−

d
r−

d
r̃ ‖PNF‖Lq̃′t Lr̃′x .(2.21)

Proof. We will only prove the proposition in the non-endpoint cases, that is, omit-

ting the pair (2, 2(d−1)
d−3 ) for d > 3. For the endpoint case, see [17].

By the TT ∗ argument, (2.19) is equivalent to (2.20) and they are both equivalent
to ∥∥∥∫

R
e±i(t−s)|∇|PNF (s) ds

∥∥∥
LqtL

r
x

. N2γ‖F‖
Lq
′
t L

r′
x
.(2.22)
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When 1
q + d−1

2r < d−1
4 we use (2.15) and Young’s inequality to estimate

LHS(2.22) .
∥∥∥∫

R

(
1 + |t− s|N

)− (d−1)(r−2)
2r N

d(r−2)
r ‖PNF (s)‖Lr′x ds

∥∥∥
Lqt

. N
d(r−2)
r ‖PNF‖Lq′t Lr′x

∥∥(1 + |t|N
)− (d−1)(r−2)

2r
∥∥
L
q/2
t

. N
d(r−2)
r N−

2
q ‖PNF‖Lq′t Lr′x ,

which gives (2.22) in this case. When 1
q + d−1

2r = d−1
4 we use instead the Hardy–

Littlewood–Sobolev inequality to obtain

LHS(2.22) .
∥∥∥∫

R
|t− s|−

(d−1)(r−2)
2r N

(d+1)(r−2)
2r ‖PNF (s)‖Lr′x ds

∥∥∥
Lqt

. N
(d+1)(r−2)

2r ‖PNF‖Lq′t Lr′x ,

which gives (2.22) in this case. Note that the application of Hardy–Littlewood–

Sobolev requires r < 2(d−1)
d−3 . This completes the proof of (2.22) and so the proof of

(2.19) and (2.20).
We now turn to (2.21). First we note that by Bernstein’s inequality, it suffices

to prove the claim for those admissible pairs that are sharp admissible in the sense
that 1

q + d−1
2r = d−1

4 = 1
q̃ + d−1

2r̃ . Next, we remark that the proof of (2.22) gives

(2.21) for (q̃, r̃) = (q, r). Finally, to obtain the full range of sharp admissible pairs,
one interpolates between this and the following two estimates which are simple
consequences of duality and (2.19) and (2.20):∥∥∥∫

R
e±i(t−s)|∇|PNF (s) ds

∥∥∥
L∞t L

2
x

. N
d
2−

1
q̃−

d
r̃ ‖PNF‖Lq̃′t Lr̃′x∥∥∥∫

R
e±i(t−s)|∇|PNF (s) ds

∥∥∥
LqtL

r
x

. N
d
2−

1
q−

d
r ‖PNF‖L1

tL
2
x
.

This completes the proof of the lemma. �

Corollary 2.5 (Strichartz estimates for the half-wave propagator). Let d ≥ 2 and
(q, r) be wave admissible such that r 6=∞ and 1

q + d
r = d

2 −γ for some γ > 0. Then

‖e±it|∇|f‖LqtLrx . ‖|∇|
γf‖L2

x∥∥∥∫
R
e∓it|∇|F (t) dt

∥∥∥
L2
x

. ‖|∇|γF‖
Lq
′
t L

r′
x
.

Moreover, if (q̃, r̃) is also a wave admissible pair with r̃ 6=∞, then∥∥∥∫
s<t

e±i(t−s)|∇|F (s) ds
∥∥∥
LqtL

r
x

. ‖|∇|d−
1
q−

1
q̃−

d
r−

d
r̃ F‖

Lq̃
′
t L

r̃′
x
.

Proof. In view of Proposition 2.4, it suffices to prove

‖F‖LqtLrx .
{∑
N∈2Z

‖PNF‖2LqtLrx
}1/2

for all 2 ≤ q ≤ ∞ and 2 ≤ r <∞,(2.23)

which by duality is equivalent to{∑
N∈2Z

‖PNF‖2
Lq
′
t L

r′
x

}1/2

. ‖F‖
Lq
′
t L

r′
x

for all 2 ≤ q ≤ ∞ and 2 ≤ r <∞.(2.24)



OBERWOLFACH SEMINAR: DISPERSIVE EQUATIONS 9

To see that (2.23) and (2.24) are equivalent, consider the operator T : Lq
′

t L
r′

x →
l2(Lq

′

t L
r′

x ) given by T (F ) = {PNF}N∈2Z . The operator T being bounded is equiv-
alent to (2.24). It is easy to check that the adjoint of T is T ∗ : l2(LqtL

r
x) → LqtL

r
x

given by T ∗({GN}N∈2Z) =
∑
N∈2Z PNGN . Boundedness of T ∗ implies∥∥∥∑

N∈2Z

PNGN

∥∥∥
LqtL

r
x

.
{∑
N∈2Z

‖GN‖2LqtLrx
}1/2

.(2.25)

Writing F =
∑
N∈2Z PNF =

∑
N∈2Z PN P̃NF and applying (2.25) with GN = P̃NF ,

we obtain (2.23). Thus (2.24) implies (2.23). To see that (2.23) implies (2.25) and
so (2.24), we estimate∥∥∥∑

N∈2Z

PNGN

∥∥∥
LqtL

r
x

.
{∑
N∈2Z

∥∥∥PN ∑
M∈2Z

PMGM

∥∥∥2

LqtL
r
x

}1/2

.
{∑
N∈2Z

∥∥∥ ∑
M∼N

GM

∥∥∥2

LqtL
r
x

}1/2

.
{∑
N∈2Z

‖GN‖2LqtLrx
}1/2

.

It thus remains to prove (2.23); for this it suffices to show that

‖f‖Lrx .
{∑
N∈2Z

‖PNf‖2Lrx
}1/2

for all 2 ≤ r <∞,(2.26)

since then, for q ≥ 2 we obtain

‖F‖LqtLrx .
∥∥∥{∑

N∈2Z

‖PNF (t)‖2Lrx
}1/2∥∥∥

Lqt

=
∥∥∥∑
N∈2Z

‖PNF (t)‖2Lrx
∥∥∥1/2

L
q
2
t

.
{∑
N∈2Z

∥∥∥‖PNF (t)‖2Lrx
∥∥∥
L
q
2
t

}1/2

=
{∑
N∈2Z

‖PNF‖2LqtLrx
}1/2

.

Finally, to prove (2.26) we use the square function estimate and the same argu-
ment as above:

‖f‖Lrx ∼
∥∥∥{∑

N∈2Z

|PNf |2
}1/2∥∥∥

Lrx

.
{∑
N∈2Z

‖PNf‖2Lrx
}1/2

for all 2 ≤ r <∞.

This completes the proof of the corollary. �

Corollary 2.6 (Strichartz estimates for the wave equation). Let d ≥ 2 and let (q, r)
and (q̃, r̃) be wave admissible pairs such that r, r̃ <∞ and 1

q + d
r = d

2−γ = 1
q̃′+

d
r̃′−2

for some γ > 0. If u solves

∂2
t u = ∆u+ F with u(0) = u0 and ∂tu(0) = u1

on I × Rd for some time interval I 3 0, then

‖u‖L∞t Ḣγx + ‖∂tu‖L∞t Ḣγ−1
x

+ ‖u‖LqtLrx . ‖u0‖Ḣγx + ‖u1‖Ḣγ−1
x

+ ‖F‖
Lq̃
′
t L

r̃′
x

where all spacetime norms are over I × Rd.

Proof. Exercise! �

For the Schrödinger equation we have the following Strichartz estimates:
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Lemma 2.7 (Strichartz estimates for the Schrödinger equation). Let d ≥ 1 and
let (q, r) and (q̃, r̃) be such that 2 ≤ q, r, q̃, r̃ ≤ ∞, 2

q + d
r = d

2 = 2
q̃ + d

r̃ , and

(q, r, d) 6= (2,∞, 2) and (q̃, r̃, d) 6= (2,∞, 2). If u solves

i∂tu = −∆u+ F with u(0) = u0

on I × Rd for some time interval I 3 0, then

‖u‖L∞t L2
x(I×Rd) + ‖u‖LqtLrx(I×Rd) . ‖u0‖L2

x
+ ‖F‖

Lq̃
′
t L

r̃′
x (I×Rd)

.

Proof. Using as a model the proof of Proposition 2.4, prove the lemma for all pairs
of exponents except the endpoints, that is, whenever r 6= 2d

d−2 and r̃ 6= 2d
d−2 for

d ≥ 3. For a proof in the endpoint case, see [17]. �

Finally, we record the Strichartz estimates for the Airy equation:

Lemma 2.8 (Strichartz estimates for the Airy equation). Let (q, r) and (q̃, r̃) be
such that 2 ≤ q, r, q̃, r̃ ≤ ∞, 1

q + 1
3r = 1

6 = 1
q̃ + 1

3r̃ . If u solves

∂tu = −∂3
xu+ F with u(0) = u0

on I × R for some time interval I 3 0, then

‖u‖L∞t L2
x(I×R) + ‖u‖LqtLrx(I×R) +

∥∥|∇|1/6u∥∥
L6
t,x(I×R)

. ‖u0‖L2
x

+ ‖F‖
Lq̃
′
t L

r̃′
x (I×R)

.

Proof. Exercise! �

2.5. Bilinear Strichartz and local smoothing estimates. In this subsection,
we restrict attention to the Schrödinger propagator.

Theorem 2.9 (Bilinear Strichartz I, [3, 13, 28]). Fix d ≥ 1 and M ≤ N . Then∥∥[eit∆PMf ][eit∆PNg]
∥∥
L2
t,x(R×Rd)

.M
d−1
2 N−

1
2 ‖f‖L2

x(Rd)‖g‖L2
x(Rd).(2.27)

When d = 1 we require M ≤ 1
4N , so that PNPM = 0.

Proof. For M ∼ N and d 6= 1, the result follows from the L2
x → L4

tL
2d
d−1

x Strichartz
inequality and Bernstein.

Turning to the case M ≤ 1
4N , we note that by duality and the Parseval identity,

it suffices to show

(2.28)

∣∣∣∫∫
Rd×Rd

F (|ξ|2 + |η|2, ξ + η)f̂M (ξ)ĝN (η) dξ dη
∣∣∣

.M
d−1
2 N−

1
2 ‖F‖L2

ω,ξ(R1+d)‖f̂‖L2
ξ(Rd)‖ĝ‖L2

ξ(Rd).

By breaking the region of integration into several pieces (and rotating the coordinate
system appropriately), we may restrict the region of integration to a set where
η1 − ξ1 & N . Next, we make the change of variables ζ = ξ + η, ω = |ξ|2 + |η|2, and
β = (ξ2, . . . , ξd). Note that |β| . M while the Jacobian is J ∼ N−1. Using this
information together with Cauchy–Schwarz:

LHS(2.28) =
∣∣∣∫∫∫ F (ω, ζ)f̂M (ξ)ĝN (η)J dω dζ dβ

∣∣∣
≤ ‖F‖L2

ω,ξ(R1+d)

∫ [∫∫
|f̂M (ξ)|2|ĝN (η)|2J2 dω dζ

] 1
2

dβ

. ‖F‖L2
ω,ξ(R1+d)M

d−1
2

(∫∫∫
|f̂M (ξ)|2|ĝN (η)|2J2 dω dζ dβ

) 1
2
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. ‖F‖L2
ω,ξ(R1+d)M

d−1
2

(∫∫
|f̂M (ξ)|2|ĝN (η)|2N−1 dξ dη

) 1
2

,

which implies (2.27). �

Corollary 2.10 (Bilinear Strichartz II). Let M , N , and d be as above. Given any
spacetime slab I × Rd and any functions u, v defined on I × Rd,∥∥u≤Mv≥N∥∥L2

t,x(I×Rd)
.M

d−3
2 N−

1
2 ‖∇u≤M‖S∗0 (I)‖v≥N‖S∗0 (I),

where we use the notation

‖u‖S∗0 (I) := ‖u‖L∞t L2
x(I×Rd) + ‖(i∂t + ∆)u‖

L

2(d+2)
d+4

t,x (I×Rd)

.

Proof. See [39, Lemma 2.5], which builds on earlier versions in [4, 13]. �

Lemma 2.11 (Local smoothing, [14, 32, 38]). For all f ∈ L2
x we have∫

R

∫
Rd

∣∣[|∇|1/2eit∆f](x)
∣∣2e−|x|2 dx dt . ‖f‖2L2

x
.

In particular, by scaling, for all R > 0 we have∥∥|∇|1/2eit∆f∥∥
L2
t,x(R×B(0,R))

. R1/2‖f‖L2
x
.

Proof. Given a : Rd → [0,∞), we have∫
R

∫
Rd

∣∣[|∇|1/2eit∆f](x)
∣∣2a(x) dx dt

= (2π)−d
∫
R

∫
Rd

∫
Rd

∫
Rd
eixξ−it|ξ|

2

|ξ|1/2f̂(ξ)e−ixη+it|η|2 |η|1/2f̂(η)a(x) dξ dη dx dt

=

∫
Rd

∫
Rd
â(η − ξ)δ(|η|2 − |ξ|2)|ξ|1/2|η|1/2f̂(ξ)f̂(η) dξ dη

=

∫
Rd

∫
Rd
â(η − ξ)δ(|η| − |ξ|) |ξ|

1/2|η|1/2

|ξ|+ |η|
f̂(ξ)f̂(η) dξ dη.

By Schur’s test it thus suffices to show∫
Rd
â(η − ξ)δ(|η| − |ξ|) |ξ|

1/2|η|1/2

|ξ|+ |η|
dξ . 1 uniformly in η ∈ Rd.(2.29)

Recalling that in our case a(x) = e−|x|
2

and passing to polar coordinates, we obtain∫
Rd
â(η − ξ)δ(|η| − |ξ|) |ξ|

1/2|η|1/2

|ξ|+ |η|
dξ

.
∫
Sd−1

∫ ∞
0

e−|rω−η|
2

δ(|η| − r)r
1/2|η|1/2

r + |η|
rd−1 dr dσ(ω)

.
∫
Sd−1

∫ ∞
0

e−|η|
2
∣∣ω− η

|η|

∣∣2
|η|d−1 dσ(ω)

.
∫ π

0

e−2|η|2(1−cos θ)|η|d−1(sin θ)d−2 dθ

.
∫ π

2

0

e−
|η|2θ2
100 |η|d−1θd−2 dθ .

∫ ∞
0

e−
τ2

100 τd−2 dτ . 1.
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In the computation above, θ denotes the angle ω makes with η
|η| . This proves (2.29)

and so completes the proof of the lemma. �

The next result is a consequence of local smoothing; see Lemma 3.7 in [18]. The
proof we present here is the one from [23]; see also [22].

Lemma 2.12. Given φ ∈ Ḣ1(Rd),

‖∇eit∆φ‖3L2
t,x([−T,T ]×{|x|≤R}) . T

2
d+2R

3d+2
d+2 ‖eit∆φ‖

L

2(d+2)
d−2

t,x

‖∇φ‖2L2
x
.

Proof. Given N > 0, Hölder’s and Bernstein’s inequalities imply

‖∇eit∆φ<N‖L2
t,x([−T,T ]×{|x|≤R}) . T

2
d+2R

2d
d+2 ‖eit∆∇φ<N‖

L

2(d+2)
d−2

t,x

. T
2
d+2R

2d
d+2 N ‖eit∆φ‖

L

2(d+2)
d−2

t,x

.

On the other hand, the high frequencies can be estimated using local smoothing:

‖∇eit∆φ≥N‖L2
t,x([−T,T ]×{|x|≤R}) . R

1/2‖|∇|1/2φ≥N‖L2
x

. N−1/2R1/2‖∇φ‖L2
x
.

The lemma now follows by optimizing the choice of N . �

3. An inverse Strichartz inequality

In this section, we develop tools that we will employ to prove a linear profile
decomposition for the Schrödinger propagator for bounded sequences in Ḣ1(Rd)
with d ≥ 3. Such a linear profile decomposition was first obtained by Keraani [18],
relying on an improved Sobolev inequality proved by Gerard, Meyer, and Oru [16].
We should also note the influential precursor [1] which treated the wave equation.
In these notes we present a different proof of the result in [18], which relies instead
on an inverse Strichartz inequality.

A linear profile decomposition for the Schrödinger propagator for bounded se-
quences in L2(Rd) was proved by Merle–Vega [26] for d = 2, Carles–Keraani [7] for
d = 1, and Bégout–Vargas [2] for d ≥ 3. For a different approach to these results,
which is similar in spirit to what we present in these notes, see [22].

We start by noting that combining the Strichartz inequality for the Schrödinger
propagator from Lemma 2.7 and Sobolev embedding, we obtain

‖eit∆f‖
L

2(d+2)
d−2

t,x (R×Rd)

. ‖eit∆∇f‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+8
x (R×Rd)

. ‖f‖Ḣ1
x

(3.1)

for all d ≥ 3.
Our next result is a refinement of (3.1), which says that if the linear evolution

of f is large in L
2(d+2)
d−2

t,x , then the linear evolution of a single Littlewood–Paley piece
of f is, at least partially, responsible.

Lemma 3.1 (Refined Strichartz estimate). Let d ≥ 3 and f ∈ Ḣ1(Rd). Then

‖eit∆f‖
L

2(d+2)
d−2

t,x (R×Rd)

. ‖f‖
d−2
d+2

Ḣ1
x

sup
N∈2Z

‖eit∆fN‖
4
d+2

L

2(d+2)
d−2

t,x (R×Rd)

.
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Proof. We will present the proof in dimensions d ≥ 6. The proof in dimensions

d = 3, 4 is easier as 2(d+2)
d−2 is an even integer in those cases. The proof in dimension

d = 5 is a small modification of the argument below. We leave the cases d = 3, 4, 5
as an exercise for the conscientious reader.

Fix d ≥ 6. From the square function estimate, the subaditivity of fractional
powers (using the fact that d+2

2(d−2) ≤ 1 in dimensions d ≥ 6), and the Bernstein and

Strichartz inequalities,

‖eit∆f‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

.
∫∫

R×Rd

(∑
N∈2Z

|eit∆fN |2
) d+2
d−2

dx dt

.
∑
M≤N

∫∫
R×Rd

|eit∆fM |
d+2
d−2 |eit∆fM |

d+2
d−2 dx dt

.
∑
M≤N

‖eit∆fM‖
L

2(d+2)
d−4

t,x

‖eit∆fM‖
4
d−2

L

2(d+2)
d−2

t,x

‖eit∆fN‖
4
d−2

L

2(d+2)
d−2

t,x

‖eit∆fN‖
L

2(d+2)
d

t,x

. sup
N∈2Z

‖eit∆fN‖
8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖eit∆fM‖
L

2(d+2)
d−4

t L

2d(d+2)

d2+8
x

‖fN‖L2
x

. sup
N∈2Z

‖eit∆fN‖
8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖fM‖L2
x
‖fN‖L2

x

. sup
N∈2Z

‖eit∆fN‖
8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M
N ‖∇fM‖L2

x
‖∇fN‖L2

x

. sup
N∈2Z

‖eit∆fN‖
8
d−2

L

2(d+2)
d−2

t,x

‖f‖2
Ḣ1
x
.

This completes the proof of the lemma in dimensions d ≥ 6. �

The refined Strichartz inequality shows that linear solutions with non-trivial
spacetime norm must concentrate on at least one frequency annulus. The next
proposition goes one step further and shows that they contain a bubble of concen-
tration around some point in spacetime.

Proposition 3.2 (Inverse Strichartz inequality). Let d ≥ 3 and let {fn} ⊂ Ḣ1(Rd).
Suppose that

lim
n→∞

‖fn‖Ḣ1
x

= A <∞ and lim
n→∞

‖eit∆fn‖
L

2(d+2)
d−2

t,x (R×Rd)

= ε > 0.

Then there exist a subsequence in n, φ ∈ Ḣ1
x, {λn} ⊂ (0,∞), and {(tn, xn)} ⊂

R× Rd such that

λ
d−2
2

n [eitn∆fn](λnx+ xn) ⇀ φ(x) weakly in Ḣ1
x,(3.2)

lim inf
n→∞

{
‖fn‖2Ḣ1

x
− ‖fn − φn‖2Ḣ1

x

}
= ‖φ‖2

Ḣ1
x
& A2( εA )

d(d+2)
4 ,(3.3)

lim inf
n→∞

{
‖eit∆fn‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

− ‖eit∆(fn − φn)‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

}
& ε

2(d+2)
d−2 ( εA )

(d+2)(d+4)
4 ,(3.4)
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where

φn(x) := λ
− d−2

2
n [e−iλ

−2
n tn∆φ]

(
x−xn
λn

)
.(3.5)

Proof. Passing to a subsequence, we may assume

lim
n→∞

‖fn‖Ḣ1
x
≤ 2A and lim

n→∞
‖eit∆fn‖

L

2(d+2)
d−2

t,x (R×Rd)

≥ ε
2 .

Thus, using Lemma 3.1 we see that for each n there exists Nn ∈ 2Z such that

‖eit∆PNnfn‖
L

2(d+2)
d−2

t,x

& ε
d+2
4 A−

d−2
4 .

On the other hand, from the Strichartz and Bernstein inequalities we get

‖eit∆PNnfn‖
L

2(d+2)
d

t,x

. ‖PNnfn‖L2
x
. N−1

n A.

By Hölder’s inequality, these imply

ε
d+2
4 A−

d−2
4 . ‖eit∆PNnfn‖

L

2(d+2)
d−2

t,x

. ‖eit∆PNnfn‖
d−2
d

L
2(d+2)
d

t,x

‖eit∆PNnfn‖
2
d

L∞t,x

. N
− d−2

d
n A

d−2
d ‖eit∆PNnfn‖

2
d

L∞t,x
,

and so

N
− d−2

2
n ‖eit∆PNnfn‖L∞t,x & A( εA )

d(d+2)
8 .

Thus there exist (tn, xn) ∈ R× Rd such that

N
− d−2

2
n

∣∣[eitn∆PNnfn](xn)
∣∣ & A( εA )

d(d+2)
8 .(3.6)

We define the spatial scales λn := N−1
n .

It remains to find the profile φ and to prove it satisfies (3.2) through (3.4). To
this end, we set

gn(x) := λ
d−2
2

n [eitn∆fn](λnx+ xn).

A simple change of variables gives

‖gn‖Ḣ1
x

= ‖fn‖Ḣ1
x
. A

and so, passing to a subsequence, we can choose φ so that gn ⇀ φ weakly in Ḣ1
x.

This proves (3.2).
We now turn to (3.3). The asymptotic decoupling statement is immediate since

Ḣ1
x is a Hilbert space. We are left to prove the lower bound in (3.3). Toward

this end, let ψ̌ := P1δ0 denote the convolution kernel associated with P1. Using a
change of variables and (3.6), we get∣∣〈φ, ψ̌〉L2

x

∣∣ =
∣∣ lim
n→∞

〈gn, ψ̌〉L2
x

∣∣ =
∣∣ lim
n→∞

〈
eitn∆fn, λ

− d+2
2

n ψ̌
(
x−xn
λn

)〉
L2
x

∣∣
= N

− d−2
2

n

∣∣[eitn∆PNnfn](xn)
∣∣ & A( εA )

d(d+2)
8 .(3.7)

On the other hand, by Hölder’s inequality and Sobolev embedding,∣∣〈φ, ψ̌〉L2
x

∣∣ . ‖φ‖L6
x
‖ψ̌‖

L
6/5
x
. ‖φ‖Ḣ1

x
.

Putting the two inequalities together, we derive the lower bound in (3.3).
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It remains to prove (3.4). We start by proving decoupling for the L
2(d+2)
d−2

t,x norm.
Note that

(i∂t)
1
2 eit∆ = (−∆)

1
2 eit∆,

as can be checked by testing against Schwartz functions in R×Rd. Thus, by Hölder’s
inequality, on any compact set K in R× Rd we have

‖eit∆gn‖
H

1
2
t,x(K)

. ‖〈−∆〉 12 eit∆gn‖L2
t,x(K) .K A.

Using this together with Rellich–Kondrashov and passing to a subsequence, we get

eit∆gn → eit∆φ strongly in L2
t,x(K).

(In order to identify the limit in the display above, we note that gn ⇀ φ weakly in

Ḣ1
x implies that eit∆gn converges to eit∆φ as distributions on R× Rd.) Passing to

a further subsequence, we deduce that eit∆gn → eit∆φ a.e. on K. Finally, using a
diagonal argument and passing again to a subsequence if necessary, we obtain

eit∆gn → eit∆φ a.e. in R× Rd.

To continue, we use this convergence together with the refined Fatou lemma (see
Lemma A.3) due to Brézis and Lieb and a change of variables; we obtain

lim
n→∞

{
‖eit∆fn‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

− ‖eit∆(fn − φn)‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

}
= ‖eit∆φ‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

,

from which (3.4) will follow once we prove

‖eit∆φ‖
L

2(d+2)
d−2

t,x

& ε( εA )
d2+2d−8

8 .(3.8)

To see this, we use (3.7), the Mikhlin multiplier theorem, and Bernstein to estimate

A( εA )
d(d+2)

8 .
∣∣〈φ, ψ̌〉L2

x

∣∣ =
∣∣〈eit∆φ, eit∆ψ̌〉L2

x

∣∣ . ‖eit∆φ‖
L

2(d+2)
d−2

x

‖eit∆ψ̌‖
L

2(d+2)
d+6

x

. ‖eit∆φ‖
L

2(d+2)
d−2

x

,

uniformly in |t| ≤ 1. Integrating in t leads to (3.8). �

Exercise 3.1. Under the hypotheses of Proposition 3.2 and passing to a further
subsequence if necessary, prove decoupling of the potential energy, namely,

lim inf
n→∞

{
‖fn‖

2d
d−2
2d
d−2

− ‖fn − φn‖
2d
d−2
2d
d−2

− ‖e−iλ
−2
n tn∆φ‖

2d
d−2
2d
d−2

}
= 0.

Hint: Passing to a subsequence, we may assume that λ−2
n tn → t0 ∈ [−∞,∞]. If

t0 = ±∞, then approximate φ in Ḣ1
x by Schwartz functions and use the fact that

by the dispersive estimate for the Schrödinger propagator,

‖e−iλ
−2
n tn∆ψ‖ 2d

d−2
→ 0 as n→∞

for any ψ ∈ S(Rd). If instead t0 ∈ (−∞,∞), then (3.2) can be upgraded to

λ
d−2
2

n fn(λnx+ xn) ⇀ e−it0∆φ(x) weakly in Ḣ1
x. Now use Rellich–Kondrashov and

refined Fatou as in the proof of (3.4).
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4. A linear profile decomposition

In this section, we use the inverse Strichartz inequality Proposition 3.2 to derive
a linear profile decomposition for the Schrödinger propagator.

One can view the linear profile decomposition as a tool for measuring the defects
of compactness in the Strichartz inequality (3.1). More precisely, given a bounded

sequence of functions {fn}n≥1 ⊂ Ḣ1(Rd) we would like to be able to say that, after

possibly passing to a subsequence, {eit∆fn}n≥1 converges in L
2(d+2)
d−2

t,x . Unfortunately,
every non-compact symmetry of the inequality (3.1) is a reason why we would fail
to extract a convergent subsequence.

The non-compact symmetries of (3.1) are space- and time-translations and Ḣ1
x-

preserving scaling. To see how these work against us, consider the simple scenario
where fn(x) = f(x+xn) with f ∈ Ḣ1

x and {xn}n≥1 ⊂ Rd is a sequence that diverges
to infinity; in this case, {eit∆fn}n≥1 converges weakly to zero. We leave it to the

reader to use time-translations and Ḣ1
x-preserving scaling to construct bounded

sequences of functions {fn}n≥1 ⊂ Ḣ1(Rd) for which {eit∆fn}n≥1 converges weakly
to zero.

At this point we might imagine that if suitably translate and rescale our sequence,
then we might be able to extract a convergent subsequence. Proposition 3.2 gives
us hope, since it exhibits a bubble of concentration living inside each eit∆fn, which

captures a nontrivial portion of the L
2(d+2)
d−2

t,x norm of eit∆fn. However, even this
modified goal is naive and doomed to fail, as one can see by considering the following
scenario: fn(x) = f(x) + f(x + xn) with f ∈ Ḣ1

x and {xn}n≥1 ⊂ Rd is a sequence
that diverges to infinity; in this case, the evolutions eit∆fn contain two diverging
bubbles of concentration and translating our sequence would still fail to exhibit a
convergent subsequence.

Nevertheless, this suggests that if we take out enough bubbles of concentration
living inside eit∆fn, then we might be able to say that the remainders do indeed

converge to zero in L
2(d+2)
d−2

t,x . This is precisely the content of the following theorem.

Theorem 4.1 (Ḣ1
x linear profile decomposition for the Schrödinger propagator).

Fix d ≥ 3 and let {fn}n≥1 be a sequence of functions bounded in Ḣ1(Rd). Passing

to a subsequence if necessary, there exist J∗ ∈ {0, 1, . . .}∪{∞}, functions {φj}J∗j=1 ⊂
Ḣ1(Rd), {λjn} ⊂ (0,∞), and {tjn, xjn} ⊂ R×Rd such that for each finite 0 ≤ J ≤ J∗,
we have the decomposition

fn =

J∑
j=1

(λjn)−
d−2
2 [eit

j
n∆φj ]

(x−xjn
λjn

)
+ wJn(4.1)

with the following properties:

lim
J→J∗

lim sup
n→∞

∥∥eit∆wJn∥∥
L

2(d+2)
d−2

t,x (R×Rd)

= 0(4.2)

lim
n→∞

[
‖∇fn

∥∥2

2
−

J∑
j=1

‖∇φj‖22 − ‖∇wJn‖22
]

= 0(4.3)

lim
n→∞

[
‖fn
∥∥ 2d
d−2
2d
d−2

−
J∑
j=1

‖eit
j
n∆φj‖

2d
d−2
2d
d−2

− ‖wJn‖
2d
d−2
2d
d−2

]
= 0(4.4)
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e−it
J
n∆
[
(λJn)

d−2
2 wJn(λJnx+ xJn)

]
⇀ 0 weakly in Ḣ1(Rd).(4.5)

Moreover, for each j 6= k we have the following asymptotic decoupling of parameters:

(4.6)
λjn
λkn

+
λkn

λjn
+
|xjn − xkn|2

λjnλkn
+

∣∣tjn(λjn)2 − tkn(λkn)2
∣∣

λjnλkn
→∞ as n→∞.

Lastly, we may additionally assume that for each j either tjn ≡ 0 or tjn → ±∞.

Proof. To keep formulas within margins, we will use the notation

(gjnf)(x) := (λjn)−
d−2
2 f
(x−xjn

λjn

)
with [(gjn)−1f ](x) := (λjn)

d−2
2 f
(
λjnx+ xjn

)
.

Note that ‖gjnf‖Ḣ1
x

= ‖f‖Ḣ1
x

= ‖(gjn)−1f‖Ḣ1
x

and

〈gjnf1, f2〉Ḣ1
x

= 〈f1, (g
j
n)−1f2〉Ḣ1

x
for all f1, f2 ∈ Ḣ1

x.

We will also use the notation

φjn(x) := (λjn)−
d−2
2 [eit

j
n∆φj ]

(x−xjn
λjn

)
= [gjne

itjn∆φj ](x).

To prove the theorem we will proceed inductively, extracting one bubble at a
time. To start, we set w0

n := fn. Now suppose we have a decomposition up to level
J ≥ 0 obeying (4.3) through (4.5). (Conditions (4.2) and (4.6) will be verified at
the end.) Passing to a subsequence if necessary, we set

AJ := lim
n→∞

‖wJn‖Ḣ1
x

and εJ := lim
n→∞

‖eit∆wJn‖
L

2(d+2)
d−2

t,x

.

If εJ = 0, we stop and set J∗ = J . If not, we apply Proposition 3.2 to wJn .

Thus, passing to a subsequence in n, we find φJ+1 ∈ Ḣ1
x, {λJ+1

n } ⊂ (0,∞), and
{(tJ+1

n , xJ+1
n )} ⊂ R× Rd, where we renamed the time parameters given by Propo-

sition 3.2 as follows: tJ+1
n = −λ−2

n tn.
According to Proposition 3.2, the profile φJ+1 is defined as a weak limit, namely,

φJ+1 = w-lim
n→∞

(gJ+1
n )−1

[
e−it

J+1
n (λJ+1

n )2∆wJn
]

= w-lim
n→∞

e−it
J+1
n ∆[(gJ+1

n )−1wJn ].

We let φJ+1
n := gJ+1

n eit
J+1
n ∆φJ+1.

Now define wJ+1
n := wJn − φJ+1

n . By the definition of φJ+1,

e−it
J+1
n ∆(gJ+1

n )−1wJ+1
n ⇀ 0 weakly in Ḣ1

x.

This proves (4.5) at the level J + 1. Moreover, from Proposition 3.2 we also have

lim
n→∞

{
‖wJn‖2Ḣ1

x
− ‖wJ+1

n ‖2
Ḣ1
x
− ‖φJ+1‖2

Ḣ1
x

}
= 0.

Combining this with the inductive hypothesis gives (4.3) at the level J + 1. A
similar argument using Exercise 3.1 establishes (4.4) at the same level.

Passing to a further subsequence and using Proposition 3.2, we obtain

(4.7)

A2
J+1 = lim

n→∞
‖wJ+1

n ‖2
Ḣ1
x
≤ A2

J

[
1− C

(
εJ
AJ

) d(d+2)
4

]
≤ A2

J

ε
2(d+2)
d−2

J+1 = lim
n→∞

‖eit∆wJ+1
n ‖

2(d+2)
d−2

L

2(d+2)
d−2

t,x

≤ ε
2(d+2)
d−2

J

[
1− C

(
εJ
AJ

) (d+2)(d+4)
4

]
.

If εJ+1 = 0 we stop and set J∗ = J + 1; in this case, (4.2) is automatic. If εJ+1 > 0
we continue the induction. If the algorithm does not terminate in finitely many
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steps, we set J∗ = ∞; in this case, (4.7) implies εJ → 0 as J → ∞ and so (4.2)
follows.

Next we verify the asymptotic orthogonality condition (4.6). We argue by con-
tradiction. Assume (4.6) fails to be true for some pair (j, k). Without loss of
generality, we may assume that this is the first pair for which (4.6) fails, that is,
j < k and (4.6) holds for all pairs (j, l) with j < l < k. Passing to a subsequence,
we may assume

λjn
λkn
→ λ0 ∈ (0,∞),

xjn − xkn√
λjnλkn

→ x0, and
tjn(λjn)2 − tkn(λkn)2

λjnλkn
→ t0.(4.8)

From the inductive relation

wk−1
n = wjn −

k−1∑
l=j+1

φln

and the definition of φk, we obtain

φk = w-lim
n→∞

e−it
k
n∆[(gkn)−1wk−1

n ]

= w-lim
n→∞

e−it
k
n∆[(gkn)−1wjn]−

k−1∑
l=j+1

w-lim
n→∞

e−it
k
n∆[(gkn)−1φln].(4.9)

We will prove that these weak limits are all zero and so obtain a contradiction to
the nontriviality of φk.

We write

e−it
k
n∆[(gkn)−1wjn] = e−it

k
n∆(gkn)−1gjne

itjn∆[e−it
j
n∆(gjn)−1wjn]

= (gkn)−1gjne
i
(
tjn−t

k
n

(λkn)2

(λjn)2

)
∆

[e−it
j
n∆(gjn)−1wjn].

Note that by (4.8),

tjn − tkn
(λkn)2

(λjn)2
=
tjn(λjn)2 − tkn(λkn)2

λjnλkn
· λ

k
n

λjn
→ t0

λ0
.

Using this together with (4.5), Exercise 4.2, and the fact that the adjoints of the
unitary operators (gkn)−1gjn converge strongly, we obtain that the first term on
RHS(4.9) is zero.

To complete the proof of (4.6), it remains to show that the second term on
RHS(4.9) is zero. For all j < l < k we write

e−it
k
n∆(gkn)−1φln = (gkn)−1gjne

i
(
tjn−t

k
n

(λkn)2

(λjn)2

)
∆

[e−it
j
n∆(gjn)−1φln].

Arguing as for the first term on RHS(4.9), it thus suffices to show that

e−it
j
n∆(gjn)−1φln = e−it

j
n∆(gjn)−1glne

itln∆φl ⇀ 0 weakly in Ḣ1
x.

Using a density argument, this reduces to

In := e−it
j
n∆(gjn)−1glne

itln∆φ ⇀ 0 weakly in Ḣ1
x,(4.10)

for all φ ∈ C∞c (Rd). Note that we can rewrite In as follows:

In =

(
λjn
λln

) d−2
2
[
e
i
(
tln−t

j
n

(
λ
j
n
λln

)2)
∆
φ

](
λjnx+ xjn − xln

λln

)
.
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Recalling that (4.6) holds for the pair (j, l), we first prove (4.10) when the scaling
parameters are not comparable, that is,

lim
n→∞

λjn
λln

+
λln

λjn
=∞.(4.11)

By Cauchy–Schwarz,∣∣〈In, ψ〉Ḣ1
x

∣∣ . min
{
‖∆In‖L2

x
‖ψ‖L2

x
, ‖In‖L2

x
‖∆ψ‖L2

x

}
. min

{
λjn
λln
‖∆φ‖L2

x
‖ψ‖L2

x
,
λln

λjn
‖φ‖L2

x
‖∆ψ‖L2

x

}
,

which converges to zero as n → ∞, for all ψ ∈ C∞c (Rd). This establishes (4.10)
when (4.11) holds.

Henceforth we may assume

lim
n→∞

λjn
λln

= λ1 ∈ (0,∞).

We now suppose the time parameters diverge, that is,

lim
n→∞

|tjn(λjn)2 − tln(λln)2|
λjnλln

=∞;

then we also have∣∣∣∣tln − tjn(λjnλln
)2∣∣∣∣ =

|tln(λln)2 − tjn(λjn)2|
λlnλ

j
n

· λ
j
n

λln
→∞ as n→∞.

Under this condition, (4.10) follows from

λ
d−2
2

1

[
e
i
(
tln−t

j
n

(
λ
j
n
λln

)2)
∆
φ

](
λ1x+

xjn − xln
λln

)
⇀ 0 weakly in Ḣ1

x,

which is an immediate consequence of Exercise 4.3.
Finally, we deal with the situation when

λjn
λln
→ λ1 ∈ (0,∞),

tln(λln)2 − tjn(λjn)2

λjnλln
→ t1, but

|xjn − xln|2

λjnλln
→∞.(4.12)

Then we also have tln − tjn(λjn)2/(λln)2 → λ1t1. Thus, it suffices to show that

λ
d−2
2

1 eit1λ1∆φ(λ1x+ yn) ⇀ 0 weakly in Ḣ1
x,(4.13)

where

yn :=
xjn − xln
λln

=
xjn − xln√
λlnλ

j
n

√
λjn
λln
→∞ as n→∞.

The desired weak convergence (4.13) follows again from Exercise 4.3.
Finally, we prove the last assertion in the theorem regarding the behaviour of tjn.

For each j, by passing to a subsequence we may assume tjn → tj ∈ [−∞,∞]. Using
a standard diagonal argument, we may assume that the limit exists for all j ≥ 1.

Fix j ≥ 1. If tj = ±∞, there is nothing more to be proved. If tj ∈ (−∞,∞),
we claim that we may redefine tjn ≡ 0, provided we replace the original profile φj
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by eit
j∆φj . Indeed, we merely need to prove that the errors introduced by these

changes can be incorporated into wJn , namely,

lim
n→∞

∥∥gjneitjn∆φj − gjneit
j∆φj

∥∥
Ḣ1
x

= 0.

But this follows easily from the strong convergence of the linear propagator.
This completes the proof of Theorem 4.1. �

Exercise 4.1. Under the hypotheses of Proposition 3.2, prove that

e−it
j
n∆
[
(λjn)

d−2
2 wJn(λjnx+ xjn)

]
⇀ 0 weakly in Ḣ1(Rd) for all j ≤ J.

Exercise 4.2. Let fn ∈ Ḣ1(Rd) be such that fn ⇀ 0 weakly in Ḣ1(Rd) and let
tn → t∞ ∈ R. Then

eitn∆fn ⇀ 0 weakly in Ḣ1
x as n→∞.

Exercise 4.3. Let f ∈ C∞c (Rd) and let {(tn, xn)}n≥1 ⊂ R× Rd. Then

eitn∆f(x+ xn) ⇀ 0 weakly in Ḣ1
x as n→∞

whenever |tn| → ∞ or |xn| → ∞.

5. Stability theory for the energy-critical NLS

In this section we develop a stability theory for the energy-critical NLS

i∂tu = −∆u± |u|
4
d−2u with u(0) = u0 ∈ Ḣ1

x.(5.1)

Definition 5.1 (Solution). A function u : I×Rd → C on a non-empty time interval

0 ∈ I ⊂ R is a solution (more precisely, a strong Ḣ1
x solution) to (5.1) if it lies in

the class C0
t Ḣ

1
x(K×Rd)∩L

2(d+2)
d−2

t,x (K×Rd) for all compact K ⊂ I, and satisfies the
Duhamel formula

u(t) = eit∆u(0)∓ i
∫ t

0

ei(t−s)∆|u(s)|
4
d−2u(s) ds(5.2)

for all t ∈ I. We refer to the interval I as the lifespan of u. We say that u is a
maximal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that u is a global solution if I = R.

Solutions to (5.1) conserve the energy

E(u(t)) =

∫
Rd

1
2 |∇u(t, x)|2 ± d−2

2d |u(t, x)|
2d
d−2 dx.

Note that taking data in Ḣ1
x renders the energy finite. Indeed, Sobolev embedding

shows that Ḣ1
x is precisely the energy space.

The equation is called energy-critical because the scaling associated with this
equation, namely,

u(t, x) 7→ λ
d−2
2 u
(
λ2t, λx

)
for λ > 0,

leaves invariant not only the class of solutions to (5.1), but also the energy.
Throughout the section, we use S0 to denote the intersection of any finite number

of Strichartz spaces LqtL
r
x with (q, r) obeying the conditions of Lemma 2.7, and N0
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to denote the sum of any finite number of dual Strichartz spaces Lq
′

t L
r′

x . For an
interval I ⊂ R we define the norms

‖u‖S0(I) := ‖u‖S0(I×Rd) and ‖F‖N0(I) := ‖F‖N0(I×Rd).

We start by reviewing the standard local well-posedness statement for (6.1).

Theorem 5.2 (Standard local well-posedness, [8, 9, 10]). Let d ≥ 3 and u0 ∈
H1(Rd). There exists η0 = η0(d) > 0 such that if 0 < η ≤ η0 and I is a compact
interval containing zero such that∥∥∇eit∆u0

∥∥
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ η,(5.3)

then there exists a unique solution u to (5.1) on I × Rd. Moreover, we have the
bounds ∥∥∇u∥∥

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ 2η∥∥∇u∥∥
S0(I×Rd)

.
∥∥∇u0

∥∥
L2
x

+ η1+p

‖u‖S0(I×Rd) . ‖u0‖L2
x
.

Proof. Exercise! Hint: use contraction mapping with the distance given by an S0

norm. �

Remarks. 1. By the Strichartz inequality,∥∥∇eit∆u0

∥∥
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

.
∥∥∇u0

∥∥
L2
x
.

Thus, (5.3) holds with I = R for initial data with sufficiently small Ḣ1
x norm. In

particular, we obtain global well-posedness for initial data in H1
x that is small in

Ḣ1
x.

2. By the monotone convergence theorem, given an arbitrary u0 ∈ Ḣ1
x we can

choose a sufficiently small interval I to ensure that (5.3) holds. Note however that
the length of I will depend upon u0 and not merely its norm.

This standard local well-posedness result suffers from the fact that the initial data
belongs to the inhomogeneous Sobolev space H1

x, rather than the energy space Ḣ1
x;

the stronger requirement u0 ∈ H1
x is needed in the proof of Theorem 5.2 in order to

prove that the solution map is a contraction. To remove this restriction, we need
the following stability result:

Theorem 5.3 (Energy-critical stability result, [22, 34]). Let I a compact time
interval and let ũ be an approximate solution to (5.1) on I × Rd in the sense that

iũt = −∆ũ± |ũ|
4
d−2 ũ+ e

for some function e. Assume that

‖ũ‖L∞t Ḣ1
x(I×Rd) ≤ E(5.4)

‖ũ‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ L(5.5)

for some positive constants E and L. Let t0 ∈ I and u0 ∈ Ḣ1
x and assume the

smallness conditions

‖u0 − ũ(t0)‖Ḣ1
x
≤ ε(5.6)
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‖∇e‖N0(I) ≤ ε(5.7)

for some 0 < ε < ε1 = ε1(E,L). Then there exists a unique strong solution
u : I × Rd 7→ C to (5.1) with initial data u0 at time t = t0 satisfying

‖u− ũ‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ C(E,L)εc(5.8)

‖∇(u− ũ)‖S0(I) ≤ C(E,L)(5.9)

‖∇u‖S0(I) ≤ C(E,L),(5.10)

where c = c(d) > 0.

This stability result was first proved for d = 3 in the work of Colliander, Keel,
Staffilani, Takaoka, and Tao [13] on the defocusing energy-critical NLS. For d = 4,
it can be found in [30]. The same proof extends easily to dimensions d = 5, 6. To
prove Theorem 5.3 in dimensions d ≥ 7, new ideas are needed. To see why, let
us consider the question of continuous dependence of the solution upon the initial
data, which corresponds to taking e = 0 in Theorem 5.3. To make things as simple
as possible, we choose initial data u0, ũ0 ∈ H1

x which are small in the sense that

‖u0‖Ḣ1
x

+ ‖ũ0‖Ḣ1
x
≤ η0.

By the first remark above, if η0 is sufficiently small there exist unique global so-
lutions u and ũ to (5.1) with initial data u0 and ũ0, respectively; moreover, they
satisfy

‖∇u‖S0(R) + ‖∇ũ‖S0(R) . η0.

We would like to see that if u0 and ũ0 are close in Ḣ1
x, say ‖∇(u0 − ũ0)‖2 ≤ ε �

η0, then u and ũ remain ε-close in energy-critical norms. An application of the
Strichartz inequality combined with the bounds above yields

‖∇(u− ũ)‖S0(R) .‖∇(u0 − ũ0)‖L2
x

+ η
4
d−2

0 ‖∇(u− ũ)‖S0(R) + η0‖∇(u− ũ)‖
4
d−2

S0(R).

If 4/(d−2) ≥ 1, a simple bootstrap argument implies continuous dependence of the
solution upon the initial data. However, this will not work if 4/(d − 2) < 1, that
is, if d ≥ 7. The last term in the inequality above causes the bootstrap argument
to break down in high dimensions; indeed, tiny numbers become much larger when
raised to a fractional power.

To prove Theorem 5.3 in dimensions d ≥ 7, the authors of [34] work in spaces
with fractional derivatives (rather than a full derivative), while still maintaining
criticality with respect to the scaling. A similar technique was employed by Nakan-
ishi [27] for the energy-critical Klein–Gordon equation in high dimensions.

The result in [34] assumes the less stringent smallness condition(∑
N∈2Z

∥∥∇PNei(t−t0)∆
(
u0 − ũ(t0)

)∥∥2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

)1/2

≤ ε

in place of (5.6). There is also an improvement over the result in [34], in which the
smallness condition above is replaced by∥∥ei(t−t0)∆

(
u0 − ũ(t0)

)∥∥
L

2(d+2)
d−2

t,x (I×Rd)

≤ ε.

To prove Theorem 5.3 with this particular hypothesis (which was helpful in early
treatments of the energy-critical NLS), it becomes necessary to work in spaces with
fractional derivatives even in small dimensions; see [22] for the proof.
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In what follows, we will present the proof of Theorem 5.3 in dimensions 3 ≤ d ≤ 6.
For higher dimensions, see [22, 34].

Proof of Theorem 5.3 for 3 ≤ d ≤ 6. We will prove the result under the additional
assumption that u0 ∈ L2

x (and so u0 ∈ H1
x). This allows us to invoke Theorem 5.2

and so guarantee that u exists. Thus, it suffices to prove (5.8) through (5.10) as a
priori estimates, that is, we assume that u exists and satisfies ∇u ∈ S0(I). Once we
have proved (5.8) through (5.10), we may remove the additional assumption u0 ∈ L2

x

by the usual limiting argument: Approximate u0 ∈ Ḣ1
x by {fn}n≥1 ⊂ H1

x and let un
be the solution to (5.1) with initial data un(t0) = fn. Applying Theorem 5.3 with
ũ := um, u := un, and e = 0, we deduce that the sequence of solutions {un}n≥1 is
Cauchy in energy-critical norms. Therefore, un converges to a solution u with data
u(t0) = u0 which satisfies ∇u ∈ S0(I).

We first prove the theorem under the hypothesis

‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ δ(5.11)

for some δ > 0 sufficiently small depending on E. Without loss of generality, we
may assume t0 = inf I.

To continue, let v := u− ũ and for t ∈ I define

A(t) :=
∥∥∇[(i∂t + ∆)v + e

]∥∥
L2
tL

2d
d+2
x ([t0,t]×Rd)

.

By Sobolev embedding, Strichartz, (5.6), and (5.7), we get

‖v‖
L

2(d+2)
d−2

t,x ([t0,t]×Rd)

. ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x ([t0,t]×Rd)

. ‖v(t0)‖Ḣ1
x

+A(t) + ‖∇e‖
L2
tL

2d
d+2
x ([t0,t]×Rd)

. A(t) + ε.(5.12)

On the other hand, by Hölder, (5.11), (5.12), and Sobolev embedding, we get

A(t) . ‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

‖v‖
L

2(d+2)
d−2

t,x

[
‖v‖

L

2(d+2)
d−2

t,x

+ ‖ũ‖
L

2(d+2)
d−2

t,x

] 6−d
d−2

+ ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

[
‖v‖

L

2(d+2)
d−2

t,x

+ ‖ũ‖
L

2(d+2)
d−2

t,x

] 4
d−2

. δ[A(t) + ε][A(t) + ε+ δ]
6−d
d−2 + [A(t) + ε][A(t) + ε+ δ]

4
d−2 ,

where all spacetime norms are over [t0, t]× Rd.
Taking δ, ε sufficiently small (depending only on the ambient dimension so far),

a standard continuity argument gives

A(t) . ε for all t ∈ I(5.13)

with c = c(d) = 1. Together with (5.12), this gives (5.8). To obtain (5.9), we use
the Strichartz inequality, (5.6), (5.7), and (5.13), as follows:

‖∇(u− ũ)‖S0(I) . ‖u0 − ũ(t0)‖Ḣ1
x

+
∥∥∇[(i∂t + ∆)v + e

]∥∥
L2
tL

2d
d+2
x (I×Rd)

+ ‖∇e‖
L2
tL

2d
d+2
x (I×Rd)

. ε.
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To obtain (5.10), we first note that by (5.11) and (5.12),

‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

+ ‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

. ε+ δ.

Using this together with the Strichartz inequality, Sobolev embedding, and (5.4),

‖∇u‖S0(I) . ‖ũ(t0)‖Ḣ1
x

+ ‖u0 − ũ(t0)‖Ḣ1
x

+ ‖∇u‖
d+2
d−2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

. E + ε+ [ε+ δ]
d+2
d−2 . E,

provided δ, ε ≤ ε0 = ε0(E).
To complete the proof of Theorem 5.3 in small dimensions, it remains to restore

the hypothesis (5.5) in place of (5.11). We first note that (5.5) implies ∇u ∈ S0(I).

Indeed, subdividing I into N0 ∼ (1 + L
η )

2(d+2)
d−2 subintervals Jk such that on each Jk

we have

‖ũ‖
L

2(d+2)
d−2

t,x (Jk×Rd)

≤ η,

and using the Strichartz inequality, Sobolev embedding, and (5.4), we estimate

‖∇ũ‖S0(Jk) . ‖ũ‖L∞t Ḣ1
x(I×Rd) + ‖∇ũ‖S0(Jk)‖ũ‖

4
d−2

L

2(d+2)
d−2

t,x (Jk×Rd)

+ ‖∇e‖
L2
tL

2d
d+2
x (I×Rd)

. E + η
4
d−2 ‖∇ũ‖S0(Jk) + ε.

Thus for η sufficiently small depending on d,

‖∇ũ‖S0(Jk) . E + ε.

Summing these bounds over all the intervals Jk we obtain

‖∇ũ‖S0(I) ≤ C(E,L).

We can now subdivide I into N1 = N1(E,L) subintervals Ij = [tj , tj+1] such
that on each Ij we have

‖∇ũ‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (Ij×Rd)

≤ δ,

where δ is as in (5.11). Choosing ε1 sufficiently small depending on ε0 and N1, the
argument above implies that for each j and all 0 < ε < ε1,

‖u− ũ‖
L

2(d+2)
d−2

t,x (Ij×Rd)

≤ C(j)ε

‖∇(u− ũ)‖S0(Ij) ≤ C(j)ε

‖∇u‖S0(Ij) ≤ C(j)E∥∥∇[(i∂t + ∆)(u− ũ) + e
]∥∥
L2
tL

2d
d+2
x (Ij×Rd)

≤ C(j)ε,

provided we can show that (5.6) holds when t0 is replaced by tj . We check this
using an inductive argument. By the Strichartz inequality,

‖u(tj+1)− ũ(tj+1)‖Ḣ1
x
. ‖u0 − ũ(t0)‖Ḣ1

x
+ ‖∇e‖

L2
tL

2d
d+2
x (I×Rd)

+
∥∥∇[(i∂t + ∆)(u− ũ) + e

]∥∥
L2
tL

2d
d+2
x ([t0,tj+1]×Rd)
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. ε+

j∑
k=0

C(k)ε.

Choosing ε1 sufficiently small depending on ε0 and E, we can continue the inductive
argument.

This completes the proof of Theorem 5.3 in dimensions 3 ≤ d ≤ 6. �

6. A large data critical problem

Throughout the remainder of these notes we restrict attention to the defocusing
energy-critical NLS

i∂tu+ ∆u = |u|
4
d−2u with u(0) = u0 ∈ Ḣ1

x.(6.1)

For arguments and further references in the focusing case, see [22]. For equation
(6.1) we have the following large data global result:

Theorem 6.1 (Global well-posedness and scattering). Let d ≥ 3 and u0 ∈ Ḣ1
x.

Then there exists a unique global solution u to (6.1) and it satisfies∫
R

∫
Rd
|u(t, x)|

2(d+2)
d−2 dx dt ≤ C(E(u0)).

In particular, the solution scatters, that is, there exist asymptotic states u± ∈ Ḣ1
x

such that

‖u(t)− eit∆u±‖Ḣ1
x
→ 0 as t→ ±∞.

The proof of this theorem sparked the recent progress on dispersive equations
at the critical regularity. It was first proved for spherically symmetric initial data
in dimensions d = 3, 4 by Bourgain [5]. In this work, Bourgain introduced the
induction on energy paradigm as a means for breaking the scaling symmetry; this
allowed him to use non-critical monotonicity formulas like the Morawetz inequality

(which scales like Ḣ
1/2
x ). Building on Bourgain’s argument, Tao [33] proved the

theorem in dimensions d ≥ 5 for spherically symmetric data.
The radial assumption was removed in dimension d = 3 by Colliander, Keel,

Staffilani, Takaoka, and Tao [13]. This work further advanced the induction on
energy argument, introducing important new ideas that informed subsequent devel-
opments. To deal with arbitrary data, the authors employed a frequency-localized
interaction Morawetz inequality, which is even further away from scaling (it scales

like Ḣ
1/4
x ). The work [13] was extended to four dimensions in [30]. Finally, for

dimensions d ≥ 5, Theorem 6.1 was proved in [39]; for a different proof reflecting
new advances see [23], which also treats the focusing problem.

In these notes, we will present the proof of Theorem 6.1 in dimension d = 4.
The proof below is taken from [40], which revisits the argument in [30] in light of
the recent advances made by Dodson [15] on the mass-critical NLS. For a proof of
the three-dimensional case treated in [13] that also incorporates these advances see
[21].

We note that parts of the argument we will present in these notes work in all
dimensions d ≥ 3; in particular, we will demonstrate the existence of a minimal
counterexample to Theorem 6.1 in all dimensions d ≥ 3.

To start, for any 0 ≤ E <∞, we define

L(E) := sup{SI(u) : u : I × Rd → C such that E(u) ≤ E},
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where the supremum is taken over all solutions u : I × Rd → C to (6.1). Here, we
use the notation

SI(u) :=

∫
I

∫
Rd
|u(t, x)|

2(d+2)
d−2 dx dt

for the scattering size of u on an interval I.
Note that L :

[
0,∞)→ [0,∞] is a non-decreasing function. Moreover, from the

small data theory,

L(E) . E
d+2
d−2 for E ≤ η0,

where η0 = η0(d) is the small data threshold.

Exercise 6.1. Prove that the set {E > 0 : L(E) <∞} is open.
Hint: Use Theorem 5.3.

Therefore, there must exist a unique critical energy 0 < Ec ≤ ∞ such that

L(E) <∞ for E < Ec and L(E) =∞ for E ≥ Ec.

This plays the role of the inductive hypothesis because it says that Theorem 6.1
holds for energies E < Ec. The argument is called induction on energy, because
this inductive hypothesis will be used to prove that L(Ec) <∞, thus providing the
desired contradiction.

7. A Palais–Smale type condition

In this section we prove a Palais–Smale condition for minimizing sequences of
blowup solutions to the defocusing energy-critical NLS. It was already observed
in [5, 13] that such minimizing sequences have good tightness and equicontinuity
properties. This was taken to its ultimate conclusion by Keraani [19] who showed
the existence and almost periodicity of minimal blowup solutions in the context of
the mass-critical NLS. The proof of the Palais–Smale condition is the crux of this
argument.

We first define operators T jn on general functions of spacetime. These act on

linear solutions in a manner corresponding to the action of gjne
itjn∆ on initial data:

(T jnu)(t, x) := (λjn)−
d−2
2 u

(
t

(λjn)2
+ tjn,

x− xjn
λjn

)
.

Here, the parameters λjn, t
j
n, x

j
n are as defined in Theorem 4.1. Using the asymptotic

orthogonality condition (4.6), it is not hard to prove the following

Lemma 7.1 (Asymptotic decoupling). Suppose that the parameters associated to
j, k are orthogonal in the sense of (4.6). Then for any ψj , ψk ∈ C∞c (R× Rd),

‖T jnψjT knψk‖
L
d+2
d−2
t,x

+ ‖T jnψj∇(T knψ
k)‖

L
d+2
d−1
t,x

+ ‖∇(T jnψ
j)∇(T knψ

k)‖
L
d+2
d

t,x

converges to zero as n→∞.

Proof. From a change of variables, we get

‖T jnψjT knψk‖
L
d+2
d−2
t,x

+ ‖T jnψj∇(T knψ
k)‖

L
d+2
d−1
t,x

+ ‖∇(T jnψ
j)∇(T knψ

k)‖
L
d+2
d

t,x

= ‖ψj(T jn)−1T knψ
k‖
L
d+2
d−2
t,x

+ ‖ψj∇(T jn)−1T knψ
k‖
L
d+2
d−1
t,x

+ ‖∇ψj∇(T jn)−1T knψ
k‖
L
d+2
d

t,x

,



OBERWOLFACH SEMINAR: DISPERSIVE EQUATIONS 27

where all spacetime norms are over R× Rd. Note that

[(T jn)−1T knψ
k](t, x) =

(λjn
λkn

) d−2
2 ψk

((λjn
λkn

)2(
t− tjn(λjn)2−tkn(λkn)2

(λjn)2

)
,
λjn
λkn

(
x− xkn−x

j
n

λjn

))
.

We will only present the details for decoupling in the L
d+2
d−2

t,x norm; the argument
for decoupling in the other norms is very similar.

We first assume that
λjn
λkn

+
λkn
λjn
→∞. Using Hölder’s inequality and a change of

variables, we estimate

‖ψj(T jn)−1T knψ
k‖
L
d+2
d−2
t,x

≤ min
{
‖ψj‖L∞t,x‖(T

j
n)−1T knψ

k‖
L
d+2
d−2
t,x

+ ‖ψj‖
L
d+2
d−2
t,x

‖(T jn)−1T knψ
k‖L∞t,x

}
. min

{(λjn
λkn

)− d−2
2 ,
(λjn
λkn

) d−2
2

}
→ 0 as n→∞.

Henceforth, we may assume
λjn
λkn
→ λ0 ∈ (0,∞).

If
|tjn(λjn)2−tkn(λkn)2|

λknλ
j
n

→ ∞, it is easy to see that the temporal supports of ψj and

(T jn)−1T knψ
k become disjoint for n sufficiently large. Hence

lim
n→∞

‖ψj(T jn)−1T knψ
k‖
L
d+2
d−2
t,x

= 0.

If instead

λjn
λkn
→ λ0,

tjn(λjn)2−tkn(λkn)2

λknλ
j
n

→ t0, and
|xjn−x

k
n|√

λjnλkn
→∞,

then the spatial supports of ψj and (T jn)−1T knψ
k become disjoint for n sufficiently

large. Indeed, in this case we have

|xjn−x
k
n|

λjn
=
|xjn−x

k
n|√

λjnλkn

√
λkn
λjn
→∞ as n→∞.

This completes the proof of the lemma. �

Recall that failure of Theorem 6.1 implies the existence of a critical energy 0 <
Ec <∞ so that

L(E) <∞ for E < Ec and L(E) =∞ for E ≥ Ec,(7.1)

where L(E) denotes the supremum of SI(u) over all solutions u : I ×Rd → C with
E(u) ≤ E.

The positivity of Ec is a consequence of the small data global well-posedness.
Indeed, the argument proves the stronger statement

‖u‖Ẋ1(R×Rd) . E(u0)
1
2 for all data with E(u0) ≤ η0,(7.2)

where η0 denotes the small data threshold. Here,

Ẋ1 := L
2(d+2)
d−2

t,x ∩ L
2(d+2)
d

t Ḣ
1,

2(d+2)
d

x .

Using the induction on energy argument together with (7.1) and the stability
result Theorem 5.3, we now prove a compactness result for optimizing sequences of
blowup solutions.
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Proposition 7.2 (Palais–Smale condition). Let un : In×Rd → C be a sequence of
solutions to the defocusing energy-critical NLS with E(un) → Ec, for which there
is a sequence of times tn ∈ In so that

lim
n→∞

S≥tn(un) = lim
n→∞

S≤tn(un) =∞.

Then the sequence un(tn) has a subsequence that converges in Ḣ1
x modulo scaling

and spatial translations.

Proof. Using time translation symmetry, we may take tn ≡ 0 for all n; thus,

lim
n→∞

S≥0(un) = lim
n→∞

S≤0(un) =∞.(7.3)

Applying Theorem 4.1 to the bounded sequence {un(0)}n≥1 ⊂ Ḣ1
x and passing to

a subsequence if necessary, we decompose

un(0) =

J∑
j=1

gjne
itjn∆φj + wJn(7.4)

with the properties stated in that theorem. In particular, for any finite 0 ≤ J ≤ J∗
we have the energy decoupling condition

lim
n→∞

{
E(un)−

J∑
j=1

E(eit
j
n∆φj)− E(wJn)

}
= 0.(7.5)

To prove the proposition, we need to show that J∗ = 1, that w1
n → 0 in Ḣ1

x, and
that t1n ≡ 0. All other possibilities will be shown to contradict (7.3). We discuss
two scenarios:

Scenario I: supj lim supn→∞E(eit
j
n∆φj) = Ec.

From the non-triviality of the profiles, we have lim infn→∞E(eit
j
n∆φj) > 0 for

every finite 1 ≤ j ≤ J∗. Thus, using (7.5) together with the hypothesis E(un)→ Ec
(and passing to a subsequence if necessary), we deduce that there is a single profile
in the decomposition (7.4) (that is, J∗ = 1) and we can write

(7.6) un(0) = gne
itn∆φ+ wn with lim

n→∞
‖wn‖Ḣ1

x
= 0

and tn ≡ 0 or tn → ±∞. If tn ≡ 0, then we obtain the desired compactness. Thus,
we only need to preclude the scenario when tn → ±∞.

Let us suppose tn → ∞; the case tn → −∞ can be treated symmetrically. In
this case, the Strichartz inequality and the monotone convergence theorem yield

S≥0(eit∆un(0)) . S≥tn(eit∆φ) + S(eit∆wn)→ 0 as n→∞.

By Theorem 5.3, this implies that S≥0(un)→ 0, which contradicts (7.3).

Scenario 2: supj lim supn→∞E(eit
j
n∆φj) ≤ Ec − 2δ for some δ > 0.

We first observe that in this case, for each finite J ≤ J∗ we have E(eit
j
n∆φj) ≤

Ec − δ for all 1 ≤ j ≤ J and n sufficiently large.
Next we define nonlinear profiles corresponding to each bubble in the decompo-

sition of un(0). If tjn ≡ 0, we define vj : Ij × Rd → C to be the maximal-lifespan
solution to the defocusing energy-critical NLS with initial data vj(0) = φj . If in-
stead tjn → ±∞, we define vj : Ij × Rd → C to be the maximal-lifespan solution
to the defocusing energy-critical NLS which scatters to eit∆φj as t → ±∞. Now
define vjn := T jnv

j . Then vjn is also a solution to the defocusing energy-critical NLS
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on the time interval Ijn := (λjn)2(Ij − {tjn}). In particular, for n sufficiently large
we have 0 ∈ Ijn and

lim
n→∞

‖vjn(0)− gjneit
j
n∆φj‖Ḣ1

x
= 0.(7.7)

Combining this with E(eit
j
n∆φj) ≤ Ec− δ < Ec and the inductive hypothesis (7.1),

we deduce that for n sufficiently large, vjn (and so also vj) are global solutions that
satisfy

SR(vj) = SR(vjn) ≤ L(Ec − δ) <∞.

(Note in particular that this implies vjn are global for all n ≥ 1 and they admit a
common spacetime bound.)

Combining this with the Strichartz inequality shows that all Strichartz norms of
vj and vjn are finite; in particular,

‖vj‖Ẋ1(R×Rd) = ‖vjn‖Ẋ1(R×Rd) ≤Ec,δ 1.

This allows us to approximate vjn in Ẋ1(R× Rd) by C∞c (R× Rd) functions. More
precisely, for any ε > 0 there exist ψjε ∈ C∞c (R× Rd) so that

‖vjn − T jnψjε‖Ẋ1(R×Rd) < ε.(7.8)

Moreover, we may use (7.2) together with our bounds on the spacetime norms of
vjn and the finiteness of Ec to deduce that

‖vjn‖Ẋ1(R×Rd) .Ec,δ E(eit
j
n∆φj)

1
2 .Ec,δ 1.(7.9)

Combining this with (7.5) we deduce that

lim sup
n→∞

J∑
j=1

‖vjn‖2Ẋ1(R×Rd)
.Ec,δ lim sup

n→∞

J∑
j=1

E(eit
j
n∆φjn) .Ec,δ 1,(7.10)

uniformly for finite J ≤ J∗.
The asymptotic orthogonality condition (4.6) gives rise to asymptotic decoupling

of the nonlinear profiles.

Lemma 7.3 (Decoupling of nonlinear profiles). For j 6= k we have

lim
n→∞

‖vjnvkn‖
L
d+2
d−2
t,x (R×Rd)

+ ‖vjn∇vkn‖
L
d+2
d−1
t,x (R×Rd)

+ ‖∇vjn∇vkn‖
L
d+2
d

t,x (R×Rd)
= 0.

Proof. We only present the argument for decoupling in the L
d+2
d−2

t,x norm; the argu-
ment for decoupling in the other norms is similar. Recall that for any ε > 0 there
exist ψjε, ψ

k
ε ∈ C∞c (R× Rd) so that

‖vjn − T jnψjε‖Ẋ1(R×Rd) + ‖vkn − T knψkε ‖Ẋ1(R×Rd) < ε.

Thus, using (7.9) and Lemma 7.1 we get

‖vjnvkn‖
L
d+2
d−2
t,x

≤ ‖vjn(vkn − T knψkε )‖
L
d+2
d−2
t,x

+ ‖(vjn − T jnψjε)T knψkε ‖
L
d+2
d−2
t,x

+ ‖T jnψjε T knψkε ‖
L
d+2
d−2
t,x

. ‖vjn‖Ẋ1‖vkn − T knψkε ‖Ẋ1 + ‖vjn − T jnψjε‖Ẋ1‖ψkε ‖Ẋ1 + ‖T jnψjε T knψkε ‖
L
d+2
d−2
t,x

.Ec,δ ε+ o(1) as n→∞.



30 MONICA VIŞAN

As ε > 0 was arbitrary, this proves the asymptotic decoupling statement. �

As a consequence of this decoupling we can bound the sum of the nonlinear
profiles in Ẋ1, as follows:

lim sup
n→∞

∥∥∥ J∑
j=1

vjn

∥∥∥
Ẋ1(R×Rd)

.Ec,δ 1 uniformly for finite J ≤ J∗.(7.11)

Indeed, by Young’s inequality, (7.9), (7.10), and Lemma 7.3,

SR

( J∑
j=1

vjn

)
.

J∑
j=1

SR(vjn) + CJ
∑
j 6=k

‖vjnvkn‖
d+2
d−2

L
d+2
d−2
t,x

.Ec,δ 1 + CJo(1) as n→∞.

Similarly,∥∥∥ J∑
j=1

∇vjn
∥∥∥2

L
2(d+2)
d

t,x

=
∥∥∥( J∑

j=1

∇vjn
)2∥∥∥

L
d+2
d

t,x

.
J∑
j=1

‖∇vjn‖2
L

2(d+2)
d

t,x

+
∑
j 6=k

‖∇vjn∇vkn‖
L
d+2
d

t,x

.Ec,δ 1 + o(1) as n→∞.

This completes the proof of (7.11). The same argument combined with (7.5) shows
that given η > 0, there exists J ′ = J ′(η) such that

lim sup
n→∞

∥∥∥ J∑
j=J′

vjn

∥∥∥
Ẋ1(R×Rd)

≤ η uniformly in J ≥ J ′.(7.12)

Now we are ready to construct an approximate solution to the defocusing energy-
critical NLS. For each n and J , we define

uJn :=

J∑
j=1

vjn + eit∆wJn .

Obviously uJn is defined globally in time. In order to apply the stability result, it
suffices to verify the following three claims for uJn:

Claim 1: ‖uJn(0)− un(0)‖Ḣ1
x
→ 0 as n→∞ for any J .

Claim 2: lim supn→∞ ‖uJn‖Ẋ1(R×Rd) .Ec,δ 1 uniformly in J .

Claim 3: limJ→J∗ lim supn→∞
∥∥∇[(i∂t + ∆)uJn − |uJn|

4
d−2uJn

]∥∥
N0(R)

= 0.

The three claims imply that for sufficiently large n and J , uJn is an approximate
solution to the defocusing energy-critical NLS with finite scattering size, which
asymptotically matches un(0) at time t = 0. Using the stability result we see that
for n, J sufficiently large, the solution un inherits the spacetime bounds of uJn, thus
contradicting (7.3). Therefore, to complete the treatment of the second scenario,
it suffices to verify the three claims above.

The first claim follows trivially from (7.4) and (7.7). To derive the second claim,
we use (7.11) and the Strichartz inequality, as follows:

lim sup
n→∞

‖uJn‖Ẋ1(R×Rd) . lim sup
n→∞

∥∥∥ J∑
j=1

vjn

∥∥∥
Ẋ1(R×Rd)

+ lim sup
n→∞

‖wJn‖Ḣ1
x
.Ec,δ 1.
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It remains to verify the third claim. Adopting the notation F (z) = |z|
4
d−2 z, we

write

(i∂t + ∆)uJn − F (uJn) =

J∑
j=1

F (vjn)− F (uJn)

=

J∑
j=1

F (vjn)− F
( J∑
j=1

vjn

)
+ F

(
uJn − eit∆wJn

)
− F (uJn).(7.13)

Taking the derivative, in dimensions d ≥ 6 we estimate∣∣∣∣∇{ J∑
j=1

F (vjn)− F
( J∑
j=1

vjn

)}∣∣∣∣ .J ∑
j 6=k

|∇vjn||vkn|
4
d−2 .

In dimensions d = 3, 4, 5 there is an additional term on the right-hand side of the

inequality above, namely,
∑
j 6=k |∇vjn||vkn||vjn|

6−d
d−2 . Using (7.9) and Lemma 7.3, in

dimensions d ≥ 6 we estimate∥∥∥∥∇[ J∑
j=1

F (vjn)− F
( J∑
j=1

vjn

)]∥∥∥∥
N0(R)

.J
∑
j 6=k

∥∥|∇vjn||vkn| 4
d−2

∥∥
L

2(d+2)
d+4

t,x

.J
∑
j 6=k

∥∥∇vjnvkn∥∥ 4
d−2

L
d+2
d−1
t,x

‖∇vkn‖
d−6
d−2

L
2(d+2)
d

t,x

.J,Ec,δ o(1) as n→∞.
The additional term in dimensions d = 3, 4, 5 can be treated analogously. Thus,

(7.14) lim
J→J∗

lim sup
n→∞

∥∥∥∥∇[ J∑
j=1

F (vjn)− F
( J∑
j=1

vjn

)]∥∥∥∥
N0(R)

= 0.

We now turn to estimating the second difference in (7.13). We will show that

(7.15) lim
J→J∗

lim sup
n→∞

∥∥∇[F (uJn − eit∆wJn)− F (uJn)
]∥∥
N0(R)

= 0.

In dimensions d ≥ 6,∥∥∇[F (uJn − eit∆wJn)− F (uJn)
]∥∥
L

2(d+2)
d+4

t,x

. ‖∇eit∆wJn‖
L

2(d+2)
d

t,x

‖eit∆wJn‖
4
d−2

L

2(d+2)
d−2

t,x

+ ‖∇uJn‖
L

2(d+2)
d

t,x

‖eit∆wJn‖
4
d−2

L

2(d+2)
d−2

t,x

+
∥∥|uJn| 4

d−2∇eit∆wJn
∥∥
L

2(d+2)
d+4

t,x

.

In dimensions d = 3, 4, 5, one must add the term

‖∇uJn‖
L

2(d+2)
d

t,x

‖eit∆wJn‖
L

2(d+2)
d−2

t,x

‖uJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

to the right-hand side above. Using the second claim together with (4.2), and the

Strichartz inequality combined with the fact that wJn is bounded in Ḣ1
x, we see that

(7.15) will follow once we establish

lim
J→J∗

lim sup
n→∞

∥∥|uJn| 4
d−2∇eit∆wJn

∥∥
L

2(d+2)
d+4

t,x (R×Rd)

= 0.(7.16)
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We will only prove (7.16) in dimensions d ≥ 6. We leave the remaining low
dimensions as an exercise for the conscientious reader. Using Hölder’s inequality,
the second claim, and the Strichartz inequality, we get

‖||uJn|
4
d−2∇eit∆wJn‖

L

2(d+2)
d+4

t,x

. ‖uJn∇eit∆wJn‖
4
d−2

L
d+2
d−1
t,x

‖∇eit∆wJn‖
d−6
d−2

L
2(d+2)
d

t,x

.Ec,δ ‖eit∆wJn∇eit∆wJn‖
4
d−2

L
d+2
d−1
t,x

+
∥∥∥ J∑
j=1

vjn∇eit∆wJn
∥∥∥ 4
d−2

L
d+2
d−1
t,x

.Ec,δ ‖eit∆wJn‖
4
d−2

L

2(d+2)
d−2

t,x

‖∇eit∆wJn‖
4
d−2

L
2(d+2)
d

t,x

+
∥∥∥ J∑
j=1

vjn∇eit∆wJn
∥∥∥ 4
d−2

L
d+2
d−1
t,x

.Ec,δ ‖eit∆wJn‖
4
d−2

L

2(d+2)
d−2

t,x

+
∥∥∥ J∑
j=1

vjn∇eit∆wJn
∥∥∥ 4
d−2

L
d+2
d−1
t,x

.

By (4.2), the contribution of the first term to (7.16) is acceptable. We now turn to
the second term.

By (7.12),

lim sup
n→∞

∥∥∥( J∑
j=J′

vjn

)
∇eit∆wJn

∥∥∥
L
d+2
d−1
t,x

. lim sup
n→∞

∥∥∥ J∑
j=J′

vjn

∥∥∥
Ẋ1
‖∇eit∆wJn‖

L
2(d+2)
d

t,x

.Ec,δ η,

where η > 0 is arbitrary and J ′ = J ′(η) is as in (7.12). Thus, proving (7.16) reduces
to showing

lim
J→J∗

lim sup
n→∞

‖vjn∇eit∆wJn‖
L
d+2
d−1
t,x

= 0 for each 1 ≤ j < J ′.(7.17)

Fix 1 ≤ j < J ′. By a change of variables,

‖vjn∇eit∆wJn‖
L
d+2
d−1
t,x

=
∥∥vj∇w̃Jn∥∥

L
d+2
d−1
t,x

,

where w̃Jn := (T jn)−1
(
eit∆wJn

)
. Note that

‖w̃Jn‖Ẋ1(R×Rd) = ‖eit∆wJn‖Ẋ1(R×Rd).(7.18)

By density, we may assume vj ∈ C∞c (R×Rd). Invoking Hölder’s inequality, it thus
suffices to show

lim
J→J∗

lim sup
n→∞

‖∇w̃Jn‖L2
t,x(K) = 0

for any compact K ⊂ R×Rd. This however follows immediately from Lemma 2.12,
(4.2), and (7.18), thus completing the proof of (7.17).

This proves (7.16) and so (7.15). Combining (7.14) and (7.15) yields the third
claim. This completes the treatment of the second scenario and so the proof of the
proposition. �
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8. Existence of minimal blowup solutions and their properties

In this section we prove the existence of minimal counterexamples to Theorem 6.1
and we study some of their properties.

Theorem 8.1 (Existence of minimal counterexamples). Suppose Theorem 6.1 fails
to be true. Then there exist a critical energy 0 < Ec < ∞ and a maximal-lifespan
solution u : I × Rd → C to the defocusing energy-critical NLS with E(u) = Ec,
which blows up in both time directions in the sense that

S≥0(u) = S≤0(u) =∞,

and whose orbit {u(t) : t ∈ R} is precompact in Ḣ1
x modulo scaling and spatial

translations.

Proof. If Theorem 6.1 fails to be true, then there must exist a critical energy 0 <
Ec <∞ and a sequence of solutions un : In × Rd → C such that E(un)→ Ec and
SIn(un)→∞. Let tn ∈ In be such that S≥tn(un) = S≤tn(un) = 1

2SIn(un); then

lim
n→∞

S≥tn(un) = lim
n→∞

S≤tn(un) =∞.(8.1)

Applying Proposition 7.2 and passing to a subsequence, we find φ ∈ Ḣ1
x such

that un(tn) converge to φ in Ḣ1
x modulo scaling and spatial translations. Using

the scaling and space-translation invariance of the equation and modifying un(tn)

appropriately, we may assume un(tn)→ φ in Ḣ1
x. In particular, E(φ) = Ec.

Let u : I × Rd → C be the maximal-lifespan solution to the defocusing energy-
critical NLS with initial data u(0) = φ. From the stability result Theorem 5.3 and
(8.1), we get

S≥0(u) = S≤0(u) =∞.(8.2)

Finally, we prove that the orbit of u is precompact in Ḣ1
x modulo scaling and

space translations. For any sequence {t′n} ⊂ I, (8.2) implies S≥t′n(u) = S≤t′n(u) =
∞. Thus by Proposition 7.2, we see that u(t′n) admits a subsequence that converges

in Ḣ1
x modulo scaling and space translations. This completes the proof of the

theorem. �

By Corollary A.2, the maximal-lifespan solution found in Theorem 8.1 is almost
periodic modulo symmetries, that is, there exist (possibly discontinuous) functions
N : I → R+, x : I → Rd, and C : R+ → R+ such that∫

|x−x(t)|≥C(η)/N(t)

|∇u(t, x)|2 dx+

∫
|ξ|≥C(η)N(t)

|ξû(t, ξ)|2 dξ ≤ η

for all t ∈ I and η > 0. We refer to the function N as the frequency scale function,
x is the spatial center function, and C is the compactness modulus function.

Another consequence of the precompactness in Ḣ1
x modulo symmetries of the

orbit of the solution found in Theorem 8.1 is that for every η > 0 there exists
c(η) > 0 such that∫

|x−x(t)|≤c(η)/N(t)

|∇u(t, x)|2 dx+

∫
|ξ|≤c(η)N(t)

|ξû(t, ξ)|2 dξ ≤ η,

uniformly for all t ∈ I.

In what follows, we record some basic properties of almost periodic (modulo
symmetries) solutions. We start with the following definition:
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Definition 8.2 (Normalised solution). Let u : I × Rd → C be a solution to (6.1),
which is almost periodic modulo symmetries with parameters N(t) and x(t). We
say that u is normalised if the lifespan I contains zero and

N(0) = 1 and x(0) = 0.

More generally, we can define the normalisation of a solution u at a time t0 ∈ I by

(8.3) u[t0](s, x) := N(t0)−
d−2
2 u
(
t0 +N(t0)−2s, x(t0) +N(t0)−1x

)
.

Note that u[t0] is a normalised solution which is almost periodic modulo symmetries
with lifespan I [t0] := {s ∈ R : t0 +N(t0)−2s ∈ I}. The parameters of u[t0] satisfy

N [t0](s) :=
N
(
t0 + sN(t0)−2

)
N(t0)

and x[t0](s) := N(t0)
[
x
(
t0 + sN(t0)−2

)
− x(t0)

]
and u[t0] has the same compactness modulus function as u. Furthermore, if u is a
maximal-lifespan solution then so is u[t0].

Lemma 8.3 (Local constancy of N(t) and x(t), [20, 22]). Let u : I ×Rd → C be a
non-zero almost periodic modulo symmetries solution to (6.1) with parameters N(t)
and x(t). Then there exists a small number δ, depending on u, such that for every
t0 ∈ I we have

(8.4)
[
t0 − δN(t0)−2, t0 + δN(t0)−2

]
⊂ I

and

(8.5) N(t) ∼u N(t0) and |x(t)− x(t0)| .u N(t0)−1

whenever |t− t0| ≤ δN(t0)−2.

Proof. We first prove (8.4). Arguing by contradiction, we assume (8.4) fails. Thus,
there exist sequences tn ∈ I and δn → 0 such that tn + δnN(tn)−2 6∈ I for all n.
Then u[tn] given by (8.3) are normalised solutions whose lifespans I [tn] contain 0
but not δn. Invoking almost periodicity and passing to a subsequence, we conclude
that u[tn](0) converge to some v0 ∈ Ḣ1

x. Let v : J × Rd → C be the maximal-
lifespan solution with data v(0) = v0. By the local well-posedness theory, J is an
open interval and so contains δn for all sufficiently large n. By the stability result
Theorem 5.3, for n sufficiently large we must have that δn ∈ I [tn]. This contradicts
the hypothesis and so gives (8.4).

We now turn to (8.5). Again, we argue by contradiction, taking δ even smaller
if necessary. Suppose one of the two claims in (8.5) failed no matter how small one
chose δ. Then one can find sequences tn, t

′
n ∈ I so that sn := (t′n − tn)N(tn)2 → 0

but N(t′n)/N(tn) converge to either zero or infinity (if the first claim failed) or
|x(t′n)−x(tn)|N(tn)→∞ (if the second claim failed). Therefore, N [tn](sn) converge
to either zero or infinity or x[tn](sn)→∞. By almost periodicity, this implies that
u[tn](sn) must converge weakly to zero.

On the other hand, using almost periodicity and passing to a subsequence we
find that u[tn](0) converge to some v0 ∈ Ḣ1

x. As sn → 0, we conclude that u[tn](sn)

converge to v0 in Ḣ1
x. Thus v0 = 0 and E(u) = E(u[tn])→ E(v0) = 0. This means

u ≡ 0, a contradiction. This completes the proof of (8.5). �

An immediate consequence of Lemma 8.3 is the following corollary, which de-
scribes the behaviour of the frequency scale function.



OBERWOLFACH SEMINAR: DISPERSIVE EQUATIONS 35

Corollary 8.4 (N(t) at blowup, [20, 22]). Let u : I × Rd → C be a non-zero
maximal-lifespan solution to (6.1) that is almost periodic modulo symmetries with
frequency scale function N : I → R+. If T is any finite endpoint of the lifespan
I, then N(t) &u |T − t|−1/2; in particular, limt→T N(t) = ∞. If I is infinite or
semi-infinite, then for any t0 ∈ I we have N(t) &u min{N(t0), |t− t0|−1/2}.

Proof. Exercise! �

Our next result shows how energy-critical norms of an almost periodic solution
can be computed in terms of its frequency scale function; see [20] for the mass-
critical analogue.

Lemma 8.5 (Strichartz norms via N(t), [22]). Let u : I × Rd → C be a non-zero
almost periodic modulo symmetries solution to (6.1) with frequency scale function
N : I → R+. Then∫

I

N(t)2 dt .u

∫
I

∫
Rd
|u(t, x)|

2(d+2)
d−2 dx dt .u 1 +

∫
I

N(t)2 dt.

Proof. We first prove

(8.6)

∫
I

∫
Rd
|u(t, x)|

2(d+2)
d−2 dx dt .u 1 +

∫
I

N(t)2 dt.

Let 0 < η < 1 be a small parameter to be chosen shortly and partition I into
subintervals Ij so that

(8.7)

∫
Ij

N(t)2 dt ≤ η;

this requires at most η−1 × RHS(8.6) many intervals.
For each j, we may choose tj ∈ Ij so that

(8.8) N(tj)
2|Ij | ≤ 2η.

By Sobolev embedding, Strichartz, Hölder, and Bernstein, we obtain

‖u‖
L

2(d+2)
d−2

t,x

. ‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

. ‖ei(t−tj)∆∇u(tj)‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

+ ‖∇u‖
d+2
d−2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

. ‖u≥N0
(tj)‖Ḣ1

x
+ |Ij |

d−2
2(d+2)N

d−2
d+2

0 ‖u(tj)‖Ḣ1
x

+ ‖∇u‖
d+2
d−2

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

,

where all spacetime norms are over Ij × Rd. Choosing N0 as a large multiple of
N(tj) and using almost periodicity modulo symmetries, we can make the first term
as small as we wish. Subsequently, choosing η sufficiently small depending on E(u)
and invoking (8.8), we may also render the second term arbitrarily small. Thus, by
the usual bootstrap argument we obtain

‖u‖
L

2(d+2)
d−2

t,x (Ij×Rd)

. ‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (Ij×Rd)

≤ 1.

Using the bound on the number of intervals Ij , this leads to (8.6).
Next we prove

(8.9)

∫
I

∫
Rd
|u(t, x)|

2(d+2)
d−2 dx dt &u

∫
I

N(t)2 dt.
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Using almost periodicity and Sobolev embedding, we can guarantee that∫
|x−x(t)|≤C(u)N(t)−1

|u(t, x)|
2d
d−2 dx &u 1(8.10)

uniformly for t ∈ I. On the other hand, by Hölder,∫
Rd
|u(t, x)|

2(d+2)
d−2 dx &u

(∫
|x−x(t)|≤C(u)N(t)−1

|u(t, x)|
2d
d−2 dx

) d+2
d

N(t)2.

Using (8.10) and integrating over I we obtain (8.9). �

Corollary 8.6. Let u : I ×Rd → C be a non-zero almost periodic modulo symme-
tries solution to (6.1) with frequency scale function N : I → R+. Then

‖∇u‖2
L2
tL

2d
d−2
x (I×Rd)

.u 1 +

∫
I

N(t)2 dt.

Proof. Exercise! �

The next proposition tells us that for a minimal blowup solution u : I×Rd → C,
the free evolution coming for the endpoints of the maximal-lifespan I converges
weakly to zero in Ḣ1

x. Intuitively, we expect this to be the case since the free
evolution is nothing but radiation and radiation does not directly contribute to
blowup. However, a minimal blowup solution needs all its norm in order to blow
up and so cannot waste any norm on a radiation term.

Proposition 8.7 (Reduced Duhamel formulas, [22, 36]). Let u : I × Rd → C
be a maximal-lifespan almost periodic modulo symmetries solution to (6.1). Then

e−it∆u(t) converges weakly to zero in Ḣ1
x as t→ sup I or t→ inf I. In particular,

we have the ‘reduced’ Duhamel formulas

(8.11)

u(t) = i lim
T→ sup I

∫ T

t

ei(t−s)∆|u(s)|
4
d−2u(s) ds

= −i lim
T→ inf I

∫ t

T

ei(t−s)∆|u(s)|
4
d−2u(s) ds,

where the limits are to be understood in the weak Ḣ1
x topology.

Proof. We prove the claim as t → sup I; the proof in the reverse time direction is
similar.

Assume first that sup I <∞. Then by Corollary 8.4,

lim
t→ sup I

N(t) =∞.

By almost periodicity, this implies that u(t) converges weakly to zero as t→ sup I.
As sup I <∞ and the map t 7→ eit∆ is continuous in the strong operator topology
on Ḣ1

x, we see that e−it∆u(t) converges weakly to zero, as desired.
Now suppose that sup I =∞. We need to prove that

lim
t→∞

〈
u(t), eit∆φ

〉
Ḣ1
x

= 0

for all test functions φ ∈ C∞c (Rd). Let η > 0 be a small parameter. By Cauchy–
Schwarz and almost periodicity,∣∣∣〈u(t), eit∆φ

〉
Ḣ1
x

∣∣∣2 . ∣∣∣∣∫
|x−x(t)|≤C(η)/N(t)

∇u(t, x)eit∆∇φ(x) dx

∣∣∣∣2
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+

∣∣∣∣∫
|x−x(t)|≥C(η)/N(t)

∇u(t, x)eit∆∇φ(x) dx

∣∣∣∣2
. ‖u(t)‖2

Ḣ1
x

∫
|x−x(t)|≤C(η)/N(t)

|eit∆∇φ(x)|2 dx+ η‖φ‖2
Ḣ1
x
.

Therefore, to obtain the claim we merely need to show that∫
|x−x(t)|≤C(η)/N(t)

|eit∆∇φ(x)|2 dx→ 0 as η → 0.

This follows from Lemma 8.8 below, Corollary 8.4, and a change of variables. �

Lemma 8.8 (Fraunhofer formula). For ψ ∈ L2(Rd) and t→ ±∞,

(8.12)
∥∥[eit∆ψ](x)− (2it)−

d
2 ei|x|

2/4tψ̂
(
x
2t

)∥∥
L2
x
→ 0.

Proof. This asymptotic is most easily understood in terms of stationary phase.
However, our proof will be based on the exact formula for the Schrödinger propa-
gator, which we derived in Section 2. We have the identity

LHS(8.12) =
∥∥∥(4πit)−

d
2

∫
Rd
ei|x−y|

2/4t[1− e−i|y|
2/4t]ψ(y) dy

∥∥∥
L2
x

=
∥∥eit∆[(1− e−i|·|2/4t)ψ]∥∥

L2
x

=
∥∥(1− e−i|·|

2/4t)ψ
∥∥
L2
x
.

The result now follows from the dominated convergence theorem. �

So far we have proved that if Theorem 6.1 fails, then there exists a minimal
witness to its failure. This is a maximal-lifespan almost periodic solution u : I ×
Rd → C which blows up in both time directions; see Theorem 8.1. Moreover, we
have recorded some basic properties satisfied by the modulation parameters N(t)
and x(t). Thus, to prove Theorem 6.1 we have to rule out the existence of these
minimal counterexamples. In order to achieve this, we need more quantitative
information regarding N(t) and x(t). The first modest step in this direction is the
following theorem, which asserts that we may assume N(t) is bounded from below;
the price we pay for this information is that we can no longer guarantee that u
blows up in both time directions.

For an argument that is upside down relative to the one we present below,
see Theorem 3.3 in [35]. This reference treats the mass-critical NLS and restricts
attention to almost periodic solutions with N(t) ≤ 1.

Theorem 8.9. Suppose Theorem 6.1 fails to be true. Then there exists an almost
periodic modulo symmetries solution u : I × Rd → C such that SI(u) =∞ and

N(t) ≥ 1 for all t ∈ I.(8.13)

Proof. By Theorem 8.1, there exists a maximal-lifespan solution v : J × Rd → C
to the defocusing energy-critical NLS which is almost periodic modulo symmetries
and which blows up in both time directions in the sense that S≥0(v) = S≤0(v) =∞.
Let Nv(t) denote the frequency scale function associated to v. We will obtain the
desired u satisfying (8.13) from v, by rescaling appropriately.
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Write J as a nested union of compact intervals J1 ⊂ J2 ⊂ . . . ⊂ J . On each
compact interval Jn, we have v ∈ CtḢ1

x(Jn × Rd), which easily implies that Nv(t)
is bounded above and below on Jn. Thus, we may find tn ∈ Jn such that

(8.14) Nv(tn) ≤ 2Nv(t) for all t ∈ Jn.

Now consider the normalizations v[tn] : In × Rd → C with In := {t ∈ R :
tn + Nv(tn)−2t ∈ Jn}. Using almost periodicity and passing to a subsequence, we

get that v[tn](0) converge in Ḣ1
x to some u0. From the conservation of energy, we see

that u0 is not identically zero. Let u : (−T−, T+)×Rd → C be the maximal-lifespan
solution with data u(0) = u0.

Now let vn : Ĩn×Rd → C be the maximal-lifespan solution which agrees with v[tn]

on In. If K is any compact subinterval of (−T−, T+) containing 0, then SK(u) <∞.

From the stability result Theorem 5.3, for sufficiently large n we must have K ⊆ Ĩn
and SK(vn) < ∞ uniformly in n. As SJn(v) = SIn(vn) → ∞ as n → ∞, we must
have In * K for n large. Passing to subsequence if necessary, this leaves only two
possibilities:

• For every 0 < t < T+, [0, t] ⊆ In for all sufficiently large n.
• For every −T− < t < 0, [t, 0] ⊆ In for all sufficiently large n.

By time reversal symmetry, it suffices to consider the former possibility. Let I :=
[0, T+). We will prove that u : I×Rd → C satisfies the conclusions of Theorem 8.9.

We first note that u : I×Rd → C is almost periodic modulo symmetries. Indeed,
for any 0 ≤ t < T+, u(t) can be approximated to arbitrary accuracy in Ḣ1

x by
v[tn](t), which is a rescaled version of a function in the orbit {v(t) : t ∈ J}. As the

orbit of v is precompact in Ḣ1
x modulo symmetries, then so is {u(t) : 0 ≤ t < T+}.

Next we prove that SI(u) =∞. Otherwise we would have T+ =∞ and [0,∞) ⊆
In for n large. Moreover, by the stability theory, for n large we get S≥0(v[tn]) =
S≥tn(v) <∞, which contradicts the fact that v blows up forward in time.

Finally, we prove (8.13). Let η > 0 to be chosen later. Fix t ∈ I. By the stability
result, for n large we have t ∈ In and

‖v[tn](t)− u(t)‖Ḣ1
x
→ 0 as n→∞.

Combining this with (8.14) and almost periodicity, we find that there exists c(η) > 0
such that

η ≥
∫
|ξ|≤c(η)Nv(t)

|ξv̂(t, ξ)|2 dξ =

∫
|ξ|≤c(η)

Nv(tn+Nv(tn)−2t)
Nv(tn)

|ξv̂[tn](t, ξ)|2 dξ

≥
∫
|ξ|≤ 1

2 c(η)

|ξv̂[tn](t, ξ)|2 dξ →
∫
|ξ|≤ 1

2 c(η)

|ξû(t, ξ)|2 dξ.

Combining this with the definition of almost periodicity, we derive (8.13). This
completes the proof of the theorem. �

Putting together the results of this section we can restrict attention to the fol-
lowing very specific enemy to Theorem 6.1:

Theorem 8.10. Suppose Theorem 6.1 fails to be true. Then there exists an almost
periodic solution u : [0, Tmax)× Rd → C such that

S[0,Tmax)(u) =

∫ Tmax

0

∫
Rd
|u(t, x)|

2(d+2)
d−2 dx dt = +∞.
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Moreover, we may write [0, Tmax) = ∪kJk with Jk being intervals of local constancy
and

N(t) ≡ Nk ≥ 1 for each t ∈ Jk.

In the following two sections we will see how to preclude the existence of the al-
most periodic solution described in Theorem 8.10 for the defocusing energy-critical
NLS in four spatial dimensions:

i∂tu = −∆u+ |u|2u with u(0) = u0 ∈ Ḣ1
x(R4).(8.15)

Some of the arguments that follow work also in higher dimensions, as well as for
the focusing equation; however, in these notes we are not aiming for the greatest
generality, but rather we try to demonstrate how these techniques can be used to
settle Theorem 6.1 in the particular case d = 4.

Before we launch into the involved argument that will preclude the existence of
the enemy described in Theorem 8.10, let us first pause and collect the rewards of
this section. In particular, we will see that our enemy must be global forward in
time; strictly speaking this step is not necessary for the argument that follows, but
it is always good to realize how far we have come and how much further there is to
go.

Theorem 8.11. Let u : [0, Tmax)×R4 → C be an almost periodic solution to (8.15)
with S[0,Tmax)(u) =∞. Then Tmax =∞.

Proof. We argue by contradiction. Assume that Tmax <∞. Using Proposition 8.7,
the Strichartz inequality, Hölder’s inequality, and the conservation of energy, we
estimate

‖u≥N (t)‖L2
x
. ‖P≥N (|u|2u)‖

L2
tL

4/3
x ([t,Tmax)×R4)

. (Tmax − t)1/2‖u‖3L∞t L4
x([t,Tmax)×R4)

.u (Tmax − t)1/2,

uniformly in N ∈ 2Z. Letting N → 0 we deduce that u has finite mass; letting
t→ Tmax and invoking the conservation of mass, we deduce that

M(u(t)) =

∫
R4

|u(t, x)|2 dx = 0 for all t ∈ [0, Tmax).

In particular, u ≡ 0, which contradicts the fact that S[0,Tmax)(u) =∞.
This completes the proof of the theorem. �

9. Long-time Strichartz estimates and applications

In this section, we prove a long-time Strichartz inequality for solutions to (8.15)
as described in Theorem 8.10. This will then be used to rule out rapid frequency
cascade solutions, namely, solutions which also satisfy∫ Tmax

0

N(t)−1 dt <∞.

9.1. A long-time Strichartz inequality. Long-time Strichartz inequalities orig-
inate in the work of Dodson [15] on the mass-critical NLS. The main result of this
section is a long-time Strichartz estimate for solutions to (8.15). This was proved
in [40]; we review the proof below.
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Theorem 9.1 (Long-time Strichartz estimates). Let u : [0, Tmax) × R4 → C be
an almost periodic solution to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic
interval Jk ⊂ [0, Tmax). Then, on any compact time interval I ⊂ [0, Tmax), which
is a union of contiguous intervals Jk, and for any frequency M > 0,

‖∇u≤M‖L2
tL

4
x(I×R4) .u 1 +M3/2K1/2,(9.1)

where K :=
∫
I
N(t)−1 dt. Moreover, for any η > 0 there exists M0 = M0(η) > 0

such that for all M ≤M0,

‖∇u≤M‖L2
tL

4
x(I×R4) .u η

(
1 +M3/2K1/2

)
.(9.2)

Importantly, the constant M0 and the implicit constants in (9.1) and (9.2) are
independent of the interval I.

Proof. Fix a compact time interval I ⊂ [0, Tmax), which is a union of contiguous
intervals Jk. Throughout the proof all spacetime norms will be on I×R4, unless we
specify otherwise. Let η0 > 0 be a small parameter to be chosen later. By almost
periodicity, there exists c0 = c0(η0) such that

‖∇u≤c0N(t)‖L∞t L2
x
≤ η0.(9.3)

For M > 0 we define

A(M) := ‖∇u≤M‖L2
tL

4
x(I×R4).

Note that Corollary 8.5 implies

A(M) .u 1 +M3/2K1/2 whenever M ≥

( ∫
I
N(t)2 dt∫

I
N(t)−1 dt

)1/3

,(9.4)

and, in particular, whenever M ≥ Nmax := supt∈I N(t). We will obtain the result
for arbitrary frequenciesM > 0 by induction. Our first step is to obtain a recurrence
relation for A(M). We start with an application of the Strichartz inequality:

A(M) . inf
t∈I
‖∇u≤M (t)‖L2

x
+
∥∥∇P≤MF (u)

∥∥
L2
tL

4/3
x
.(9.5)

To continue, we decompose u = u≤M/η0 + u>M/η0 and then further decompose
u(t) = u≤c0N(t)(t) + u>c0N(t)(t). Thus we may write

F (u) = Ø
(
u>M/η0u

2
)

+ Ø
((
P≤c0N(t)u≤M/η0

)3)
+ Ø

(
u2
≤M/η0

u>c0N(t)

)
,(9.6)

where we use the notation Ø(X) to denote a quantity that resembles X, that is,
a finite linear combination of terms that look like those in X, but possibly with
some factors replaced by their complex conjugates and/or restricted to various
frequencies. Next, we will estimate the contributions of each of these terms to
(9.5).

To estimate the contribution of the first term on the right-hand side of (9.6),
we use the Bernstein inequality followed by Lemma A.9, Lemma A.6, Hölder, and
Sobolev embedding:∥∥∇P≤MØ

(
u>M/η0u

2
)∥∥
L2
tL

4/3
x
.M5/3

∥∥|∇|−2/3Ø
(
u>M/η0u

2
)∥∥
L2
tL

4/3
x

.M5/3
∥∥|∇|−2/3u>M/η0

∥∥
L2
tL

4
x

∥∥|∇|2/3Ø
(
u2
)∥∥
L∞t L

3/2
x

.M5/3
∥∥|∇|−2/3u>M/η0

∥∥
L2
tL

4
x

∥∥|∇|2/3u∥∥
L∞t L

12/5
x
‖u‖L∞t L4

x

.M5/3
∥∥|∇|−2/3u>M/η0

∥∥
L2
tL

4
x
‖u‖2

L∞t Ḣ
1
x
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.u
∑

L>M/η0

(M
L

)5/3

A(L).(9.7)

We turn now to the contribution of the second term on the right-hand side of
(9.6). Employing Hölder and (9.3), we obtain∥∥∇P≤MØ

((
P≤c0N(t)u≤M/η0

)3)∥∥
L2
tL

4/3
x
. ‖∇u≤M/η0‖L2

tL
4
x
‖u≤c0N(t)‖2L∞t L4

x

.u η
2
0A
(
M/η0

)
.(9.8)

Finally, we consider the contribution of the third term on the right-hand side of
(9.6). By Bernstein and then Hölder,∥∥∇P≤MØ

(
u2
≤M/η0

u>c0N(t)

)∥∥
L2
tL

4/3
x
.M‖u≤M/η0‖L∞t L4

x
‖u≤M/η0u>c0N(t)‖L2

t,x

.u M‖u≤M/η0u>c0N(t)‖L2
t,x
.

To continue, we decompose the time interval I into intervals of local constancy Jk
and apply the bilinear Strichartz estimate Corollary 2.10 on each Jk. Note that by
Lemma 8.5, Corollary 8.6, and Hölder’s inequality, on each Jk we have

‖∇u‖L2
tL

4
x(Jk×R4) + ‖∇F (u)‖

L
3/2
t,x (Jk×R4)

.u 1 and hence ‖∇u‖S∗0 (Jk) .u 1.

Thus, using also Bernstein’s inequality,

‖u≤M/η0u>c0N(t)

∥∥
L2
t,x(Jk×R4)

.
(M/η0)1/2

(c0Nk)1/2
‖∇u≤M/η0‖S∗0 (Jk)‖u>c0Nk‖S∗0 (Jk)

.u
M1/2

η
1/2
0 c

3/2
0 N

3/2
k

‖∇u≤M/η0‖S∗0 (Jk).

The term ‖∇u≤M/η0‖S∗0 (Jk) will be essential in obtaining the small parameter η in
claim (9.2) and this is why we choose to keep it in the display above rather than
discarding it. Summing the estimates above over the intervals Jk and invoking
again the local constancy property Lemma 8.3, we find

‖u≤M/η0u>c0N(t)

∥∥
L2
t,x(I×R4)

.u
M1/2

η
1/2
0 c

3/2
0

(∑
Jk⊂I

1

N3
k

)1/2

sup
Jk⊂I

‖∇u≤M/η0‖S∗0 (Jk)

.u
M1/2K1/2

η
1/2
0 c

3/2
0

sup
Jk⊂I

‖∇u≤M/η0‖S∗0 (Jk).

Thus, the contribution of the third term on the right-hand side of (9.6) can be
bounded as follows:∥∥∇P≤MØ

(
u2
≤M/η0

u>c0N(t)

)∥∥
L2
tL

4/3
x
.u

M3/2K1/2

η
1/2
0 c

3/2
0

sup
Jk⊂I

‖∇u≤M/η0‖S∗0 (Jk).(9.9)

Collecting (9.5) through (9.9), we obtain

A(M) .u inf
t∈I
‖∇u≤M (t)‖L2

x
+
M3/2K1/2

η
1/2
0 c

3/2
0

sup
Jk⊂I

‖∇u≤M/η0‖S∗0 (Jk)

+
∑
L≥Mη0

(M
L

)5/3

A(L).(9.10)

The inductive step in the proof of claims (9.1) and (9.2) will rely on this recurrence
relation.
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Let us first address (9.1). Recall that by (9.4), the claim holds for M ≥ Nmax,
that is,

A(M) ≤ C(u)
[
1 +M3/2K1/2

]
,(9.11)

for some constant C(u) > 0 and all M ≥ Nmax. Now using the fact that (9.10)
implies

A(M) ≤ C̃(u)

{
1 +

M3/2K1/2

η
1/2
0 c

3/2
0

+
∑
L≥Mη0

(M
L

)5/3

A(L)

}
,(9.12)

we can inductively prove the claim by halving the frequency M at each step. For
example, assuming that (9.11) holds for frequencies larger or equal to M , an appli-
cation of (9.12) (with η0 ≤ 1/2) yields

A
(
M/2

)
≤ C̃(u)

{
1 +

(M/2)3/2K1/2

η
1/2
0 c

3/2
0

+ C(u)
∑

L≥ M
2η0

(M
2L

)5/3[
1 + L3/2K1/2

]}

≤ C̃(u)

{
1 +

(M/2)3/2K1/2

η
1/2
0 c

3/2
0

+ 2η
5/3
0 C(u) + 2η

1/6
0 C(u)(M/2)3/2K1/2

}
.

Choosing η0 = η0(u) small enough so that η
1/6
0 C̃(u) ≤ 1/4, we thus obtain

A
(
M/2

)
≤ 1

2
C(u)

{
1 + (M/2)3/2K1/2

}
+ C̃(u)

{
1 +

(M/2)3/2K1/2

η
1/2
0 c

3/2
0

}
.

The claim now follows by setting C(u) ≥ 2C̃(u)η
−1/2
0 c

−3/2
0 .

Next we turn to (9.2). To exhibit the small constant η, we will need the following

Lemma 9.2 (Vanishing of the small frequencies). Under the assumptions of The-
orem 9.1, we have

f(M) := ‖∇u≤M‖L∞t L2
x([0,Tmax)×R4)+ sup

Jk⊂[0,Tmax)

‖∇u≤M‖S∗0 (Jk) → 0 as M → 0.

Proof. As by hypothesis inft∈[0,Tmax)N(t) ≥ 1, almost periodicity yields

lim
M→0

‖∇u≤M‖L∞t L2
x([0,Tmax)×R4) = 0.(9.13)

Now fix a characteristic interval Jk ⊂ [0, Tmax) and recall that all Strichartz
norms of u are bounded on Jk. In particular, we have

‖∇u‖L2
tL

4
x(Jk×R4) + ‖u‖L3

tL
12
x (Jk×R4) + ‖u‖L6

t,x(Jk×R4) .u 1.

Using this followed by the decomposition u = u≤M1/2 +u>M1/2 , Hölder, and Bern-
stein, for any frequency M > 0 we estimate

‖∇u≤M‖S∗0 (Jk) = ‖∇u≤M‖L∞t L2
x

+ ‖∇P≤MF (u)‖
L

3/2
t,x

. ‖∇u≤M‖L∞t L2
x

+ ‖∇P≤MF (u>M1/2)‖
L

3/2
t,x

+ ‖∇u>M1/2u≤M1/2u‖
L

3/2
t,x

+ ‖∇u≤M1/2u2‖
L

3/2
t,x

. ‖∇u≤M‖L∞t L2
x

+M‖u>M1/2‖L2
tL

4
x
‖u>M1/2‖L6

t,x
‖u>M1/2‖L∞t L4

x

+ ‖∇u>M1/2‖L2
tL

4
x
‖u≤M1/2‖L∞t L4

x
‖u‖L6

t,x
+ ‖∇u≤M1/2‖L∞t L2

x
‖u‖2L3

tL
12
x

.u ‖∇u≤M‖L∞t L2
x

+M1/2 + ‖∇u≤M1/2‖L∞t L2
x
.



OBERWOLFACH SEMINAR: DISPERSIVE EQUATIONS 43

All spacetime norms in the estimates above are on Jk ×R4. As Jk ⊂ [0, Tmax) was
arbitrary, we find

sup
Jk⊂[0,Tmax)

‖∇u≤M‖S∗0 (Jk) .u M
1/2 + ‖∇u≤M‖L∞t L2

x([0,Tmax)×R4)

+ ‖∇u≤M1/2‖L∞t L2
x([0,Tmax)×R4).

The claim now follows by combining this with (9.13). �

We are now ready to prove (9.2). Using (9.1) and Lemma 9.2, the estimate (9.10)
implies

A(M) .u f(M) +
M3/2K1/2

η
1/2
0 c

3/2
0

f(M) +
∑
L≥Mη0

(M
L

)5/3

A(L)

.u f(M) + η
5/3
0 +

{
f(M)

η
1/2
0 c

3/2
0

+ η
1/6
0

}
M3/2K1/2.

Thus, for any η > 0, choosing first η0 = η0(η) such that η
1/6
0 ≤ η and then

M0 = M0(η) such that f(M0)

η
1/2
0 c

3/2
0

≤ η, we obtain

A(M) .u η
(
1 +M3/2K1/2

)
for all M ≤M0.

This completes the proof of Theorem 9.1. �

Next, we record a consequence of Theorem 9.1, which will be useful in the deriva-
tion of a frequency-localized interaction Morawetz inequality.

Corollary 9.3 (Low and high frequencies control). Let u : [0, Tmax)× R4 → C be
an almost periodic solution to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic
interval Jk ⊂ [0, Tmax). Then, on any compact time interval I ⊂ [0, Tmax), which
is a union of contiguous intervals Jk, and for any frequency M > 0,

‖u≥M‖LqtLrx(I×R4) .u M
−1(1 +M3K)

1
q for all 1

q + 2
r = 1 with 3 < q ≤ ∞.

(9.14)

Moreover, for any η > 0 there exists M0 = M0(η) such that for all M ≤ M0 we
have

‖∇u≤M‖LqtLrx(I×R4) .u η(1 +M3K)
1
q for all 1

q + 2
r = 1 with 2 ≤ q ≤ ∞.(9.15)

The constant M0 and the implicit constants in (9.14) and (9.15) are independent
of the interval I.

Proof. We first address (9.14). By (9.1) and Bernstein’s inequality, for any ε > 0
and any frequency M > 0 we have∥∥|∇|−1/2−εu≥M

∥∥
L2
tL

4
x(I×R4)

.
∑
L≥M

L−3/2−ε‖∇uL‖L2
tL

4
x(I×R4)

.u
∑
L≥M

L−3/2−ε(1 + L3/2K1/2)

.u M
−3/2−ε(1 +M3K)1/2.

The claim now follows by interpolating with the energy bound:

‖u≥M‖LqtLrx(I×R4) .
∥∥|∇|− 1

2−
q−3
2 u≥M

∥∥2/q

L2
tL

4
x(I×R4)

‖∇u≥M‖1−2/q
L∞t L

2
x(I×R4)
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.u M
−1(1 +M3K)1/q,

whenever 1
q + 2

r = 1 and 3 < q ≤ ∞.

We turn now to (9.15). As inft∈I N(t) ≥ 1, using almost periodicity, for any
η > 0 we can find M0(η) such that for all M ≤M0,

‖∇u≤M‖L∞t L2
x(I×R4) ≤ η.

The claim follows by interpolating with (9.2). �

9.2. The rapid frequency cascade scenario. In this subsection, we preclude the

existence of almost periodic solutions as in Theorem 8.10 for which
∫ Tmax

0
N(t)−1 dt <

∞. We will show their existence is inconsistent with the conservation of mass.

Theorem 9.4 (No rapid frequency cascades). There are no almost periodic solu-
tions u : [0, Tmax) × R4 → C to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic
interval Jk ⊂ [0, Tmax) such that ‖u‖L6

t,x([0,Tmax)×R4) = +∞ and∫ Tmax

0

N(t)−1 dt <∞.(9.16)

Proof. We argue by contradiction. Let u be such a solution. Then by Corollary 8.4,

lim
t→Tmax

N(t) =∞,(9.17)

whether Tmax is finite or infinite. Thus, by almost periodicity we have

lim
t→Tmax

‖∇u≤M (t)‖L2
x

= 0 for any M > 0.(9.18)

Now let In be a nested sequence of compact subintervals of [0, Tmax) that are
unions of contiguous characteristic intervals Jk. On each In we may now apply
Theorem 9.1. Specifically, using (9.10) together with the hypothesis (9.16), we get

An(M) := ‖∇u≤M‖L2
tL

4
x(In×R4)

.u inf
t∈In
‖∇u≤M (t)‖L2

x
+

M3/2

η
1/2
0 c

3/2
0

[∫ Tmax

0

N(t)−1 dt
]1/2

+
∑
L≥Mη0

(M
L

)5/3

An(L)

.u inf
t∈In
‖∇u≤M (t)‖L2

x
+

M3/2

η
1/2
0 c

3/2
0

+
∑
L≥Mη0

(M
L

)5/3

An(L)

for all frequencies M > 0. Arguing as for (9.1), we find

‖∇u≤M‖L2
tL

4
x(In×R4) .u inf

t∈In
‖∇u≤M (t)‖L2

x
+M3/2 for all M > 0.

Letting n tend to infinity and invoking (9.18), we obtain

‖∇u≤M‖L2
tL

4
x([0,Tmax)×R4) .u M

3/2 for all M > 0.(9.19)

Our next claim is that (9.19) implies

‖∇u≤M‖L∞t L2
x([0,Tmax)×R4) .u M

3/2 for all M > 0.(9.20)

Fix M > 0. Using the Duhamel formula from Proposition 8.7 together with the
Strichartz inequality, the decomposition u = u≤M +u>M , Lemma A.9, Lemma A.6,
(9.19), Bernstein, Hölder, and Sobolev embedding, we find

‖∇u≤M‖L∞t L2
x
. ‖∇P≤MF (u)‖

L2
tL

4/3
x
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. ‖∇P≤MF (u≤M )‖
L2
tL

4/3
x

+ ‖∇P≤MØ(u>Mu
2)‖

L2
tL

4/3
x

. ‖∇u≤M‖L2
tL

4
x
‖u≤M‖2L∞t L4

x
+M5/3

∥∥|∇|−2/3Ø(u>Mu
2)
∥∥
L2
tL

4/3
x

.u M
3/2 +M5/3

∥∥|∇|−2/3u>M
∥∥
L2
tL

4
x

∥∥|∇|2/3u∥∥
L∞t L

12/5
x
‖u‖L∞t L4

x

.u M
3/2 +M5/3

∑
L>M

L−5/3‖∇uL
∥∥
L2
tL

4
x

.u M
3/2 +M5/3

∑
L>M

L−1/6

.u M
3/2.

All spacetime norms in the estimates above are on [0, Tmax)× R4.
With (9.20) in place, we are now ready to finish the proof of Theorem 9.4.

First note that by Bernstein’s inequality and (9.20), u ∈ L∞t Ḣ
−1/4
x ([0, Tmax)×R4);

indeed, ∥∥|∇|−1/4u‖L∞t L2
x
.
∥∥|∇|−1/4u>1‖L∞t L2

x
+
∥∥|∇|−1/4u≤1‖L∞t L2

x

.u
∑
M>1

M−5/4 +
∑
M≤1

M1/4 .u 1.

Now fix t ∈ [0, Tmax) and let η > 0 be a small constant. By almost periodicity,
there exists c(η) > 0 such that∫

|ξ|≤c(η)N(t)

|ξ|2|û(t, ξ)|2 dξ ≤ η.

Interpolating with u ∈ L∞t Ḣ
−1/4
x , we find∫

|ξ|≤c(η)N(t)

|û(t, ξ)|2 dξ .u η1/5.(9.21)

Meanwhile, by elementary considerations,

∫
|ξ|≥c(η)N(t)

|û(t, ξ)|2 dξ ≤ [c(η)N(t)]−2

∫
R4

|ξ|2|û(t, ξ)|2 dξ .u [c(η)N(t)]−2.

(9.22)

Collecting (9.21) and (9.22) and using Plancherel’s theorem, we obtain

0 ≤M(u(t)) :=

∫
R4

|u(t, x)|2 dx .u η1/5 + c(η)−2N(t)−2

for all t ∈ [0, Tmax). Letting η tend to zero and invoking (9.17) and the conservation
of mass, we conclude M(u) = 0 and hence u is identically zero. This contradicts
‖u‖L6

t,x([0,Tmax)×R4) =∞, thus settling Theorem 9.4. �

10. Frequency-localized interaction Morawetz inequalities and
applications

Our goal in this section is to prove a frequency-localized interaction Morawetz
inequality. This will then be used to preclude the existence of almost periodic

solutions as in Theorem 8.10 for which
∫ Tmax

0
N(t)−1 dt =∞. These results appear

in [40]; we review the proof below.
Before we delve into the gory details, let us pause to assess where we are. In view

of Theorems 8.11 and 9.4, the only enemy we are left to face is an almost periodic



46 MONICA VIŞAN

solution u : [0,∞) × R4 → C to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic
interval Jk ⊂ [0,∞) such that ‖u‖L6

t,x([0,∞)×R4) = +∞ and∫ ∞
0

N(t)−1 dt <∞.

In order to rule out this quasi-soliton solution we need tools that express the de-
focusing nature of the equation. These are the various versions of the Morawetz
inequality.

The Morawetz inequality originates in classical mechanics: in the presence of a

repulsive potential, the quantity p(t) · x(t)
|x(t)| is monotone. Here p denotes the mo-

mentum of the particle and x denotes its position. The natural quantum mechanical

analogue of the quantity p(t) · x(t)
|x(t)| is the Morawetz action

M(t) := 2 Im

∫
R4

u(t, x)∇u(t, x) · x
|x|

dx,

where u is a solution to (8.15). A direct computation shows that

∂tM(t) ≥ 2

∫
R4

|u(t, x)|2

|x|3
dx+ 3

∫
R4

|u(t, x)|4

|x|
dx.

Integrating with respect to time and using Cauchy–Schwarz we derive the Lin–
Strauss Morawetz inequality, [25]:∫

I

∫
R4

|u(t, x)|4

|x|
dx dt . ‖u‖L∞t L2

x(I×R4)‖u‖L∞t Ḣ1
x(I×R4).(10.1)

There are two obvious drawbacks when attempting to use this formula to pre-
clude our final enemy. The first one is that it favours the origin: it basically says
that if the solution is in L∞t H

1
x, then it cannot spend a lot of time near the spatial

origin. Secondly, in order to exploit inequality (10.1), we need the solution to lie in
L∞t H

1
x. However, even if we only cared about Schwartz solutions, when we apply

the concentration compactness argument to exhibit a minimal counterexample to
Theorem 6.1, we lose all information about the solution that is not left invariant
by the symmetries of the equation; in particular, we are left with a solution that is
merely in L∞t Ḣ

1
x.

Bourgain [5] showed us how to resolve the second issue above. His solution was
to truncate in space; this is equivalent to throwing away the low frequencies of the
solution. (Incidentally, truncating an L∞t Ḣ

1
x solution to high frequencies places

it in L∞t H
1
x, although the truncation will no longer be a solution.) In this way,

Bourgain obtained the following Morawetz inequality:∫
I

∫
|x|≤A|I|1/2

|u(t, x)|4

|x|
dx dt . A|I|1/2‖u‖2

L∞t Ḣ
1
x(I×R4)

.(10.2)

Compared with (10.1), it still favours the spatial origin, but at least now we can
control the right-hand side.

Let us quickly see how to use (10.2) to complete the proof of Theorem 6.1 for
radial initial data in dimension d = 4:
Step 1: We note that by rotation invariance and uniqueness of solutions to (8.15),
solutions with radial initial data are radial for all time.
Step 2: Radial almost periodic solutions must concentrate near the spatial origin.
Indeed, if |x(t)| � N(t)−1, then by spherical symmetry there exist a very large
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number of disjoint balls on which u(t) concentrates a nontrivial portion of its energy.
This however contradicts the conservation of energy. Thus we must have |x(t)| .
N(t)−1. At this point we may set x(t) ≡ 0 by modifying the compactness modulus
function accordingly.
Step 3: By Sobolev embedding and almost periodicity, we can find C(u) > 0 such
that ∫

|x|≤C(u)/N(t)

|u(t, x)|4 dx &u 1 uniformly for t ∈ [0,∞).

Step 4: Using (10.2) and Step 3 above, for any time interval I ⊂ [0,∞) which is
a contiguous union of intervals of local constancy Jk we obtain

|I|1/2 &u
∫
I

∫
|x|≤C(u)|I|1/2

|u(t, x)|4

|x|
dx dt

&u
∑
Jk⊂I

∫
Jk

∫
|x|≤C(u)|Jk|1/2

|u(t, x)|4

|x|
dx dt

&u
∑
Jk⊂I

∫
Jk

∫
|x|≤C(u)/N(t)

N(t)|u(t, x)|4 dx dt

&u
∑
Jk⊂I

∫
Jk

N(t) dt

&u

∫
I

N(t) dt.

Recalling that inft∈[0,∞)N(t) ≥ 1, we derive a contradiction by taking the interval
I ⊂ [0,∞) sufficiently large.

This completes the proof of Theorem 6.1 for radial initial data in dimension
d = 4.

To handle nonradial initial data, Colliander–Keel–Staffilani–Takaoka–Tao [13]
made use of an interaction Morawetz inequality, which they introduced in [12].
(Strictly speaking they treated the case d = 3. In what follows we consider the
d = 4 analogue; see also [30].) Their idea was to center the Morawetz action not at
the origin, but rather where the solution actually lives:

Minteract(t) := 2 Im

∫
R4

∫
R4

u(t, x)∇u(t, x) · x− y
|x− y|

|u(t, y)|2 dx dy.

A computation gives

∂tMinteract(t) &
∫
R4

∫
R4

|u(t, x)|2|u(t, y)|2

|x− y|3
+
|u(t, x)|4|u(t, y)|2

|x− y|
dx dy.

Thus, by the fundamental theorem of calculus and Cauchy–Schwarz,∫
I

∫
R4

∫
R4

|u(t, x)|2|u(t, y)|2

|x− y|3
+
|u(t, x)|4|u(t, y)|2

|x− y|
dx dy dt

. ‖u‖3L∞t L2
x(I×R4)‖u‖L∞t Ḣ1

x(I×R4).(10.3)

This interaction Morawetz inequality has an obvious drawback, namely, in order
to exploit it we need the solution to belong to L∞t H

1
x. However, as noted before,

our last enemy belongs merely to L∞t Ḣ
1
x. Therefore, in order to employ this new

monotonicity formula, Colliander–Keel–Staffilani–Takaoka–Tao truncated the so-
lution to frequencies greater than some frequency N ∈ 2Z, which is chosen small
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enough so that the truncation captures most of the norm of the solution. By almost
periodicity, it is possible to chose N independent of time since our enemy satisfies
inft∈[0,∞)N(t) ≥ 1. Of course, since u≥N no longer solves (8.15), there are addi-
tional errors introduced on the right-hand side of (10.3). Schematically, we obtain
something of the form∫

I

∫
R4

∫
R4

|u≥N (t, x)|2|u≥N (t, y)|2

|x− y|3
dx dy dt

. ‖u≥N‖3L∞t L2
x(I×R4)‖u≥N‖L∞t Ḣ1

x(I×R4) + errors

.u N
−3 + errors.(10.4)

If these errors were magically zero, then it would be a relatively easy task to use
(10.4) to rule out our last enemy; see Theorem 10.3 below. However, these errors
are not zero and controlling them is highly nontrivial.

Nowadays, there are two ways of handling the error terms on the right-hand
side of (10.4). Colliander–Keel–Staffilani–Takaoka–Tao estimate these errors using
solely the left-hand side in (10.4). The smallness needed to close the resulting
bootstrap comes from the fact that u≥N captures most of the norm of the solution
and so ‖u≤N‖L∞t Ḣ1

x
� 1. A second approach inspired by Dodson’s work on the

mass-critical NLS is to first obtain additional a priori control in the form of the long-
time Strichartz inequality we derived in Section 9; this is then used to control error
terms in (10.4). It is this second approach that we will discuss here following [40].
This approach has also been adapted to the three dimensional problem originally
treated by Colliander–Keel–Staffilani–Takaoka–Tao [13] in [21].

10.1. A frequency-localized interaction Morawetz inequality. In this sub-
section we derive a frequency-localized interaction Morawetz inequality, using the
Dodson approach to control the error terms. We start by recalling the interaction
Morawetz inequality in four spatial dimensions in slightly more generality; for de-
tails, see [30]. For a solution φ : I × R4 → C to the equation iφt + ∆φ = N , we
define the interaction Morawetz action

Minteract(t) := 2 Im

∫
R4

∫
R4

|φ(t, y)|2 x− y
|x− y|

∇φ(t, x)φ(t, x) dx dy.

Standard computations show

∂tMinteract(t) ≥ 3

∫
R4

∫
R4

|φ(t, x)|2|φ(t, y)|2

|x− y|3
dx dy

+ 4 Im

∫
R4

∫
R4

{N , φ}m(t, y)
x− y
|x− y|

∇φ(t, x)φ(t, x) dx dy

+ 2

∫
R4

∫
R4

|φ(t, y)|2 x− y
|x− y|

{N , φ}p(t, x) dx dy,

where the mass bracket is given by {N , φ}m := Im(N φ̄) and the momentum bracket
is given by {N , φ}p := Re(N∇φ− φ∇N ). Thus, integrating with respect to time,
we obtain

Proposition 10.1 (Interaction Morawetz inequality).

3

∫
I

∫
R4

∫
R4

|φ(t, x)|2|φ(t, y)|2

|x− y|3
dx dy dt
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+ 2

∫
I

∫
R4

∫
R4

|φ(t, y)|2 x− y
|x− y|

{N , φ}p(t, x) dx dy dt

≤ 2‖φ‖3L∞t L2
x
‖φ‖L∞t Ḣ1

x
+ 4‖φ‖L∞t L2

x
‖φ‖L∞t Ḣ1

x
‖{N , φ}m‖L1

t,x
,

where all spacetime norms are over I × R4.

We will apply Proposition 10.1 with φ = u≥M and N = P≥M (|u|2u) for M small
enough that the Littlewood–Paley projection captures most of the solution. More
precisely, we will prove

Proposition 10.2 (Frequency-localized interaction Morawetz estimate, [40]). Let
u : [0, Tmax) × R4 → C be an almost periodic solution to (8.15) such that N(t) ≡
Nk ≥ 1 on each characteristic interval Jk ⊂ [0, Tmax). Then for any η > 0 there
exists M0 = M0(η) such that for M ≤ M0 and any compact time interval I ⊂
[0, Tmax), which is a union of contiguous intervals Jk, we have∫

I

∫
R4

∫
R4

|u≥M (t, x)|2|u≥M (t, y)|2

|x− y|3
dx dy dt .u η

[
M−3 +

∫
I

N(t)−1 dt
]
.

The implicit constant does not depend on the interval I.

Proof. Fix a compact interval I ⊂ [0, Tmax), which is a union of contiguous intervals
Jk, and let K :=

∫
I
N(t)−1 dt. Throughout the proof, all spacetime norms will be

on I × R4.
Fix η > 0 and let M0 = M0(η) be small enough that claim (9.15) of Corollary 9.3

holds; more precisely, for all M ≤M0,

‖∇u≤M‖LqtLrx .u η(1 +M3K)1/q for all 1
q + 2

r = 1 with 2 ≤ q ≤ ∞.(10.5)

Choosing M0 even smaller if necessary, we can also guarantee that

‖u≥M‖L∞t L2
x
.u η

6M−1 for all M ≤M0.(10.6)

Now fix M ≤ M0 and write ulo := u≤M and uhi := u>M . With this notation,
(10.5) becomes

‖∇ulo‖LqtLrx .u η(1 +M3K)1/q for all 1
q + 2

r = 1 with 2 ≤ q ≤ ∞.(10.7)

We will also need claim (9.14) of Corollary 9.3, which reads

‖uhi‖LqtLrx .u M
−1(1 +M3K)1/q for all 1

q + 2
r = 1 with 3 < q ≤ ∞.(10.8)

Note that by (10.6), the endpoint q =∞ of the inequality above is strengthened to

‖uhi‖L∞t L2
x
.u η

6M−1.(10.9)

To continue, we apply Proposition 10.1 with φ = uhi and N = PhiF (u) and use
(10.9); we obtain∫

I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|2

|x− y|3
dx dy dt

+

∫
I

∫
R4

∫
R4

|uhi(t, y)|2 x− y
|x− y|

{PhiF (u), uhi}p(t, x) dx dy dt(10.10)

.u η
18M−3 + η6M−1‖{PhiF (u), uhi}m‖L1

t,x(I×R4).

We first consider the contribution of the momentum bracket term. We write

{PhiF (u), uhi}p



50 MONICA VIŞAN

= {F (u), u}p − {F (ulo), ulo}p − {F (u)− F (ulo), ulo}p − {PloF (u), uhi}p
= − 1

2∇[|u|4 − |ulo|4]− {F (u)− F (ulo), ulo}p − {PloF (u), uhi}p
=: I + II + III.

After an integration by parts, the term I contributes to the left-hand side of (10.10)
a multiple of∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|4

|x− y|
dx dy dt

+

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|4−j

|x− y|
dx dy dt.

In order to estimate the contribution of II to (10.10), we use {f, g}p = ∇Ø(fg) +
Ø(f∇g) to write

{F (u)− F (ulo), ulo}p =

3∑
j=1

∇Ø(ujhiu
4−j
lo ) +

3∑
j=1

Ø(ujhiu
3−j
lo ∇ulo).

Integrating by parts for the first term and bringing absolute values inside the in-
tegrals for the second term, we find that II contributes to the right-hand side of
(10.10) a multiple of

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|4−j

|x− y|
dx dy dt

+

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |∇ulo(t, x)||ulo(t, x)|3−j dx dy dt.

Finally, integrating by parts when the derivative (from the definition of the mo-
mentum bracket) falls on uhi, we estimate the contribution of III to the right-hand
side of (10.10) by a multiple of∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||PloF (u(t, x))|
|x− y|

dx dy dt

+

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||∇PloF (u(t, x))| dx dy dt.

Consider now the mass bracket appearing in (10.10). Exploiting cancellation,
we write

{PhiF (u), uhi}m
= {PhiF (u)− F (uhi), uhi}m
= {Phi

[
F (u)− F (uhi)− F (ulo)

]
, uhi}m + {PhiF (ulo), uhi}m − {PloF (uhi), uhi}m

= Ø(u3
hiulo) + Ø(u2

hiu
2
lo) + {PhiF (ulo), uhi}m − {PloF (uhi), uhi}m.

Putting everything together and using (10.9), (10.10) becomes

∫
I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|2

|x− y|3
dx dy dt+

∫
I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|4

|x− y|
dx dy dt

(10.11)
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.u η
18M−3

(10.12)

+ η6M−1
{
‖u3

hiulo‖L1
t,x

+ ‖u2
hiu

2
lo‖L1

t,x
+ ‖uhiPhiF (ulo)‖L1

t,x
+ ‖uhiPloF (uhi)‖L1

t,x

}(10.13)

+ η12M−2
3∑
j=1

‖ujhiu
3−j
lo ∇ulo‖L1

t,x
+ η12M−2‖uhi∇PloF (u)‖L1

t,x

(10.14)

+

3∑
j=1

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)|j |ulo(t, x)|4−j

|x− y|
dx dy dt

(10.15)

+

∫
I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||PloF (u(t, x))|
|x− y|

dx dy dt.

(10.16)

Thus, to complete the proof of Proposition 10.2 we have to show that the error
terms (10.13) through (10.16) are acceptable; clearly, (10.12) is acceptable.

Consider now error term (10.13). Using (10.7), (10.8), and Sobolev embedding,
we estimate

‖u3
hiulo‖L1

t,x
. ‖uhi‖L∞t L4

x
‖uhi‖2L7/2

t L
14/5
x
‖ulo‖L7/3

t L28
x
.u ηM

−2(1 +M3K)

‖u2
hiu

2
lo‖L1

t,x
. ‖uhi‖2L4

tL
8/3
x
‖ulo‖2L4

tL
8
x
.u η

2M−2(1 +M3K).

Using Bernstein’s inequality as well, we estimate

‖uhiPhiF (ulo)‖L1
t,x
. ‖uhi‖L4

tL
8/3
x
M−1‖∇F (ulo)‖L4/3

t L
8/5
x

.u M
−2(1 +M3K)1/4‖∇ulo‖L2

tL
4
x
‖ulo‖2L8

tL
16/3
x

.u η
3M−2(1 +M3K).

Finally, by Hölder, Bernstein, Sobolev embedding, (10.7) and (10.8),

‖uhiPloF (uhi)‖L1
t,x
. ‖uhi‖L10/3

t L
20/7
x

M7/5‖F (uhi)‖L10/7
t L1

x

.u M
2/5(1 +M3K)3/10‖uhi‖7/3

L
10/3
t L

20/7
x

‖uhi‖2/3
L∞t L

40/11
x

.u M
2/5−7/3(1 +M3K)‖|∇|9/10uhi‖2/3L∞t L

2
x

.u M
−2(1 +M3K).

Collecting the estimates above we find

(10.13) .u η
6M−3(1 +M3K) .u η(M−3 +K),

and thus this error term is acceptable.
Consider next error term (10.14). By (10.7), (10.8), (10.9), Sobolev embedding,

and Bernstein,

‖uhiu2
lo∇ulo‖L1

t,x
. ‖∇ulo‖L2

tL
4
x
‖uhi‖L∞t L2

x
‖ulo‖2L4

tL
8
x
.u η

9M−1(1 +M3K)

‖u2
hiulo∇ulo‖L1

t,x
. ‖∇ulo‖L2

tL
4
x
‖uhi‖2L4

tL
8/3
x
‖ulo‖L∞t,x .u η

2M−1(1 +M3K)

‖u3
hi∇ulo‖L1

t,x
. ‖∇ulo‖L7/3

t L28
x
‖uhi‖2L7/2

t L
14/5
x
‖uhi‖L∞t L4

x
.u ηM

−1(1 +M3K).
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To estimate the second term in (10.14), we write F (u) = F (ulo) + Ø(uhiu
2
lo +

u2
hiulo + u3

hi). Arguing as above, we obtain

‖uhi∇PloF (ulo)‖L1
t,x
. ‖uhi‖L∞t L2

x
‖∇ulo‖L2

tL
4
x
‖ulo‖2L4

tL
8
x
.u η

9M−1(1 +M3K)

‖uhi∇PloØ(uhiu
2
lo)‖L1

t,x
.M‖uhi‖2L4

tL
8/3
x
‖ulo‖2L4

tL
8
x
.u η

2M−1(1 +M3K)

‖uhi∇PloØ(u2
hiulo)‖L1

t,x
.M‖uhi‖L∞t L4

x
‖uhi‖2L7/2

t L
14/5
x
‖ulo‖L7/3

t L28
x

.u ηM
−1(1 +M3K)

‖uhi∇PloØ(u3
hi)‖L1

t,x
. ‖uhi‖L10/3

t L
20/7
x

M12/5‖u3
hi‖L10/7

t L1
x

.M12/5‖uhi‖10/3

L
10/3
t L

20/7
x

‖uhi‖2/3
L∞t L

40/11
x

.u M
−1(1 +M3K).

Putting everything together, we find

(10.14) .u η
12M−3(1 +M3K) .u η(M−3 +K),

and thus this error term is also acceptable.
We now turn to error term (10.15). By easy considerations, we only have to

consider the cases j = 1 and j = 3. We start with the case j = 1; using Hölder to-
gether with the Hardy–Littlewood–Sobolev inequality, Sobolev embedding, (10.7),
(10.8), and (10.9), we estimate∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||ulo(t, x)|3

|x− y|
dx dy dt

. ‖uhi‖2L12
t L

24/11
x

∥∥∥ 1
|x| ∗

(
|uhi||ulo|3

)∥∥∥
L

6/5
t L12

x

.u M
−2(1 +M3K)1/6‖uhiu3

lo‖L6/5
t,x

.u M
−2(1 +M3K)1/6‖uhi‖L∞t L2

x
‖ulo‖3L18/5

t L9
x

.u η
9M−3(1 +M3K).

Finally, to estimate the error term corresponding to j = 3, we consider two sce-
narios: If |ulo| ≤ δ|uhi| for some small δ > 0, we absorb this contribution into the
term ∫

I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|4

|x− y|
dx dy dt,

which appears in (10.11). If instead |uhi| ≤ δ−1|ulo|, we may estimate the contri-
bution of this term by that of the error term corresponding to j = 1. Thus,

(10.15) .u η(M−3 +K) + δ

∫
I

∫
R4

∫
R4

|uhi(t, x)|2|uhi(t, y)|4

|x− y|
dx dy dt,

where 0 < δ < 1 is a constant small enough that the second term on the right-hand
side above can be absorbed by (10.11). Thus, the error term (10.15) is acceptable.

We are left to consider error term (10.16). Arguing as for the case j = 1 of the
error term (10.15), we derive∫

I

∫
R4

∫
R4

|uhi(t, y)|2|uhi(t, x)||PloF (u(t, x))|
|x− y|

dx dy dt

. ‖uhi‖2L12
t L

24/11
x

∥∥∥ 1
|x| ∗

(
|uhi||PloF (u)|

)∥∥∥
L

6/5
t L12

x
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.u M
−2(1 +M3K)1/6‖uhiPloF (u)‖

L
6/5
t,x

.u M
−2(1 +M3K)1/6‖uhi‖L4

tL
8/3
x
‖PloF (u)‖

L
12/7
t L

24/11
x

.u M
−3(1 +M3K)5/12‖PloF (u)‖

L
12/7
t L

24/11
x

.

We now write F (u) = F (uhi) + Ø(u3
lo + u2

louhi + ulou
2
hi). Using Hölder, Bernstein,

Sobolev embedding, (10.7), (10.8), and (10.9), we estimate

‖PloØ(u3
lo)‖L12/7

t L
24/11
x

. ‖ulo‖L12
t L

24/5
x
‖ulo‖2L4

tL
8
x
.u η

3(1 +M3K)7/12

‖PloØ(u2
louhi)‖L12/7

t L
24/11
x

.M‖u2
louhi‖L12/7

t L
24/17
x

.M‖ulo‖2L4
tL

8
x
‖uhi‖L12

t L
24/11
x

.u η
2(1 +M3K)

7
12

‖PloØ(ulou
2
hi)‖L12/7

t L
24/11
x

.M‖ulou2
hi‖L12/7

t L
24/17
x

.M‖ulo‖L3
tL

12
x
‖uhi‖L4

tL
8/3
x
‖uhi‖L∞t L4

x

.u η(1 +M3K)7/12.

Finally, using Bernstein, Hölder, interpolation, (10.7), (10.8), and (10.9), we get

‖PloF (uhi)‖L12/7
t L

24/11
x

.M13/6‖F (uhi)‖L12/7
t L1

x

.M13/6‖uhi‖2L24/7
t L

48/17
x
‖uhi‖L∞t L24/7

x

.u M
1/6(1 +M3K)7/12‖|∇|5/6uhi‖L∞t L2

x

.u η(1 +M3K)7/12.

Collecting these estimates, we find

(10.16) .u ηM
−3(1 +M3K) .u η(M−3 +K),

and thus this last error term is also acceptable.
This completes the proof of Proposition 10.2. �

10.2. The quasi-soliton scenario. With Proposition 10.2 in place, we are now
ready to preclude our last enemy, namely, solutions as in Theorem 8.10 for which∫ Tmax

0
N(t)−1 dt =∞.

Theorem 10.3 (No quasi-solitons). There exist no almost periodic solutions u :
[0, Tmax) × R4 → C to (8.15) with N(t) ≡ Nk ≥ 1 on each characteristic interval
Jk ⊂ [0, Tmax) which satisfy ‖u‖L6

t,x([0,Tmax)×R4) = +∞ and∫ Tmax

0

N(t)−1 dt =∞.(10.17)

Proof. We argue by contradiction. Assume there exists such a solution u.
Let η > 0 be a small parameter to be chosen later. By Proposition 10.2, there

exists M0 = M0(η) such that for all M ≤ M0 and any compact time interval
I ⊂ [0, Tmax), which is a union of contiguous intervals Jk, we have∫

I

∫
R4

∫
R4

|u≥M (t, x)|2|u≥M (t, y)|2

|x− y|3
dx dy dt .u η

[
M−3 +

∫
I

N(t)−1 dt
]
.(10.18)
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As inft∈[0,Tmax)N(t) ≥ 1, choosing M0 even smaller if necessary (depending on η)
we can also ensure that

‖u≤M‖L∞t L4
x([0,Tmax)×R4) + ‖u≤M‖L∞t Ḣ1

x([0,Tmax)×R4) ≤ η for all M ≤M0.

(10.19)

Exercise 10.1. Use almost periodicity to prove that there exists C(u) > 0 such
that

N(t)2

∫
|x−x(t)|≤C(u)/N(t)

|u(t, x)|2 dx &u 1/C(u)(10.20)

uniformly for t ∈ [0, Tmax).

Using Hölder’s inequality and (10.19), we find∫
|x−x(t)|≤C(u)/N(t)

|u≤M (t, x)|2 dx .
{C(u)

N(t)
‖u≤M‖L∞t L4

x([0,Tmax)×R4)

}2

.u η
2C(u)2N(t)−2

for all t ∈ [0, Tmax) and all M ≤ M0. Combining this with (10.20) and choosing η
sufficiently small depending on u, we find

inf
t∈[0,Tmax)

N(t)2

∫
|x−x(t)|≤C(u)/N(t)

|u≥M (t, x)|2 dx &u 1 for all M ≤M0.

Thus, on any compact time interval I ⊂ [0, Tmax) and for any M ≤M0 we have∫
I

∫
R4

∫
R4

|u≥M (t, x)|2|u≥M (t, y)|2

|x− y|3
dx dy dt

≥
∫
I

∫∫
|x−y|≤ 2C(u)

N(t)

[ N(t)

2C(u)

]3
|u≥M (t, x)|2|u≥M (t, y)|2 dx dy dt

≥
∫
I

[ N(t)

2C(u)

]3 ∫
|x−x(t)|≤C(u)

N(t)

|u≥M (t, x)|2 dx
∫
|y−x(t)|≤C(u)

N(t)

|u≥M (t, y)|2 dy dt

&u

∫
I

N(t)−1 dt.

Invoking (10.18) and choosing η small depending on u, we find∫
I

N(t)−1 dt .u M
−3 for all M ≤M0

and all intervals I ⊂ [0, Tmax), which are unions of contiguous intervals Jk. Re-
calling the hypothesis (10.17), we derive a contradiction by choosing the interval
I ⊂ [0, Tmax) sufficiently large.

This completes the proof of the theorem. �

Appendix A. Background material

A.1. Compactness in Lp. Recall that by the Arzelà–Ascoli theorem, a family of
continuous functions on a compact set K ⊂ Rd is precompact in C0(K) if and only
if it is uniformly bounded and equicontinuous. The natural generalization to Lp

spaces is due to M. Riesz [29] and reads as follows:

Proposition A.1. Fix 1 ≤ p <∞. A family of functions F ⊂ Lp(Rd) is precom-
pact in this topology if and only if it obeys the following three conditions:
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(i) There exists A > 0 so that ‖f‖p ≤ A for all f ∈ F .
(ii) For any ε > 0 there exists δ > 0 so that

∫
Rd |f(x)− f(x+ y)|p dx < ε for all

f ∈ F and all |y| < δ.
(iii) For any ε > 0 there exists R so that

∫
|x|≥R |f |

p dx < ε for all f ∈ F .

Remark. By analogy to the case of continuous functions (or of measures) it is
natural to refer to the three conditions as uniform boundedness, equicontinuity,
and tightness, respectively.

Proof. If F is precompact, it may be covered by balls of radius 1
2ε around a finite

collection of functions {fj}. As any single function obeys (i)–(iii), these properties
can be extended to the whole family by approximation by an fj .

We now turn to sufficiency. Given ε > 0, our job is to show that there are
finitely many functions {fj} so that the ε-balls centered at these points cover F .
We will find these points via the usual Arzelà–Ascoli theorem, which requires us
to approximate F by a family of continuous functions of compact support. Let
φ : Rd → [0,∞) be a smooth function supported by {|x| ≤ 1} with φ(x) = 1 in a
neighbourhood of x = 0 and

∫
Rd φ(x) dx = 1. Given R > 0 we define

fR(x) := φ
(
x
R

) ∫
Rd
Rdφ

(
R(x− y)

)
f(y) dy

and write FR := {fR : f ∈ F}. Employing the three conditions, we see that it
is possible to choose R so large that ‖f − fR‖p < 1

2ε for all f ∈ F . We also
see that FR is a uniformly bounded family of equicontinuous functions on the
compact set {|x| ≤ R}. Thus, FR is precompact and we may find a finite family
{fj} ⊆ C0({|x| ≤ R}) so that FR is covered by the Lp-balls of radius 1

2ε around
these points. By construction, the ε-balls around these points cover F . �

In the L2 case it is natural to replace (ii) by a condition on the Fourier transform:

Corollary A.2. A family of functions is precompact in L2(Rd) if and only if it
obeys the following two conditions:
(i) There exists A > 0 so that ‖f‖ ≤ A for all f ∈ F .

(ii) For all ε > 0 there exists R > 0 so that
∫
|x|≥R |f(x)|2 dx+

∫
|ξ|≥R |f̂(ξ)|2 dξ < ε

for all f ∈ F .

Proof. Necessity follows as before. Regarding the sufficiency of these conditions,
we note that ∫

Rd
|f(x+ y)− f(x)|2 dx ∼

∫
Rd
|eiξy − 1|2|f̂(ξ)|2 dξ,

which allows us to rely on the preceding proposition. �

In our applications, regularity allows us to upgrade weak-∗ convergence to almost
everywhere convergence. The lower semicontinuity of the norm under this notion
of convergence is essentially Fatou’s lemma. The following quantitative version of
this is due to Brézis and Lieb [6] (see also [24, Theorem 1.9]):

Lemma A.3 (Refined Fatou). Suppose {fn} ⊆ Lpx(Rd) with lim sup ‖fn‖p < ∞.
If fn → f almost everywhere, then∫

Rd

∣∣∣|fn|p − |fn − f |p − |f |p∣∣∣ dx→ 0.

In particular, ‖fn‖pp − ‖fn − f‖pp → ‖f‖pp.
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A.2. Littlewood–Paley theory. Let ϕ(ξ) be a radial bump function supported
in the ball {ξ ∈ Rd : |ξ| ≤ 11

10} and equal to 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}. For
each number N > 0, we define the Fourier multipliers

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ)

P̂>Nf(ξ) := (1− ϕ(ξ/N))f̂(ξ)

P̂Nf(ξ) := (ϕ(ξ/N)− ϕ(2ξ/N))f̂(ξ)

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N . We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2n for some integer n); in particular, all summations
over N or M are understood to be over dyadic numbers. Nevertheless, it will
occasionally be convenient to allow M and N to not be a power of 2.

Like all Fourier multipliers, the Littlewood–Paley operators commute with the
propagator eit∆, as well as with differential operators such as i∂t + ∆. We will use
basic properties of these operators many times, including

Lemma A.4 (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,∥∥|∇|±sPNf∥∥Lp(Rd)
∼ N±s‖PNf‖Lp(Rd),

‖P≤Nf‖Lq(Rd) . N
d
p−

d
q ‖P≤Nf‖Lp(Rd),

‖PNf‖Lq(Rd) . N
d
p−

d
q ‖PNf‖Lp(Rd).

Lemma A.5 (Square function estimates). Given a Schwartz function f , let

S(f)(x) :=
(∑
N

∣∣PNf(x)
∣∣2)1/2

denote the Littlewood–Paley square function. For 1 < p <∞,

‖S(f)‖Lp(Rd) ∼ ‖f‖Lp(Rd).

More generally, ∥∥∥(∑
N

N2s
∣∣PNf(x)

∣∣2)1/2∥∥∥
Lp(Rd)

∼
∥∥|∇|sf∥∥

Lp(Rd)
(A.1)

for all s > −d and 1 < p <∞.

A.3. Fractional calculus. We first record the fractional product rule from [11]:

Lemma A.6 (Fractional product rule, [11]). Let s ∈ (0, 1] and 1 < r, p1, p2, q1, q2 <
∞ such that 1

r = 1
pi

+ 1
qi

for i = 1, 2. Then,∥∥|∇|s(fg)
∥∥
Lr(Rd)

. ‖f‖Lp1 (Rd)

∥∥|∇|sg∥∥
Lq1 (Rd)

+
∥∥|∇|sf∥∥

Lp2 (Rd)
‖g‖Lq2 (Rd).

We will also need the following fractional chain rule from [11]. For a textbook
treatment, see [37, §2.4].

Lemma A.7 (Fractional chain rule, [11]). Suppose G ∈ C1(C), s ∈ (0, 1], and
1 < p, p1, p2 <∞ are such that 1

p = 1
p1

+ 1
p2

. Then,

‖|∇|sG(u)‖Lp(Rd) . ‖G′(u)‖Lp1 (Rd)‖|∇|su‖Lp2 (Rd).
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Although we will not need it in our applications here, for completeness we record
the following fractional chain rule for when the function G is no longer C1, but
merely Hölder continuous:

Lemma A.8 (Fractional chain rule for a Hölder continuous function, [39]). Let G
be a Hölder continuous function of order 0 < α < 1. Then, for every 0 < s < α,
1 < p <∞, and s

α < σ < 1 we have∥∥|∇|sG(u)
∥∥
Lp(Rd)

.
∥∥|u|α− s

σ

∥∥
Lp1 (Rd)

∥∥|∇|σu∥∥ sσ
L
s
σ
p2 (Rd)

,(A.2)

provided 1
p = 1

p1
+ 1

p2
and (1− s

ασ )p1 > 1.

A.4. A paraproduct estimate. In Section 9, we made use of a paraproduct
estimate from [40]. The proof we present here is different from the one in [40];
however, it only requires basic knowledge of harmonic analysis and so it is better
suited to these lecture notes.

Lemma A.9 (Paraproduct estimate, [40]). We have∥∥|∇|−2/3(fg)
∥∥
L4/3(R4)

.
∥∥|∇|−2/3f

∥∥
Lp(R4)

∥∥|∇|2/3g∥∥
Lq(R4)

,

for any 4
3 < p <∞ and 1 < q <∞ such that 1

p + 1
q = 11

12 .

Proof. The claim is equivalent to the following estimate∥∥|∇|− 2
3 {(|∇| 23 f)(|∇|− 2

3 g)}
∥∥
L4/3(R4)

. ‖f‖Lp(R4)‖g‖Lq(R4),(A.3)

for 4
3 < p < ∞, 1 < q < ∞ such that 1

p + 1
q = 11

12 . To prove this, we start by

performing the following decomposition:

|∇|− 2
3 {(|∇| 23 f)(|∇|− 2

3 g)} = |∇|− 2
3

{ ∑
1
8≤

N1
N2
≤8

PN1

(
|∇| 23 f

)
PN2

(
|∇|− 2

3 g
)

+
∑
N1

PN1

(
|∇| 23 f

)
P>8N1

(
|∇|− 2

3 g
)

+
∑
N1

PN1

(
|∇| 23 f

)
P< 1

8N1

(
|∇|− 2

3 g
)}
.(A.4)

Next, we will show how to control the contribution of each of the terms on the
right-hand side of (A.4) to (A.3).

Using Sobolev embedding, Cauchy–Schwarz, and the square function estimate
(A.1), we estimate the contribution of the first term on the right-hand side of (A.4)
as follows:∥∥∥∥|∇|− 2

3

∑
1
8≤

N1
N2
≤8

PN1

(
|∇| 23 f

)
PN2

(
|∇|− 2

3 g
)∥∥∥∥
L4/3

.

∥∥∥∥ ∑
1
8≤

N1
N2
≤8

N
− 2

3
1 N

2
3

2

∣∣PN1

(
|∇| 23 f

)∣∣∣∣PN2

(
|∇|− 2

3 g
)∣∣∥∥∥∥

L12/11

.

∥∥∥∥( ∑
1
8≤

N1
N2
≤8

∣∣N− 2
3

1 PN1

(
|∇| 23 f

)∣∣2) 1
2
( ∑

1
8≤

N1
N2
≤8

∣∣N 2
3

2 PN2

(
|∇|− 2

3 g
)∣∣2) 1

2
∥∥∥∥
L12/11
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.

∥∥∥∥( ∑
1
8≤

N1
N2
≤8

∣∣N− 2
3

1 PN1

(
|∇| 23 f

)∣∣2) 1
2
∥∥∥∥
Lp

∥∥∥∥( ∑
1
8≤

N1
N2
≤8

∣∣N 2
3

2 PN2

(
|∇|− 2

3 g
)∣∣2) 1

2
∥∥∥∥
Lq

. ‖f‖Lp‖g‖Lq .
Arguing similarly, we estimate the contribution of the second term on the right-
hand side of (A.4) as follows:∥∥∥∥|∇|− 2

3

∑
N1

PN1

(
|∇| 23 f

)
P>8N1

(
|∇|− 2

3 g
)∥∥∥∥
L4/3

.

∥∥∥∥∑
N1

N
− 2

3
1

∣∣PN1

(
|∇| 23 f

)∣∣N 2
3

1

∣∣P>8N1

(
|∇|− 2

3 g
)∣∣∥∥∥∥

L12/11

.

∥∥∥∥(∑
N1

∣∣N− 2
3

1 PN1

(
|∇| 23 f

)∣∣2) 1
2
(∑
N1

∣∣N 2
3

1 P>8N1

(
|∇|− 2

3 g
)∣∣2) 1

2
∥∥∥∥
L12/11

. ‖f‖Lp‖g‖Lq ,

where we also used the following consequence of (A.1):∥∥∥(∑
N

N2s
∣∣P≥Nh∣∣2) 1

2
∥∥∥
Lp
∼
∥∥|∇|sh∥∥

Lp
for all s > 0 and 1 < p <∞.

It remains to estimate the contribution of the third term on the right-hand side
of (A.4). To do this, we use Lemma A.5, the easy estimates |PNh| . M(h) and
|P≤Nh| .M(h), and the vector maximal inequality:∥∥∥∥|∇|− 2

3

∑
N1

PN1

(
|∇| 23 f

)
P< 1

8N1

(
|∇|− 2

3 g
)∥∥∥∥
L4/3

.

∥∥∥∥(∑
N

∣∣∣N− 2
3PN

[∑
N1

PN1

(
|∇| 23 f

)
P< 1

8N1

(
|∇|− 2

3 g
)]∣∣∣2) 1

2
∥∥∥∥
L4/3

.

∥∥∥∥(∑
N

∣∣∣N− 2
3M

[ ∑
N1∼N

PN1

(
|∇| 23 f

)]∣∣∣2) 1
2

M
(
|∇|− 2

3 g
)∥∥∥∥
L4/3

.

∥∥∥∥(∑
N

∑
N1∼N

∣∣N− 2
3PN1

(
|∇| 23 f

)∣∣2) 1
2
∥∥∥∥
Lp

∥∥M(|∇|− 2
3 g
)∥∥
Lr

. ‖f‖Lp
∥∥∇|− 2

3 g
∥∥
Lr
,

where r is such that 1
p + 1

r = 3
4 . (Note that this is source of the restriction p > 4

3 .)

The claim now follows by applying Sobolev embedding to the second factor on the
right-hand side of the inequality above. �
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23. , The focusing energy-critical nonlinear Schrödinger equation in dimensions five and

higher, Amer. J. Math. 132 (2010), no. 2, 361–424. MR 2654778 (2011e:35357)
24. E. H. Lieb and M. Loss, Analysis, second ed., Graduate Studies in Mathematics, vol. 14,

American Mathematical Society, Providence, RI, 2001. MR 1817225 (2001i:00001)
25. J. E. Lin and W. A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger

equation, J. Funct. Anal. 30 (1978), no. 2, 245–263. MR 515228 (80k:35056)
26. F. Merle and L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear

Schrödinger equation in 2D, Internat. Math. Res. Notices (1998), no. 8, 399–425. MR 1628235
(99d:35156)

27. K. Nakanishi, Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical

power, Internat. Math. Res. Notices (1999), no. 1, 31–60. MR 1666973 (2000a:35174)



60 MONICA VIŞAN
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