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1. NOTATION

Throughout this text, we will be regularly referring to the spacetime norms

aq
(1.1) ||u||LgL;(Rde) = (/R |:/Rd lu(t, )| d:c} dt> ,

with obvious changes if ¢ or r are infinity. We will often use the abbreviation

LAl =AMy and - lullgr = llullsry-
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We write X < Y to indicate that X < CY for some constant C, which is
permitted to depend on the ambient spatial dimension, d, without further comment.
Other dependencies of C will be indicated with subscripts, for example, X <, Y.
We will write X ~ Y to indicate that X <Y < X.

We use the ‘Japanese bracket’ convention: (x) := (14 |z]?)"/? as well as (V) :=
(1 — A)Y/2. Similarly, |V|* denotes the Fourier multiplier with symbol |£|*. These
are used to define the Sobolev norms

[fllers == IKV)* fllzy - and (| fll gor = NIV fllzy-

When r = 2 we abbreviate H® = H*2 and H® = H*?2.
Our convention for the Fourier transform is

for=ent [ e
so that
f@) = a7t [ emsfede amd [ (fORd = [ 7@

Notations associated to Littlewood-Paley projections are discussed in Appendix[A]

2. DISPERSIVE AND STRICHARTZ ESTIMATES

What all linear dispersive-type equations have in common is a dispersive-type
estimate, which expresses the fact that wave-packets spread out as time goes by.
An expression of this on the Fourier side is the fact that different frequencies move
with different speeds and/or in different directions. Below we will discuss several
instances of this phenomenon.

2.1. The linear Schrédinger equation. The initial-value problem for the linear
Schrédinger equation takes the form

(2.1) 10w = —Au  with  u(0,z) = ug(x).

Here u denotes a complex-valued function of spacetime R; x R? with the spatial
dimension d > 1. By taking Fourier transforms, we observe that

(2.2) alt, €) = e g (¢).

In particular, solutions with Schwartz initial data are Schwartz for all ¢t € R.
Using ([2.2) and Plancherel, it is easy to see that solutions to (2.1]) conserve mass,
that is,

(2.3) le*®uol72 = lluolZs
and kinetic energy, that is,
Ve uol72 = VuolZ: -

To derive an explicit formula for solutions to ([2.1), we will first study the par-
ticular case of modulated Gaussian initial data, namely,

ug(z) = exp{—% + i:c{o} with o >0 and & € R%
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This initial data is a Gaussian that lives at scale o and has wave vector &g, that is, it
has wave length = Téo] 5 i and the wave fronts are perpendlcular to &y. A straightforward

computation yields that the solution u to with this initial data is given by
(A ug)(x) = (27) "% / cirE=itlEl g (£) de
Rd
= (27T)7d/ / e”f*itm e~ W~ 4(, +1yfo dy d¢
Rd JRd
= (27r)7d/ / gin—itlE[? o =o* 660l o= |3 +ia(6=60)I* gy e
Rd JRd

. 2 . | —2t€q |2 2, . iz+202¢
= (27r)_d(47r02)geﬂt‘£°| Hiebo— ool / e it) |~ 2<oz+n§)’ 3
Rd

O’2 g . . x—2 2
(2.4) = (m> exp{—zt|§0|2 +ixéy — ﬁ}

In the formulas above, |v|? := 27—1 v for all vectors v € C?.

Exercise 2.1. Justify all steps in the derivation of (2.4).

Remark. From the exact formula , we read the following:

e the wave-packet travels at speed 2§, (called the group velocity)

e the wave vector is still & (called the phase velocity)

e while the amplitude of the wave packet decreases with time, the wave-packet also

spreads out: Re < 402 This is consistent with the conservation of mass.

__1
4(o2+it)

We are now ready to derive an exact formula for solutions to (2.1]), at least for
Schwartz initial data ug € S(R?). Using the linearity of the propagator e!*2 and

(2.4), we get
lz—y|?

. x—y|?
Afamo?)# [ w(dy] = lano 4 i) E [ D () dy.
R4 R4

To continue, the key observation is that for ug € S(R?),

o2
(2.5) lim (4r0?) " / de—‘& wo(y) dy = uo(z)
R

o—0

both pointwise in x and in the L2 topology. Using also that the propagator e®* is

continuous in the L2 topology (on Schwartz space), we get the exact formula
ile—y|?

(2.6) [eimuo](:c):(llm‘t)*g/ e % ug(y)dy for t#0
Rd

for all ug € S(R?), where the equality is meant in the L2 sense.
This leads directly to the dispersive inequality for the linear Schrodinger propa-
gator:

; _4d
(2.7) le*Augllze S It #lluollzy for ¢ +0.

Interpolating with (2.3]), we obtain the full range of dispersive estimates for the
linear Schrodinger propagator:

(2.8) e gl pp S 127 lugll ,» for t#0

for all 2 < p < oo, where p’ denotes the exponent conjugate to p, that is, %—i— 1% =1.
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Exercise 2.2. Prove that for all ug € L2, the equality (2.5) holds both a.e. in
and in the L2 topology.

2.2. The Airy equation. The initial-value problem for the Airy equation takes
the form

(2.9) Owu = —02u  with u(0,z) = uo(x).

Here u denotes a real-valued function of spacetime R; x R,. Note that complex-
valued solutions to (2.9) have the property that their real and imaginary parts
individually solve

Using the Fourier transform, we arrive at

(2.10) [e_taiuo](x) = (3t)_1/3/RAi((z,;"’;)%%)uo(y) dy for t#0,
where

Ai(z) =71 /000 cos(3&% + z€) d¢
denotes the Airy function of the first kind.

Exercise 2.3. Prove that the Airy function is uniformly bounded. Indeed, show
that Ai(z) -0 as z — foo.

Hint: Use non-stationary phase when x > 1; van der Corput for |z| < 1; van der
Corput for z < —1 on |¢| ~ |z|*/? and the complementary region, separately.

As a consequence of this exercise and ([2.10)), we obtain the dispersive estimate
for the Airy equation:

(2.11) le™ ||z < [H7F fluollzy  for ¢ 0.
Interpolating with the conservation law
493
le™%uol| 22 = l[uoll 2.
we obtain the full range of dispersive estimates, namely,

1 1
a

(2.12) le™uollrg S 357 Juolly for 40

for all 2 < p < oo, where p’ denotes the exponent conjugate to p, that is, %—i— 1% =1.

We may strengthen the dispersive estimate (2.11)) by localizing in frequency:

Exercise 2.4 (Frequency-localized dispersive estimate for the Airy propagator).
Let f € S(R). Prove that

le=*% Pyug ||z S ming[| =3, (N[¢]) ™%} Pyuol 1,

uniformly for N € 2% and t # 0. Here Py denotes the Littlewood-Paley projection
to frequencies |¢| ~ N; see Appendix for definitions and basic properties.

2.3. The linear wave equation. The initial-value problem for the linear wave
equation takes the form

(2.13) O2u = Au with u(0,2) =uo(z) and Osu(0,z) = ui(z).

Here u denotes a real-valued function of spacetime R; x R% with the spatial dimen-
sion d > 1.
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Using the Fourier transform, we find

Y () = cos(t|V]) |V~ Lsin(t|V])\ (uo
Ut A\ |V sin(¢|V)) cos(t|V]) up )’
One can derive an explicit formula for the wave propagator in spatial variables;
see, for example, [31]. One advantage of this expression is that it immediately yields
Huygens’ principle. This exact formula can also be used to derive the dispersive

estimate we give below; however, we prefer to take a Fourier analytic approach that
generalizes to more equations.

Lemma 2.1 (Frequency-localized dispersive estimate for the half-wave propaga-
tor). For any d > 1 and any frequency N € 2%, we have
d-1

(2.14) e VIPy flloee S (14 IN)" F NPy flle.

In particular, interpolating with Heitw'PNfHL% = ||Pnfllzz we get

+it|V| _@d=D®=2)  ap-2)
(2.15) le Pyflie S (L+1HN) 2 N | Pafll

1L —7.

for all 2 < p < co, where p’ denotes the exponent conjugate to p, that is, S+

Proof. By symmetry, it suffices to prove the dispersive estimate for the propagator
etV Ifd=1o0rd>2and |t| < N°!, the claim (2.14) follows easily from the
Bernstein inequality:

) d. . d
VI Py fllpee S N2(eVIPy fllz S N2 (|Px flloz S NP flcs-

It thus remains to prove the claim for d > 2 and |t| > N~ to which we now
turn. We write

VP f = VIPy iy = [0 (5) Fn(©)] " =[5 ()] * f,

where I5N = Pynjo+ Pn + Pon denotes the fattened Littlewood—Paley projection,

¢ denotes the Fourier multiplier associated with Pp, and 1@ denotes the Fourier
multiplier associated with Pj. To establish (2.14]), it thus suffices to show

/Rd eIEHiEl ) (£) dg‘ <N

for all d > 2 and |t| > N1,
Using a change of variables and switching to polar coordinates, we write

(2.17) / eimf—&-it\f\,&(%) d§ — Nd/ / eierw-&—iter;(T) dO’(w)Td_l dr
R4 0 gd—1

(2.18) = N* / N ()3 (Nl )t d,
0

(2.16)

where do denotes the surface measure on the sphere S¢~1 c R%.

If |x| < |t|, we note that the phase ¢(r) := Nrzw + Nrt has no critical points;
indeed, |¢/(r)| 2 N|t|. Thus, writing e**(") = Z.qb,l(r) 0,e'*(") and integrating by parts
k times in (2.17)), we get the bound

[ ey (g) ds] <p NN < N5 5
Rd
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To obtain the last inequality, we take k = % if the dimension d is odd, or k = %
if the dimension d is even (recalling that [t| > N~1).

It remains to consider the case || > |t|. In this case we use together with
the following lemma:

Lemma 2.2. Let d > 2 and let do denote the surface measure on the sphere
Sa=1 c Re. Then

. _d-1

lo(z)| S (@)~ =

Proof. Exercise! Hint: Using the fact that do is rotationally invariant, we may
write

(x) = (27‘1’)7%/ eilm\EddU(g) N/ ei‘z‘cose(sinﬁ)d” do,
gd—1 o

where 6 is the angle x makes with e;. Now use stationary phase and van der
Corput. O

Returning to the proof of Lemma for |z| 2 [t| > N~! we use (2.18)) and
Lemma 2] to estimate

/ ew“%(ﬁ)ds\sm / [D()|(Nr|z) = F rd=Ldr S N5 Je| =7
Rd Rd

which gives (2.16)) in this case. This completes the proof of (2.16) and so the proof
of Lemma 214 O

2.4. From dispersive to Strichartz estimates. In this subsection, we will only
present details for the derivation of Strichartz estimates for the wave equation.
Strichartz estimates for Schrédinger and Airy are left as exercises for the reader.

Definition 2.3. We say that (g, r) is wave admissible if
1 d-—-1 d-1
+ <

q o = Tv q,7, d Z 27 and (Q7T7 d) 7é (27 00, 3)

Proposition 2.4 (Frequency-localized Strichartz estimates for the half-wave prop-
agator). Let d > 2 and (q,r) be wave admissible such that % + g =4 — 5 for some
v > 0. Then

(2.19) eV Py fllgny S NP ez

(2.20) H/ ¥V Py P (1) dt‘
R

L,i S N’YHPNF”L;I’L;"

Moreover, if (¢, 7) is also a wave admissible pair, then we have the retarded estimate

/ et =IVIpy F(s) ds‘
s<t

gy
t -

(2.21) ’

Proof. We will only prove the proposition in the non-endpoint cases, that is, omit-
ting the pair (2, Q(dd:gl)) for d > 3. For the endpoint case, see [17].
By the TT* argument, (2.19) is equivalent to (2.20]) and they are both equivalent

to

(2.22) H/Re:ti(tfs)\vleF(S) ds LqLTVS N2”||F||L3’L;"

t~x
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When 1 + G (2.15) and Young’s inequality to estimate
(d=1)(r—2) d(, 2)
LHS(222) < H/ (1+|t—sN) = | PN F(s)]] dsH
ar—2) (@=1)(r=2)
SNTTPNE |y (14 1N) Iz
d(r 2) _g
<N q”PNF”L;I/L;U

which gives (2.22) in this case. When 1 + ¢-1 = 9=1 we use instead the Hardy-

q
Littlewood—Sobolev inequality to obtain

_(d= 1)(r 2) (d+1)(r 2)
LHS(222) < H/ It — 3| N | PXF($)]l ds| y
t
(d+1)(r 2)

SN IPNE o s

which gives (|2 in this case. Note that the application of Hardy-Littlewood—
Sobolev requires r < (d 1) . This completes the proof of (2.22)) and so the proof of

(E19) and @20).

We now turn to (2.21). First we note that by Bernstein’s inequality, it suffices
to prove the claim for those admissible pairs that are sharp admissible in the sense

that 1 + <=1 = d41 = % + 91 Next, we remark that the proof of (2.22) gives
- for q7 ¢, ). Finally, to obtain the full range of sharp admissible pairs,

one mterpolates between this and the following two estimates which are simple

consequences of duality and (2.19)) and (2.20):

H/ et =IIVIpy F(s) ds
R

H/ et =IIVIpy F(s) ds’
R

This completes the proof of the lemma. O

LLs

LiL;

Corollary 2.5 (Strichartz estimates for the half-wave propagator). Let d > 2 and
(g,7) be wave admissible such that r # co and %—i—% = % —~ for some~y > 0. Then

e ¥ FllLary S WV Fllzz
Fit|V] < v ,
H/Re PO, SIVIPlyy

Moreover, if (§,7) is also a wave admissible pair with ¥ # oo, then

eﬂ(t—szF(s)dsHLqL SNV F 35 P .

s<t

Proof. In view of Proposition it suffices to prove

/2
(2.23) HFHL‘?LT { Z ||PNFHL‘1LT} forall 2 <g<ooand 2 <r < oo,
Ne2z

which by duality is equivalent to

1/
(2.24) { > IPNFI2, } SNl foral2<g<ooand2<r<oc.
Ne2Z N
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To see that (2.23)) and (2.24]) are equivalent, consider the operator T : Lf/L;/ —
(LY L) given by T(F) = {PyF} yeoz. The operator T being bounded is equiv-
alent to (2.24). It is easy to check that the adjoint of T is T* : I2(L{L") — L{L",
given by T*({Gn}ne2z) = D neoz PnGn. Boundedness of T implies

{3 ot}
LiLr ™ =, NllLiLy ‘
€2

Writing F' = 3" yeor PNF = "y oz Pn Py F and applying (2.25) with Gy = PyF,
we obtain (2.23)). Thus (2.24]) implies (2.23)). To see that (2.23)) implies (2.25) and
so (2.24)), we estimate

(2.25) H 3 PNGN‘
Ne2Z

2 1/2
P H{X| .
|2 pven,y,, <{X v 3 pucad],,
Ne2z v Ne2z Me2? z
2 1/2
<
~ { Z H Z GM’ L?Lr}
Ne2Z M~N t e
1/2
<3 lewlBy,
Ne2Z
It thus remains to prove (2.23)); for this it suffices to show that
1/2
(2.26) 1l S {3 1wz} foral 2<r <o,
Ne2Z

since then, for ¢ > 2 we obtain

1/2 /2
1Flceny < {2 IPvF@IE, |
Ne2?

g

1
= ievE@IE, |
L Ne2z Li

1/2 1/2
s{X |ipvFom|| s} = {3 1vFIRL. )
Ne2?Z ¢ Ne2z

Finally, to prove ([2.26]) we use the square function estimate and the same argu-
ment as above:

I fllzy ~ H{ Z ‘PNHQ}I/QHU < { Z ||PNf||%;}1/2 forall 2 <r <oo.
Ne2? * Ne2?

This completes the proof of the corollary. O
r)

2
Lz

Corollary 2.6 (Strichartz estimates for the wave equation). Let d > 2 and let (g,
and (§,7) be wave admissible pairs such that r,7 < oo and %—I—g = %—’y = %—I—%—Z
for some v > 0. If u solves

Otu=Au+F with uw0)=ug and 0u(0)=u
on I x R? for some time interval I > 0, then
[ell ooy + 10sttl| oo gz =1+ llull Loy S Nlwoll gy + el gry— + IE o o
where all spacetime norms are over I x R%.

Proof. Exercise! O

For the Schrédinger equation we have the following Strichartz estimates:
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Lemma 2.7 (Strichartz estimates for the Schrodinger equation). Let d > 1 and

let (q,7) and (q,7) be such that 2 < q,r,q,7 < o0, %—!—% =

(q,r,d) # (2,00,2) and (¢,7,d) # (2,00,2). If u solves
i0u=—Au+F with u(0)=wug

on I x R for some time interval I 3 0, then

[V]=W

||U||Lg°Lg(1de) + ||U|\L§L;(Ide) S HUOHLg + HF||L§'L;~«/(IXW)~

Proof. Using as a model the proof of Proposition [2.4] prove the lemma for all pairs
of exponents except the endpoints, that is, whenever r dz—_dZ and 7 # dz—_dQ for
d > 3. For a proof in the endpoint case, see [I7]. O

Finally, we record the Strichartz estimates for the Airy equation:
Lemma 2.8 (Strichartz estimates for the Airy equation). Let (¢,r) and (G,7) be
such that 2 < q,r,q,7 < 00, % + 3—1r = % = % + % If u solves
Ou=—2u+F with u(0)=ug
on I X R for some time interval I 5 0, then
lullLee L2 (rxr) + [JullLarr (rxr) + H|V|1/6u||L?’I(IXR) S luollzz + ”FHLf/L;’(IxJR)'
Proof. Exercise! O

2.5. Bilinear Strichartz and local smoothing estimates. In this subsection,
we restrict attention to the Schrédinger propagator.

Theorem 2.9 (Bilinear Strichartz I, [3, 13, 28]). Fizd > 1 and M < N. Then
i i =11
(2.27) | (€2 Pas £]le tAPNg]HLg’I(Rde) S M T N2 fll2 meyllgll 22 (ray-

When d =1 we require M < %N, so that Py Py = 0.

2d
Proof. For M ~ N and d # 1, the result follows from the L2 — L}LZ™" Strichartz
inequality and Bernstein.
Turning to the case M < %N , we note that by duality and the Parseval identity,
it suffices to show

([ F? + P+ ) Far(€)g ) de
(2.28) R xR

a1 a1 s R
S M7 N72||Fl 2 @ivay | fll 2@ ll9l L2 a)-

By breaking the region of integration into several pieces (and rotating the coordinate
system appropriately), we may restrict the region of integration to a set where
m — & 2 N. Next, we make the change of variables ( = £ +1, w = |£]2 + |n|?, and
B = (&,...,&). Note that |3] < M while the Jacobian is J ~ N~!. Using this
information together with Cauchy—Schwarz:

LHSEZ) = | [[[ Pl 0 g n dwdcas
< 1Pz ooy [ [ [ 1B PR dw ] ap
Sl o2 ([ [ [ V@i P dac as)
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SIFlsz o T ([ [ 1@ Pla PN de an)

which implies (2.27)). O

Corollary 2.10 (Bilinear Strichartz II). Let M, N, and d be as above. Given any
spacetime slab I x R and any functions u,v defined on I x R?,

||u§MUZNHL§m(I><Rd) N MTN

where we use the notation

||u||L°°L2(I><]R4 + ”(Zat +A)U|| 2(d+2)
L, 3+ (Ide)

Proof. See [39, Lemma 2.5], which builds on earlier versions in [4] [13]. O

Lemma 2.11 (Local smoothing, [14, [32 B8]). For all f € L2 we have

a2
9t et dnar < 11
In particular, by scaling, for all R > 0 we have
|||V|1/2 ltAfHL? (Rx B(0,R)) N R1/2||fHLi'

Proof. Given a : R? — [0, 00), we have

// il [[V[*/2e f] () ‘a )dz dt

=(my [ [ ][ e g2 gyt g 2 () d i s
/ / a(n — €)5(nf? — €2 e[ n Y2 £ (€)F () dé dn

€200 5 )7
d¢ dn.
= [ [t =tnl ~ 16D St e T g an

By Schur’s test it thus suffices to show

A €12 ]2
. —&)8(In| = 16N =7
(2.29) /Rd aln =)ol = 1D =30

Recalling that in our case a(x) = e~1el” and passing to polar coordinates, we obtain

A €172]p]1/2
—O8(Inl — 1enis
/Rﬂ” 8(1nl - €)=

d¢ <1 uniformly in 5 € R%

dg

r1/2)p|1/2
< l

~

Irwn\(g
. (nl ==

foi,

Lo [ el ase)
/W

/2

r= Y dr do(w)

S

1

1
us

< e—2|n|2(1—cose)|n|d—1(sin6)d—2 de

0

<

~

In|202 o L2
e 100 |pdtgd2 g < / e~ 107972 qr < 1.
0
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In the computation above, 6 denotes the angle w makes with ﬁ This proves ([2.29)

and so completes the proof of the lemma. O

The next result is a consequence of local smoothing; see Lemma 3.7 in [I§]. The
proof we present here is the one from [23]; see also [22].

Lemma 2.12. Given ¢ € H'(R%),

TN 2 3d+2 TN
Ve qs”if‘z([fT,T]x{\:qu}) ST#2 R |2 g %”VWZL?D

t,a

Proof. Given N > 0, Holder’s and Bernstein’s inequalities imply

. 2 2d .
IVe"2panllzz (r.mix(oi<ry) S TT2 R |2 Vo N 2(4+2)
' Lt,m7
S T‘ﬁ?.Rdz*ﬁ2 N ||6itA¢|| 2(d+2) -
L,g?

On the other hand, the high frequencies can be estimated using local smoothing:

Ve b5 N2z (—r.m1xqlei<ry) S BVZNIVIY 25Nz
SNTVERYV2|VG L2

The lemma now follows by optimizing the choice of N. O

3. AN INVERSE STRICHARTZ INEQUALITY

In this section, we develop tools that we will employ to prove a linear profile
decomposition for the Schrédinger propagator for bounded sequences in H'(R%)
with d > 3. Such a linear profile decomposition was first obtained by Keraani [I§],
relying on an improved Sobolev inequality proved by Gerard, Meyer, and Oru [I6].
We should also note the influential precursor [I] which treated the wave equation.
In these notes we present a different proof of the result in [I8], which relies instead
on an inverse Strichartz inequality.

A linear profile decomposition for the Schrodinger propagator for bounded se-
quences in L2(R?) was proved by Merle-Vega [26] for d = 2, Carles—Keraani [7] for
d = 1, and Bégout—Vargas [2] for d > 3. For a different approach to these results,
which is similar in spirit to what we present in these notes, see [22].

We start by noting that combining the Strichartz inequality for the Schrodinger
propagator from Lemma [2.7 and Sobolev embedding, we obtain

31) (€A1 awen SIEAVII aain 20 Sl
Lt):72 (RxRd) Lt2dd_"'22 LUE Bpa H}
for all d > 3.
Our next result is a refinement of (3.1), which says that if the linear evolution
2(d+2)

of f is large in L, ;7 , then the linear evolution of a single Littlewood-Paley piece
of f is, at least partially, responsible.

Lemma 3.1 (Refined Strichartz estimate). Let d > 3 and f € H'(R?). Then

. a-2 . 4
™21l 2tz SIAIEE sup [l vl Totusa
72 (RxR?) © Ne2? L, 7% (RxR9)

t,x
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Proof. We will present the proof in dimensions d > 6. The proof in dimensions
d = 3,4 is easier as (dd+22) is an even integer in those cases. The proof in dimension
d =5 is a small modification of the argument below. We leave the cases d = 3,4,5
as an exercise for the conscientious reader.

Fix d > 6. From the square function estimate, the subaditivity of fractional
powers (using the fact that 2((fi+22) < 1 in dimensions d > 6), and the Bernstein and
Strichartz inequalities,

2(d+2)

A
eIl 3 2<d+2>
L,
dt2
A -2
5// (DD e ) dwat
RxR Neoz
S S [ e ey # o
M<N RxRd
||€”AfM|| 2+2) ||€ZtAfM||d2d+2 €™ far | 2+2 €2 fuvll 242)
(@12) 2(d+2)
M<N L3 L, Ly ,?
< buP ||eltAfNHd2(d+2) Z M2||eltAf ” 2(d+2) 2d(d+2) HfN”L2
Ne2Z th M<N d—4 Lmd?+8 x
S SUP ||€”AfNHd2(d+2) Z ZWQHfM”L?HfNHL2
Ne L, 277 Mm<N

< sup, ||eZtAfNHd2(d+2) > NIV il IV Enllzz
Ne L,37% M<N

< sup ”eltAfNH d2(d+2) Hf”?{l
Ne2? v

f'r

This completes the proof of the lemma in dimensions d > 6. O

The refined Strichartz inequality shows that linear solutions with non-trivial
spacetime norm must concentrate on at least one frequency annulus. The next
proposition goes one step further and shows that they contain a bubble of concen-
tration around some point in spacetime.

Proposition 3.2 (Inverse Strichartz inequality). Letd > 3 and let {f,} ¢ H'(R%).
Suppose that

lim || follgn = A<oo and  lim [|e®f,| 202 =e>0.
n—o00 @ n—oo Ltyil—2 (RxR4)

Then there exist a subsequence in n, ¢ € H;, {M} C (0,00), and {(tn,xn)} C
R x R? such that

a2 .
(3.2) M2 [ B fu (e + ) — ¢(x)  weakly in  HY,
. d(d+2)
(3.3) timinf{ | fal %, = 1fn = onll%, | = 6%, 2 4%(5) 75,
o i 2(d+2) ; 2(d+2) 2(d42) | (d+2)(d+4)
(34) Timinf{ [l full o) — 1 (o = @)l Suin 2207 ()T
n— o0 —5

Lt,x Lt z
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where

_d=2 -2
(35) Bula) = Ay 7 [N (252,
Proof. Passing to a subsequence, we may assume

lim [ follgn <24 and  lim [|e2 f, || 2we2 > 5.
n—00 x n—00 Lt,;72 (RxR4)

Thus, using Lemma we see that for each n there exists N,, € 2% such that

; dtz | _d-2
||61tAPann|| 2(ddj22) ZE T AT T

t,x
On the other hand, from the Strichartz and Bernstein inequalities we get
||€itAPann||L2<d;2> SIPw, fallz S N YA

t,x

By Holder’s inequality, these imply
T AT SN APy fall s
Lyo*

) d—2 ) 2
SN S Pr fall Saan € P full e,

t,x
_d=2 42 . 2
SNo T AT ("2 Py, fall foo s

and so
d(d+2)
8

B
Nn 2 €PN, fallLg, 2 A(S)
Thus there exist (t,,7,) € R x R? such that

d(d+2)

(3.6) Ny T ([t A Py, ful(am)| 2 A(5)™5

We define the spatial scales \,, := N, 1.
It remains to find the profile ¢ and to prove it satisfies (3.2 through (3.4). To

this end, we set
d—2 .
In(2) = A2 [P [ )N + ).
A simple change of variables gives

HgnHHi - anHHi SA

and so, passing to a subsequence, we can choose ¢ so that g, — ¢ weakly in H;

This proves (3.2)).

We now turn to (3.3)). The asymptotic decoupling statement is immediate since
H; is a Hilbert space. We are left to prove the lower bound in . Toward
this end, let QL := P16y denote the convolution kernel associated with P;. Using a
change of variables and , we get

- - . _d+2
[(@,90) 12| = | im (gn,0) 12| = |nli_>m (G P w(%»@‘

n—oo (o)
d—2 .
(3.7) = N 2 [ APy, fal(@a)| 2 AGS) TS
On the other hand, by Holder’s inequality and Sobolev embedding,
(6, 9V 2| S Nlbllcelldll pors S NIl gra-

Putting the two inequalities together, we derive the lower bound in (|3.3).
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2(d+2)
It remains to prove (3.4). We start by proving decoupling for the L, 77 norm.
Note that

(iat)%eitA _ (_A)%eitA7

as can be checked by testing against Schwartz functions in R xR%. Thus, by Holder’s
inequality, on any compact set K in R x R? we have

€72 9all 13 S =) 26 nllzz o) Sic A,

H2, (K)
Using this together with Rellich-Kondrashov and passing to a subsequence, we get
e g, = e*B¢  strongly in Liw(K).
(In order to identify the limit in the display above, we note that g, — ¢ weakly in
H} implies that e®?g,, converges to e'*2¢ as distributions on R x R%.) Passing to

a further subsequence, we deduce that e**“g, — €'~ ¢ a.e. on K. Finally, using a
diagonal argument and passing again to a subsequence if necessary, we obtain

eg, — e*®¢ ae. in R x RY

To continue, we use this convergence together with the refined Fatou lemma (see
Lemma [A.3)) due to Brézis and Lieb and a change of variables; we obtain

A 2t A 2(442) AL 2t
Tim {62 full 52, — 1™ (fu = du)ll Scen | = 1200 2k
Lo ? Lo? Lo ?
from which (3.4) will follow once we prove
. d?42d-8
(3.8) 20l 2wsn 2 e(5)7 "
==

t,x

To see this, we use (3.7)), the Mikhlin multiplier theorem, and Bernstein to estimate

d(d+2) . ) e ) .
A(5)5 0 SHo 2] = [(€"2¢, e ) 2| S (€720 2wara [|€2Y] 20tz
E E L‘E d—2 LJ; d+6
S el 2,
La: d—2
uniformly in |¢| < 1. Integrating in ¢ leads to (3.8)). O

Exercise 3.1. Under the hypotheses of Proposition [3.2] and passing to a further
subsequence if necessary, prove decoupling of the potential energy, namely,

s P = CiIAT2A | s
hnrglnf{”fn‘ 2d T ||fn - ¢n| 24 ||€ v ¢H 2d } =0.
o] a—2 d—2 d—2

Hint: Passing to a subsequence, we may assume that \,2t, — to € [—00,00]. If
to = +o0, then approximate ¢ in H! by Schwartz functions and use the fact that
by the dispersive estimate for the Schrodinger propagator,

le™ 8y a0 0 as m— oo

for any ¢ € S(R?). If instead ty € (—o0,00), then (3.2) can be upgraded to

d—2 . .
A2 fro(Anz + 2,) — e 02 ¢(x) weakly in H.. Now use Rellich-Kondrashov and
refined Fatou as in the proof of (3.4]).
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4. A LINEAR PROFILE DECOMPOSITION

In this section, we use the inverse Strichartz inequality Proposition to derive
a linear profile decomposition for the Schrodinger propagator.

One can view the linear profile decomposition as a tool for measuring the defects
of compactness in the Strichartz inequality . More precisely, given a bounded
sequence of functions {f, }n>1 C H'(R%) we would like to be able to say that, after

2(d+2)
possibly passing to a subsequence, {4 fn}n>1 converges in Lt’i’z . Unfortunately,
every non-compact symmetry of the inequality is a reason why we would fail
to extract a convergent subsequence.

The non-compact symmetries of are space- and time-translations and H -
preserving scaling. To see how these work against us, consider the simple scenario
where f,,(z) = f(z+x,) with f € H} and {2, },>1 C R? is a sequence that diverges
to infinity; in this case, {€®*? f,},>1 converges weakly to zero. We leave it to the
reader to use time-translations and H;—preserving scaling to construct bounded
sequences of functions {f, }n>1 C H'(R?) for which {¢"*2 f, },>1 converges weakly
to zero.

At this point we might imagine that if suitably translate and rescale our sequence,
then we might be able to extract a convergent subsequence. Proposition [3.2] gives

us hope, since it exhibits a bubble of concentration living inside each e*2 f,,, which
2(d+2) )
captures a nontrivial portion of the L, 2= norm of 2 f,,. However, even this

modified goal is naive and doomed to fail, as one can see by considering the following
scenario: f,(z) = f(x) + f(z + x,) with f € H! and {z,},>1 C R? is a sequence
that diverges to infinity; in this case, the evolutions e®? f,, contain two diverging
bubbles of concentration and translating our sequence would still fail to exhibit a
convergent subsequence.

Nevertheless, this suggests that if we take out enough bubbles of concentration

living inside eZm fn, then we might be able to say that the remainders do indeed
2( d+2)

converge to zero in L, 272
,

. This is precisely the content of the following theorem.

Theorem 4.1 (H; linear profile decomposition for the Schrédinger propagator).
Fiz d >3 and let {f,}n>1 be a sequence of functions bounded in H'(R?). Passing
to a subsequence if necessary, there exist J* € {0,1,...}U{oo}, functions {¢’ 3] 1 C
HY(RY), {M.} C (0,00), and {t],, 23} € RxR? such that for each finite 0 < J < J*,
we have the decomposition

J

(4.1) Fo = S () U A ) (28h) 4w
st %

with the following properties:

(4.2) lim limsupHeimw‘]H 2) =0

J=J* pooco Lt,j72 (RxR4)
T ;
(4.3) Tim [[IV/a]; - Z V6! I} — 7w |3] =

: d{ thA d2 J%
(4.4) i (117 %2 Zne % — ]l %] =0
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(4.5) einA [(Ag)%wi()\;{x +a])] =0 weakly in H'(R?).
Moreover, for each j # k we have the following asymptotic decoupling of parameters:

Aok J k12 [# (M2 — th(\F)2
AL XA Nk

— 00 as n — oQ.

Lastly, we may additionally assume that for each j either tJ =0 or tJ — +oo.
Proof. To keep formulas within margins, we will use the notation
(G.)(x) = ()T F(52%) with [(6d) 7 f)(x) = (M) T F (M + ).
Note that [lgh £l = £l : = l(g) " Fl: and
(gafrsfo) g = (1, (g0) " fo)yn for all  fu, fo € Hj.
We will also use the notation
P (x) = (M)~ T (B2 (8 = [ghe A (@),

To prove the theorem we will proceed inductively, extracting one bubble at a
time. To start, we set w® := f,,. Now suppose we have a decomposition up to level

J > 0 obeying (4.3)) through (4.5). (Conditions (4.2)) and (4.6) will be verified at

the end.) Passing to a subsequence if necessary, we set

_d—2
P

_d=2
2

Agi= lim il and e = lim fleSwg] s

t,x

If e; = 0, we stop and set J* = J. If not, we apply Proposition to w.
Thus, passing to a subsequence in n, we find ¢/+1 € H;, {)\;{‘H} C (0,00), and
{#/+L 241} € R x RY, where we renamed the time parameters given by Propo-
sition as follows: ¢/t = -\ 2t,.

According to Proposition the profile ¢”/*! is defined as a weak limit, namely,

#7+1 A e [ A e R A (A W B

n—oo

= w-lim(g e

n—oo

T4
We let ¢/t := gJHleitn™ Ag/+1

Now define w;/*1 := w;] — ¢J+1. By the definition of ¢7*1,

_ 2 J+1 _ . .
et A (gl Tl ~ 0 weakly in H..

This proves (4.5) at the level J + 1. Moreover, from Proposition we also have
Tim {Jlel 1%, = e 1%, = 16713, } = 0.

Combining this with the inductive hypothesis gives at the level J + 1. A
similar argument using Exercise [3.1] establishes at the same level.
Passing to a further subsequence and using Proposition we obtain
A2 _ 1 J+1 2 2 _ £J d(d4+2) 2
J+1—nggo||wn ||H; SAJ[l C(AJ) ] < A7
A7) mgma A e SRR aER -,
€jy1 nlggo " wy, ||L2Szdjz2) <egy {1 C(AJ)

(d+2)(d+4)
T

t,x

If £511 = 0 we stop and set J* = J 4+ 1; in this case, (4.2)) is automatic. If e;41 > 0
we continue the induction. If the algorithm does not terminate in finitely many



18 MONICA VISAN

steps, we set J* = oo; in this case, implies e; — 0 as J — oo and so
follows.

Next we verify the asymptotic orthogonality condition . We argue by con-
tradiction. Assume fails to be true for some pair (j,k). Without loss of
generality, we may assume that this is the first pair for which fails, that is,
j < k and holds for all pairs (j,1) with j < [ < k. Passing to a subsequence,
we may assume

N J ok (N2 — ¢k (\F)2
(4.8) T~ Ao € (0,00), M—)xo, and n(An) ‘ n(An) — tp.
Ak [\ Ak A A\E
From the inductive relation
k—1
wp T = = Y 4,
I=j+1
and the definition of ¢*, we obtain
oF = wlime A (gf) el
n—oo
(4.9) = w-lime ™" A(gh) "Ml = D welime™ A [(gh) T g .
I=j+1

We will prove that these weak limits are all zero and so obtain a contradiction to
the nontriviality of ¢F.
We write

ik _ . ik _ . i S .
e A (gh)Twl] = e T A (gh) Tl gl et A e A (gl) T

—it{lA(

(¢ S
= (g5) 'gle e gh) " twll.

Note that by (4.8),
g OB A0 -0 N
()2 MAE Mo Ao
Using this together with (4.5), Exercise and the fact that the adjoints of the
unitary operators (g¥)~lg/ converge strongly, we obtain that the first term on

RHS(4.9) is zero.

To complete the proof of (4.6), it remains to show that the second term on
RHS(4.9) is zero. For all j <l < k we write

RA( k=1 4l kot it (Az)Z)A A 140

—1 — — y n n J\2 —itd i\ —

e (gn) T b = (gn) ' ghe ()7 (e (g) " o).

Arguing as for the first term on RHS(4.9)), it thus suffices to show that
e A () Mgl = e (g]) N ghe ™ ¢! = 0 weakly in H].

Using a density argument, this reduces to

(4.10) I, = e*“iA(g%)*lgie”l"Agb — 0 weakly in A},

for all ¢ € C°(R?). Note that we can rewrite I,, as follows:

o= (25) 7 G ] (ko)

Ao
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Recalling that (4.6 holds for the pair (4,1), we first prove (4.10]) when the scaling
parameters are not comparable, that is,

M, M
(4.11) nh_)Ir;O )\T + N 00

By Cauchy—Schwarz,

(s )| < mind ATz 1l 22, 1 a2 1A 2 }
e z,
S mind 3218011z 4112 %wn@nmn%},

which converges to zero as n — oo, for all ¢ € C2°(R?). This establishes (4.10)

when (4.11)) holds.

Henceforth we may assume
)\j
lim —* = X; € (0,00).

n—00 )\l
We now suppose the time parameters diverge, that is,

B )2 — (A2

n—>oo )\J )\l

then we also have
th(AL)?2 =t (M) N,
_ ()2 = (A M as s col

N
Py ,
Under this condition, (4.10) follows from

d—2 et —¢ & 2 J o ol .
A2 {e (t" tz”'(*’n) )Aqﬁ} <)\1x—|— :%)\lzn) — 0 weakly in H},

n

which is an immediate consequence of Exercise [£.3]
Finally, we deal with the situation when

X, tn (M) — 1, (X)° |23, — |
(412) )\l — )\1 S (0 OO) )\%)\l — tl, but W
Then we also have ¢}, — # (M,)2/(\L)? — Ait;. Thus, it suffices to show that

d=2 .y .
(4.13) A\ Mgz +y,) =0 weakly in H},
where
vl —al, x) —al )\J
Yn = = — — 00 as n — 0.

N V2

The desired weak convergence (| - follows again from Exercise
Finally, we prove the last assertion in the theorem regarding the behaviour of ¢7..
For each j, by passing to a subsequence we may assume tJ, — t/ € [—00, oc]. Using
a standard diagonal argument, we may assume that the limit exists for all j > 1.
Fix j > 1. If # = 400, there is nothing more to be proved. If #/ € (—o0,c0),
we claim that we may redefine tJ = 0, provided we replace the original profile ¢/
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by e’2¢J. Indeed, we merely need to prove that the errors introduced by these
changes can be incorporated into w;, namely,

Tim [lgge’ B¢ — ghe™ B¢y = 0.

But this follows easily from the strong convergence of the linear propagator.
This completes the proof of Theorem [4.1] O

Exercise 4.1. Under the hypotheses of Proposition [3.2], prove that
eitn A [()\%)%w;{()\%x +23)] =0 weakly in HY(RY) for all j < J.
Exercise 4.2. Let f, € H'(R%) be such that f, — 0 weakly in H'(R%) and let
t, = tso € R. Then
enBf, —~ 0 weakly in H} as n — oo.
Exercise 4.3. Let f € C°(RY) and let {(tn,n)}n>1 C R x RY. Then
e f(x+x,) =0 weakly in H! as n — oo

whenever |t,| = oo or |x,| — co.

5. STABILITY THEORY FOR THE ENERGY-CRITICAL NLS
In this section we develop a stability theory for the energy-critical NLS
(5.1) 0w = —Au =+ |u|ﬁu with  u(0) = up € H}.

Definition 5.1 (Solution). A function u : I xR? — C on a non-empty time interval
0 € I C R is a solution (more precisely, a strong H! solution) to (5.1)) if it lies in

2(d+2)

the class COHL(K x R%) NL, 5 * (K xR%) for all compact K C I, and satisfies the
Duhamel formula

(5.2) u(t) = e (0) T i /O =Dy ()| 77 u(s) ds

for all t € I. We refer to the interval I as the lifespan of u. We say that u is a
mazimal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that v is a global solution if I = R.

Solutions to (5.1) conserve the energy

Bu) = [ HIVu(t.)? £ G ult,a)| 7 da.

Note that taking data in H L renders the energy finite. Indeed, Sobolev embedding
shows that H L'is precisely the energy space.

The equation is called energy-critical because the scaling associated with this
equation, namely,

u(t,x) — )\%u()?u)\x) for A >0,

leaves invariant not only the class of solutions to ([5.1)), but also the energy.
Throughout the section, we use S° to denote the intersection of any finite number
of Strichartz spaces L] L” with (q,7) obeying the conditions of Lemma and N
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to denote the sum of any finite number of dual Strichartz spaces L;]/L;/. For an
interval I C R we define the norms

llullsory == llullsorxray and ||F|[nocry == [[Fl|no(rxre)-
We start by reviewing the standard local well-posedness statement for (6.1)).

Theorem 5.2 (Standard local well-posedness, [8, O, [10]). Let d > 3 and uy €
HY(R?). There exists ng = no(d) > 0 such that if 0 < n < no and I is a compact
interval containing zero such that
(5.3) HveitAUoH 2(d+2) 2d(d+2) <n,

L, 977 [, T+ (IxRd)
then there exists a unique solution u to (5.1]) on I x R%. Moreover, we have the
bounds

[Vu| @iz 2ae <2n
L d

— 2
L4 LT (IxRY)

Vel oz xmay S Vol o + 7"
HU”SO(Ide) S HUOHLg-

Proof. Exercise! Hint: use contraction mapping with the distance given by an S°
norm. (Il

Remarks. 1. By the Strichartz inequality,

[V 0] s 2agsn 5 Vol
L, 7% L, (IxR9) g
Thus, holds with I = R for initial data with sufficiently small H! norm. In
particular, we obtain global well-posedness for initial data in H! that is small in
A
2. By the monotone convergence theorem, given an arbitrary ug € H; we can
choose a sufficiently small interval I to ensure that holds. Note however that
the length of I will depend upon ug and not merely its norm.

This standard local well-posedness result suffers from the fact that the initial data
belongs to the inhomogeneous Sobolev space H., rather than the energy space H L
the stronger requirement ug € H! is needed in the proof of Theorem in order to
prove that the solution map is a contraction. To remove this restriction, we need
the following stability result:

Theorem 5.3 (Energy-critical stability result, [22, B34]). Let I a compact time
interval and let @ be an approzimate solution to (5.1)) on I x R? in the sense that

iy = —AG+ || T 20 + e
for some function e. Assume that
(5.4) ||ﬂ||L§>°H;(1><Rd) <E

(5.5) @] 2ear2 <L
L, 972 (IxR4)

t,x

for some positive constants E and L. Let tg € I and ug € H; and assume the
smallness conditions

(5.6) lluo — a(to)ll g < e
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(5.7) [Vellnoay <e
for some 0 < € < &1 = e1(E,L). Then there exists a unique strong solution
u:I xR C to (5.1) with initial data ug at time t = to satisfying
(58) Hu - ’I:LH 2(d+2) S C(E, L)&‘C
Lg% (IxRY)
(5.9) [V(u—a)llsory < C(E, L)
(5.10) [Vullsory < C(E, L),

where ¢ = ¢(d) > 0.

This stability result was first proved for d = 3 in the work of Colliander, Keel,
Staffilani, Takaoka, and Tao [I3] on the defocusing energy-critical NLS. For d = 4,
it can be found in [30]. The same proof extends easily to dimensions d = 5,6. To
prove Theorem in dimensions d > 7, new ideas are needed. To see why, let
us consider the question of continuous dependence of the solution upon the initial
data, which corresponds to taking e = 0 in Theorem To make things as simple
as possible, we choose initial data ug, g € H} which are small in the sense that

l[woll g + ol 71 < mo-

By the first remark above, if 7y is sufficiently small there exist unique global so-
lutions u and @ to with initial data ug and g, respectively; moreover, they
satisfy

[Vullsom®) + Vil sow) < mo-
We would like to see that if ug and g are close in H}, say |V (ug — o)z < & <
1o, then v and @ remain e-close in energy-critical norms. An application of the
Strichartz inequality combined with the bounds above yields

_4_ _4
IV (u = @)[lsom) SV (uo —do)llLz +n5 " IV (w— @) som) + nollV(w — @) o z)-

If 4/(d—2) > 1, a simple bootstrap argument implies continuous dependence of the
solution upon the initial data. However, this will not work if 4/(d — 2) < 1, that
is, if d > 7. The last term in the inequality above causes the bootstrap argument
to break down in high dimensions; indeed, tiny numbers become much larger when
raised to a fractional power.

To prove Theorem in dimensions d > 7, the authors of [34] work in spaces
with fractional derivatives (rather than a full derivative), while still maintaining
criticality with respect to the scaling. A similar technique was employed by Nakan-
ishi [27] for the energy-critical Klein—-Gordon equation in high dimensions.

The result in [34] assumes the less stringent smallness condition

, 1/2
( Z HVPNel(t_tO)AOLO — ﬁ(to)) H2 2(d+2) 2d(d+2) ) <e
Ne2z L, 7% L, (IxR?)
in place of (5.6). There is also an improvement over the result in [34], in which the
smallness condition above is replaced by

||6i(tito)A ('LLO - ﬁ(to)) H 2(d+2) <e.

Lg% (IxRY)

To prove Theorem with this particular hypothesis (which was helpful in early
treatments of the energy-critical NLS), it becomes necessary to work in spaces with
fractional derivatives even in small dimensions; see [22] for the proof.
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In what follows, we will present the proof of Theorem[5.3|in dimensions 3 < d < 6.
For higher dimensions, see [22], [34].

Proof of Theorem[5.3 for 3 < d < 6. We will prove the result under the additional
assumption that ug € L2 (and so ug € H}). This allows us to invoke Theorem
and so guarantee that v exists. Thus, it suffices to prove through as a
priori estimates, that is, we assume that u exists and satisfies Vu € S°(I). Once we
have proved through , we may remove the additional assumption ug € L2
by the usual limiting argument: Approximate ug € H} by {f,}n>1 C H} and let u,,
be the solution to with initial data u,(to) = fn. Applying Theorem with
U i= U, U := Up, and e = 0, we deduce that the sequence of solutions {u,}p>1 is
Cauchy in energy-critical norms. Therefore, u,, converges to a solution v with data
u(tg) = up which satisfies Vu € S°(I).
We first prove the theorem under the hypothesis

(5.11) ||Vu|| 2a+2) 2d(d+2) <4é
L, 77 [, (IxRd)

for some ¢ > 0 sufficiently small depending on E. Without loss of generality, we
may assume tg = inf I.
To continue, let v := u — @ and for t € I define

A(t) = ||V[(i0 + A)v + €]

d .
? ([to,t]xR9)

By Sobolev embedding, Strichartz, , and E, we get

[
2L

vl 202 s ||VU|| 2(dt2) 2d(d+2)
Ly 77 ([to,t] xRY) L, 772 L, P+ ([, ] xRY)

< v(t 1+A + Ve dar2
Sl + A +IVell , 20

(5.12) SA(t)+ e
On the other hand, by Holder, (5.11), (5.12)), and Sobolev embedding, we get
6—d
A®) SVl 2@z 2d(t2) IIUH 2as2) (0] 2iz + ] 2@ ] 72
L, L, Ly e s

_4
+ [Vl sy 2 [||U||L%+Hﬁ|| %]H

Le a i,z t,x
< BA() + <J[A() + 2 + 875 + [A() + J[A) +2+ 87,

where all spacetime norms are over [tg, ] x R
Taking 0, ¢ sufficiently small (depending only on the ambient dimension so far),
a standard continuity argument gives

(5.13) A(t) Se forall tel

with ¢ = ¢(d) = 1. Together with (5.12), this gives (5.8). To obtain (5.9)), we use
the Strichartz inequality, m @ and ([5.13] m, as follows:

IV (u—a)l[so(r) S lluo — alto)ll g + ||V [(@0s + A)v + €] |

_2d_
L2L272 (IxRY)
Vel |

L2L (Ide)
<e.

~
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To obtain (5.10), we first note that by (5.11)) and (5.12)),

IVull sz 2acas2) SNVl 2iz)  za@ea + [Vl 2d+z) 24(d+2)
L, 7% L, (IxRd) L, 7% L, (IxR9) L, 7% L, (IxRd)

Se+é.
Using this together with the Strichartz inequality, Sobolev embedding, and (5.4]),

+2
HVUHSO(I) ”u(tO)HHl + HUO - u(to)”Hl + ||V’LL| 2(d+2) 2d(d+2)
L, 977 [, T+ (IxRd)

SE+e+le+07 SE,

provided d,e < g9 = go(E).

To complete the proof of Theorem [5.3]in small dimensions, it remains to restore
the hypothesis (5.5) in place of (5.11]). We first note that (5.5 implies Vu € SO(I).

(d+2)
Indeed, subdividing I into Ny ~ (1 + %)2;:32 subintervals J; such that on each Jj,
we have
@]l 2@ <,
L, 72 (JpxR%)

t,a

and using the Strichartz inequality, Sobolev embedding, and (5.4), we estimate

< a—2
Iallrin S Vil ycos VAol s Il

S E+ 072 ||Vl o) +&.
Thus for n sufficiently small depending on d,
IVl socs,) S E +e.
Summing these bounds over all the intervals J; we obtain
Vil sory < C(E, L).
We can now subdivide I into Ny = Ny(E, L) subintervals I; = [t;,¢;41] such
that on each I; we have

[Vl 2dt2) 24(d42) <9,
L, 77 L, (I;xR4)
where ¢ is as in (5.11]). Choosing e; sufficiently small depending on £q and N, the
argument above implies that for each j and all 0 < € < e1,
lu—al 2wz <C(j)e
Lz~ " (IjxR9)

IV(u =)o) < C(5)e

IVullso,) < CUE

V{0 + A)(u—10) +e 24 < C(j)e,

Vo + )= +elll , oz <CO)

provided we can show that (5.6) holds when t, is replaced by t;. We check this
using an inductive argument. By the Strichartz inequality,

i) = Wty )liy S Moo = bt iy + 0l

+ HV[ 10y + A)(u — @) —I—e]H

2d
L2LJF2 ([to,tj41] xRY)
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J
Se+ Y Clh)e.
k=0

Choosing ¢; sufficiently small depending on €y and F, we can continue the inductive
argument.
This completes the proof of Theorem [5.3]in dimensions 3 < d < 6. O

6. A LARGE DATA CRITICAL PROBLEM

Throughout the remainder of these notes we restrict attention to the defocusing
energy-critical NLS

(6.1) 10w+ Au = \u|ﬁu with  u(0) = ug € H_.

For arguments and further references in the focusing case, see [22]. For equation
(6.1) we have the following large data global result:

Theorem 6.1 (Global well-posedness and scattering). Let d > 3 and ug € H}c
Then there exists a unique global solution u to (6.1) and it satisfies

/ / lult, )| da dt < C(B(uo)).
R JR2

In particular, the solution scatters, that is, there exist asymptotic states uy € H 1
such that
lu(t) — e”AuiHHl —0 as t— *oo.

The proof of this theorem sparked the recent progress on dispersive equations
at the critical regularity. It was first proved for spherically symmetric initial data
in dimensions d = 3,4 by Bourgain [5]. In this work, Bourgain introduced the
induction on energy paradigm as a means for breaking the scaling symmetry; this
allowed him to use non-critical monotonicity formulas like the Morawetz inequality
(which scales like HY ®). Building on Bourgain’s argument, Tao [33] proved the
theorem in dimensions d > 5 for spherically symmetric data.

The radial assumption was removed in dimension d = 3 by Colliander, Keel,
Staffilani, Takaoka, and Tao [13]. This work further advanced the induction on
energy argument, introducing important new ideas that informed subsequent devel-
opments. To deal with arbitrary data, the authors employed a frequency-localized
interaction Morawetz inequality, which is even further away from scaling (it scales
like 1/ ). The work [I3] was extended to four dimensions in [30]. Finally, for
dimensions d > 5, Theorem was proved in [39]; for a different proof reflecting
new advances see [23], which also treats the focusing problem.

In these notes, we will present the proof of Theorem [6.1] in dimension d = 4.
The proof below is taken from [40], which revisits the argument in [30] in light of
the recent advances made by Dodson [I5] on the mass-critical NLS. For a proof of
the three-dimensional case treated in [13] that also incorporates these advances see
[21].

We note that parts of the argument we will present in these notes work in all
dimensions d > 3; in particular, we will demonstrate the existence of a minimal
counterexample to Theorem in all dimensions d > 3.

To start, for any 0 < F < 0o, we define

L(E) := sup{Sr(u) : u:I x R? = C such that E(u) < E},
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where the supremum is taken over all solutions u : I x R? — C to (6.1). Here, we

use the notation
2(d+2)
Si(u) = / / lult, 2)| 5 da dt
1 JRd

for the scattering size of u on an interval I.
Note that L : [07 00) — [0, 00] is a non-decreasing function. Moreover, from the
small data theory,

L(E)<E™ for E <n,
where 79 = 10(d) is the small data threshold.

Exercise 6.1. Prove that the set {E > 0: L(F) < oo} is open.
Hint: Use Theorem (.3

Therefore, there must exist a unique critical energy 0 < E. < oo such that
L(E)<oo for E<E., and L(E)=o00 for E > E..

This plays the role of the inductive hypothesis because it says that Theorem
holds for energies F < E.. The argument is called induction on energy, because
this inductive hypothesis will be used to prove that L(E.) < oo, thus providing the
desired contradiction.

7. A PALAIS-SMALE TYPE CONDITION

In this section we prove a Palais—Smale condition for minimizing sequences of
blowup solutions to the defocusing energy-critical NLS. It was already observed
in [5, 3] that such minimizing sequences have good tightness and equicontinuity
properties. This was taken to its ultimate conclusion by Keraani [I9] who showed
the existence and almost periodicity of minimal blowup solutions in the context of
the mass-critical NLS. The proof of the Palais—Smale condition is the crux of this
argument.

We first define operators 77 on general functions of spacetime. These act on
it A

linear solutions in a manner corresponding to the action of g/ e on initial data:

j o yj—is2 ; T -
(T(e.e) = 00 0 o 0 )
Here, the parameters M, #J, zJ are as defined in Theorem Using the asymptotic

orthogonality condition (4.6)), it is not hard to prove the following

Lemma 7.1 (Asymptotic decoupling). Suppose that the parameters associated to
4, k are orthogonal in the sense of (4.6). Then for any ¢, % € CX(R x RY),

TSP TRYF|| axe + | TIWIV(TEYP)|| axe + | V(TI7)V(TE")
Li? Lt

I
L

d+2
d
t,x
converges to zero as n — o0.

Proof. From a change of variables, we get

1T TR gz + TV (TN asz + V(T3 V(TM)|| age
Lt,z Lt,m L

t,x

= [/ (T TRV asz + V(T TR asz + VI V(T) T T age
Lt,"]; L‘t,l’ Lt,m
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where all spacetime norms are over R x R?. Note that

. i 4=2 J J (NI )2tk (k)2 J ok i
(@) TEg),2) = (3) T ()7 (6 - SORLTBO) 4 (o =irhy),

dtz
We will only present the details for decoupling in the L;,* norm; the argument

for decoupling in the other norms is very similar.
j k
We first assume that % + i‘—;z — 0o. Using Holder’s inequality and a change of
variables, we estimate

1 (T TEH) g
L

t,x

: ] I\ — k, .k 1 I\ — k, )k
< min{[4 Loz IO TEVH g+ 1071 g 0T D50 i,
t,x t,x

f,min{(%)f%, (%)dzi} —0 as n— oo.

Henceforth, we may assume i—fj — Ao € (0, 00).
[t ()% ~t, (M)
A
(T7)~'Tk4* become disjoint for n sufficiently large. Hence

lim ¢ (T) T T4 4z =0,
n—oo L ;2

— 00, it is easy to see that the temporal supports of 17 and

d
t

If instead
N, () =t (A)? |d, —ak |
N Ao, Nood — tg, and N — 00,

then the spatial supports of 17 and (77)~'T** become disjoint for n sufficiently
large. Indeed, in this case we have

J_ .k i _ .k k
lon—wnl — lza—2al [2a 5 00 as n— 0.
o VAE AR
This completes the proof of the lemma. O

Recall that failure of Theorem implies the existence of a critical energy 0 <
FE. < oo so that

(7.1) L(E)<o for E<E, and L(E)=o00 for E > E,,

where L(E) denotes the supremum of S7(u) over all solutions u : I x R? — C with
E(u) < E.

The positivity of E. is a consequence of the small data global well-posedness.
Indeed, the argument proves the stronger statement
(7.2) ]l 1 (g gey S E(uo)?  for all data with E(ug) < 1o,

where 79 denotes the small data threshold. Here,

. 2(d+2) 2(d+2) |, 1 2(d+2)
Xl = Lt,;_z ﬂLt d Hz’ d
Using the induction on energy argument together with (7.1) and the stability

result Theorem [5.3] we now prove a compactness result for optimizing sequences of
blowup solutions.
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Proposition 7.2 (Palais-Smale condition). Let u,, : I,, x R? — C be a sequence of
solutions to the defocusing energy-critical NLS with E(u,) — E., for which there
is a sequence of times t, € I, so that

lim Ssy, (un) = lim S<¢, (u,) = oo.

n—oo - n—oo -
Then the sequence uy,(t,) has a subsequence that converges in H; modulo scaling
and spatial translations.

Proof. Using time translation symmetry, we may take t, = 0 for all n; thus,

(7.3) n11_>H;O S>o(un) = nh_{TOlo S<olun) = oo.

Applying Theorem to the bounded sequence {u,(0)},>1 C H} and passing to
a subsequence if necessary, we decompose

J
(7.4) un(0) =Y ghe' 2 +w;]
j=1
with the properties stated in that theorem. In particular, for any finite 0 < J < J*
we have the energy decoupling condition

J -
(7.5) lim {E(un) = DB A - E(wg)} =0.

n— oo

To prove the proposition, we need to show that J* = 1, that w) — 0 in AL, and
that tL = 0. All other possibilities will be shown to contradict . We discuss
two scenarios: _

Scenario I: sup; limsup,, ., E(e'"?¢7) = E,.

From the non-triviality of the profiles, we have liminf,,_,., E(e!?¢7) > 0 for
every finite 1 < j < J*. Thus, using together with the hypothesis F(u,,) — E.
(and passing to a subsequence if necessary), we deduce that there is a single profile
in the decomposition (that is, J* = 1) and we can write

(7.6) Un(0) = gnet ¢+ w, with lim [Jwn | gy =0

and t, =0 or t,, — Foo. If t, = 0, then we obtain the desired compactness. Thus,
we only need to preclude the scenario when t,, — +oo.

Let us suppose t,, — oo; the case t,, — —oo can be treated symmetrically. In
this case, the Strichartz inequality and the monotone convergence theorem yield

Ss0(e*up, (0)) < Sy, (€2¢) + S w,) =0 as n — oco.

By Theorem this implies that S>o(u,) — 0, which contradicts (7.3).

Scenario 2: sup, limsup,,_, ., E(ein?¢)) < B, — 26 for some § > 0.

We first observe that in this case, for each finite J < J* we have E(e'n?¢7) <
E.— ¢ for all 1 < j < J and n sufficiently large.

Next we define nonlinear profiles corresponding to each bubble in the decompo-
sition of u,(0). If tJ = 0, we define v/ : I’ x R? — C to be the maximal-lifespan
solution to the defocusing energy-critical NLS with initial data v7(0) = ¢/. If in-
stead tJ — 400, we define v7 : I7 x R — C to be the maximal-lifespan solution
to the defocusing energy-critical NLS which scatters to e**2¢7 as t — 4o00. Now
define v¥ := T7v7. Then v} is also a solution to the defocusing energy-critical NLS
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on the time interval I} := (M))2(I7 — {tJ}). In particular, for n sufficiently large
we have 0 € IJ and
(7.7) lim [v7,(0) — gl 26| 5, =0

n—oo

Combining this with E(en2¢7) < E, —§ < E, and the inductive hypothesis (7.1]),
we deduce that for n sufficiently large, v/ (and so also v7) are global solutions that
satisfy

Sr(v?) = Se(vi,) < L(E: — ) <

(Note in particular that this implies v/ are global for all n > 1 and they admit a
common spacetime bound.)

Combining this with the Strichartz inequality shows that all Strichartz norms of
v/ and v are finite; in particular,

HUjHXl(Rde) = vaLHXl(]Rx]Rd) SE.s L

This allows us to approximate v/ in X(R x R%) by C*°(R x R%) functions. More
precisely, for any ¢ > 0 there exist ¢J € C°(R x R%) so that

(7.8) g, — T£¢g||X1(R><Rd) <é&.

Moreover, we may use (7.2) together with our bounds on the spacetime norms of
v), and the finiteness of E. to deduce that

(7.9) 19| 51 ey SEes B(EA¢7)% Spos 1.
Combining this with (7.5)) we deduce that
J
(7.10) hmsupz Hvﬂ”Xl(Rde) SE.s hmsupZE i, nBel) <pos 1,
n—oo
j=1

uniformly for finite J < J*.
The asymptotic orthogonality condition (4.6]) gives rise to asymptotic decoupling
of the nonlinear profiles.

Lemma 7.3 (Decoupling of nonlinear profiles). For j # k we have

lim |Jolof| e + [E VoF | ase + IV VoE || ase = 0.
n—oo LI7? (RxR4) LI (RxR) L, & (RxR?)

T

d+2
Proof. We only present the argument for decoupling in the Ltﬁff norm; the argu-
ment for decoupling in the other norms is similar. Recall that for any € > 0 there
exist !, * € O (R x R?) so that

[0, = T3W2 || k1 (mxay + 110 = Ta || 51 mxray < &
Thus, using (7.9) and Lemma we get

lodobl g

t,x

< llof (o = ¥ g + 1@ — TIUDTell gy + 1T T g

t,a t z

j k k, .k k., k
S vl log = TrwoEll s + llvs, = Tl 5 ll0F ”Xl + | T 0l Tt || ar2

Se.se+o(l) as n— oo



30 MONICA VISAN
As e > 0 was arbitrary, this proves the asymptotic decoupling statement. O

As a consequence of this decoupling we can bound the sum of the nonlinear
profiles in X!, as follows:

J
(7.11) lim supHZ vl SE.s 1 uniformly for finite J < J*.
j=1

X1(RxR4)

Indeed, by Young’s inequality, (7.9)), (7.10), and Lemma

da42

SR(Z ) ZSRU] +CJZ||U 2, Seos 1+ Cro(l) as n— oo

d—2
j=1 j#k Ly,

Similarly,

J

j

| v
j=1

2 J 2 J
ugpn) = H(ZW%) H a2 S IanH 2agz) +Z||vwvun|\
Lt,m j=1 Ltyg = o

Se.sl4+0(1) as n— .

This completes the proof of (7.11]). The same argument combined with (7.5)) shows
that given n > 0, there exists J = J'(n) such that

J
(7.12) lim supH Z v <17 uniformly in J > J'.

nll -
X1(RxR4
n—00 =7 ( )

Now we are ready to construct an approximate solution to the defocusing energy-
critical NLS. For each n and J, we define

J
_E: J it J
= vy, e Tw,, .
j=1

Obviously u; is defined globally in time. In order to apply the stability result, it
suffices to verify the following three claims for u;:
Claim 1: |lu/(0) — un(0)|| g — 0 as n — oo for any J.

Claim 2: limsup,, .. ||u; | %1 (RxRe) SE.,6 1 uniformly in J.

Claim 3: lim_, -« limsup, _, || V[(i0; + A)u;] |u‘]|d 2y ”|N0(R) 0.

The three claims imply that for sufficiently large n and J, v} is an approximate
solution to the defocusing energy-critical NLS with finite scattering size, which
asymptotically matches u,,(0) at time ¢t = 0. Using the stability result we see that
for n,J sufﬁmently large, the solution u,, inherits the spacetime bounds of u;!, thus
contradicting (|7 . Therefore, to complete the treatment of the second scenario,
it suffices to verify the three claims above.

The first claim follows trivially from and . To derive the second claim,
we use and the Strichartz inequality, as follows:

Xl(RXRd) + hmsup HwnHHl ~E:, 1

lim sup ||u;{||X1(Rde) < lim supHZ
n—oo
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It remains to verify the third claim. Adopting the notation F(z) = |Z|ﬁz, we
write

(i, + A)u! — F(u?)

n

I
M%

F(v]) = F(u;)

n

j=1
J J
(7.13) = ZF(’U%) - F<Z v%) + F(u] — e™w]) — F(u)).

Taking the derivative, in dimensions d > 6 we estimate

J J
V{ X e - () ] <0 S e,
i=1 =1 i#k
In dimensions d = 3,4, 5 there is an additional term on the right-hand side of the
inequality above, namely, 37, |Vv%||vﬁ||vil|3%; Using and Lemma in
dimensions d > 6 we estimate

J J
HV{ZF(M;)—F(Z%)}H <0 Y |1Vl lvk|a= 5| swen
Jj=1 j=1 NO(R) ik Lh;iﬂ
6

NJ ZHVU d+2 ||V’U | 2(d+2)
J#k Ly, ¢

SuE.s 0(l) as n— oco.
The additional term in dimensions d = 3,4,5 can be treated analogously. Thus,

sl (52

(7.14) lim limsup H
j=1 NO(R)

J=J* nooco

=0.

We now turn to estimating the second difference in ((7.13]). We will show that

(7.15) Jlgr} 1i7Ilri)sol<1>pHV[F(ui — ")) — F(u))] HNO(R) =0.

In dimensions d > 6,

HV[F(’U% — e“Aw;{) — F(ui)] H 2(d+2) < HV@“A J||L2(d+2) ||€ A JH d2(2d+2)

tJ_ t,x Lta:

+ |Vud]| 2(442) e A w JHdZ(dJrZ)
Lta: L Td—2

t,x
4 .
+ H|u;{| -z Ve”Aw;{H 2(d+2) -
a4
Lt,m

In dimensions d = 3,4, 5, one must add the term

z’tAwJ”

IVupll 2w le 2(2+2) a2 2lasn)
Lt,zd t,x Lt -
to the right-hand side above. Using the second claim together with (4.2)), and the

Strichartz inequality combined with the fact that w; is bounded in H!, we see that
(7.15)) will follow once we establish

7.16 lim limsupl||u’ ﬁVeime =0.
( ) J—=J* n—)oop||| n| nHLQ(dd;rf)(Rde)

t,a
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We will only prove (7.16]) in dimensions d > 6. We leave the remaining low
dimensions as an exercise for the conscientious reader. Using Holder’s inequality,
the second claim, and the Strichartz inequality, we get

;|72 V'S J||L2<d+2> < |lup Ve S "II’ZMHVeZtA "Ildz<d+2>

t,x tJ: LfT

SEL,S HeztA JveztA Jlldd+2 _;'_HZUJVe“A J d+2
Le

t,x

SEc,é HeltA J||d2(d+2)|‘veZtA J||d2(d+2)
t,x -2 Lf J‘
'] -
+ HZU%V@“‘Aw,{ Tike
j=1
J _a_
SEc,é HeztA J||d2(d+2) + sziveitAwr{ d—;j
L j=1

ta‘

By (4.2)), the contribution of the first term to (7.16]) is acceptable. We now turn to
the second term.

By [12)

J
lim supH ( Z v%) Veltbw!
-t

n—oo

J
d+2 SlimsupH E vl
d—1
n— o0 =T

itA, T <
L Ve w””Lf}%” TR

where 7 > 0 is arbitrary and J' = J'(n) is as in (7.12)). Thus, proving (7.16) reduces
to showing

(7.17) lim limsup ||vl Ve w/|| a2 =0 foreach 1<j<.J'.
J=J* posco a1

t,a

Fix 1 < j < J'. By a change of variables,

||,UjveztA JH _H,UjvaH d+2’
LZ

tT tT

where @; := (T7)~!(e"®w;). Note that

(7.18) ”'LD;{HXl(]Rde) = ||€itAwq{HX1(Rde)-

By density, we may assume v/ € C2°(R x R?). Invoking Holder’s inequality, it thus
suffices to show

. . ~J o
i, lim sup IV llrz () =0

for any compact K C R x R%. This however follows immediately from Lemma
, and - thus completlng the proof of 1-)

This proves and so Comblmn ) and (7.15) yields the third
claim. This completes the treatment of the second scenario and so the proof of the
proposition. (I
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8. EXISTENCE OF MINIMAL BLOWUP SOLUTIONS AND THEIR PROPERTIES

In this section we prove the existence of minimal counterexamples to Theorem [6.1]
and we study some of their properties.

Theorem 8.1 (Existence of minimal counterexamples). Suppose Theorem fails
to be true. Then there exist a critical energy 0 < E. < oo and a mazimal-lifespan
solution v : I x RY — C to the defocusing energy-critical NLS with E(u) = E.,
which blows up in both time directions in the sense that

S>o(u) = S<o(u) = oo,

and whose orbit {u(t) : t € R} is precompact in H. modulo scaling and spatial
translations.

Proof. If Theorem fails to be true, then there must exist a critical energy 0 <
E. < o and a sequence of solutions u, : I, X R¢ — C such that E(u,) — E. and
Sr, (uy) — oco. Let t, € I, be such that S>¢, (up) = S<, (uy) = %SIH (uy,); then

(8.1) nl;rgo S>i, (un) = nhﬁngo S<t, (uy) = 0.

Applying Proposition and passing to a subsequence, we find ¢ € H; such
that u,(t,) converge to ¢ in H! modulo scaling and spatial translations. Using
the scaling and space-translation invariance of the equation and modifying w,,(¢,)
appropriately, we may assume u, (t,) — ¢ in H; In particular, E(¢) = E..

Let u : I x R — C be the maximal-lifespan solution to the defocusing energy-
critical NLS with initial data u(0) = ¢. From the stability result Theorem [5.3| and

(8-1), we get
(8:2) S>o(u) = S<o(u) = .

Finally, we prove that the orbit of u is precompact in Halj modulo scaling and
space translations. For any sequence {t/,} C I, implies S>¢/ (u) = S<y (u) =
co. Thus by Proposition we see that u(t))) admits a subsequence that converges
in H; modulo scaling and space translations. This completes the proof of the
theorem. (]

By Corollary [A72] the maximal-lifespan solution found in Theorem [8:1]is almost
periodic modulo symmetries, that is, there exist (possibly discontinuous) functions
N:I —-Rt z:I—R?% and C: Rt — Rt such that

Vutt. o) do+ [ it &) de <
[E1>C ()N (t)
for all t € I and i > 0. We refer to the function N as the frequency scale function,
x is the spatial center function, and C' is the compactness modulus function.
Another consequence of the precompactness in H; modulo symmetries of the
orbit of the solution found in Theorem is that for every 7 > 0 there exists
¢(n) > 0 such that

/Ir—z(t)IZC(n)/N(t)

/ Valt o)+ [ falt, ) de < n.
le—z(t)|<e(n) /N (t) |€|<e(n)N(t)
uniformly for all t € I.

In what follows, we record some basic properties of almost periodic (modulo
symmetries) solutions. We start with the following definition:



34 MONICA VISAN

Definition 8.2 (Normalised solution). Let u : I x R? — C be a solution to (6.1]),
which is almost periodic modulo symmetries with parameters N(t) and z(¢). We
say that u is normalised if the lifespan I contains zero and

N@0)=1 and =z(0)=0.
More generally, we can define the normalisation of a solution w at a time ¢y € I by
(8.3) ultl(s, z) .= N(to)*¥u(t0 + N(to) 2s,z(tg) + N(to)flx).

Note that u[*! is a normalised solution which is almost periodic modulo symmetries
with lifespan 1] := {s € R: to + N(ty)~2s € I}. The parameters of ul* satisfy
N(to + SN(t())_Q)

Ntltol(g) .= N (io) and  zl(s) := N(to) [z (to + sN(to) "2) — z(to)]

and wulf] has the same compactness modulus function as u. Furthermore, if u is a
maximal-lifespan solution then so is ulfo!.

Lemma 8.3 (Local constancy of N(t) and z(t), [20,22]). Let u: I x R* — C be a
non-zero almost periodic modulo symmetries solution to with parameters N (t)
and x(t). Then there exists a small number 8, depending on u, such that for every
to € I we have

(8.4) [to = 6N (to) >, to + 0N (to) %] C I
and
(8.5) N(t) ~y N(to) and |z(t) — z(to)| Su N(to) ™!

whenever |t — to| < SN (tg) 2.

Proof. We first prove . Arguing by contradiction, we assume fails. Thus,
there exist sequences t,, € I and 6, — 0 such that t,, + 6,N(t,)~2 & I for all n.
Then ult] given by are normalised solutions whose lifespans I{**] contain 0
but not §,,. Invoking almost periodicity and passing to a subsequence, we conclude
that u*+)(0) converge to some vy € H!. Let v : J x R — C be the maximal-
lifespan solution with data v(0) = vg. By the local well-posedness theory, J is an
open interval and so contains d,, for all sufficiently large n. By the stability result
Theorem for n sufficiently large we must have that 6, € I*»]. This contradicts
the hypothesis and so gives (8.4]).

We now turn to . Again, we argue by contradiction, taking § even smaller
if necessary. Suppose one of the two claims in failed no matter how small one
chose §. Then one can find sequences t,,t), € I so that s, := (£, — t,)N(t,)> = 0
but N(t/,)/N(t,) converge to either zero or infinity (if the first claim failed) or
|z(t!) —x(t,)|N (tn) — oo (if the second claim failed). Therefore, N{t»l(s,,) converge
to either zero or infinity or z!t~] (sn) — oo. By almost periodicity, this implies that
ult"l(s,,) must converge weakly to zero.

On the other hand, using almost periodicity and passing to a subsequence we
find that ul*»)(0) converge to some vy € H}. As s, — 0, we conclude that u(t](s,,)
converge to vp in H!. Thus vy = 0 and E(u) = E(ul*")) = E(vy) = 0. This means
u = 0, a contradiction. This completes the proof of . (]

An immediate consequence of Lemma [8:3] is the following corollary, which de-
scribes the behaviour of the frequency scale function.
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Corollary 8.4 (N(t) at blowup, [20, 22]). Let v : I x R? — C be a non-zero
maximal-lifespan solution to that is almost periodic modulo symmetries with
frequency scale function N : I — RT. If T is any finite endpoint of the lifespan
I, then N(t) 2, |T —t|=Y2; in particular, lim;_,7 N(t) = oo. If I is infinite or
semi-infinite, then for any to € I we have N(t) =, min{N(to), |t — to|'/2}.

Proof. Exercise! O

Our next result shows how energy-critical norms of an almost periodic solution
can be computed in terms of its frequency scale function; see [20] for the mass-
critical analogue.

Lemma 8.5 (Strichartz norms via N(t), [22]). Let u : I x R? — C be a non-zero
almost periodic modulo symmetries solution to (6.1]) with frequency scale function
N :I—+R*. Then

9 2(d+2) 9
N(t)2dt <., lu(t, )| "7 dedt <, 1+ [ N(t)?dt.
I I JR4 I

Proof. We first prove

2(d+2)
(8.6) // lu(t,z)| =2 dxdt <, 1+/N(t)2dt.
I JRA I

Let 0 < 7 < 1 be a small parameter to be chosen shortly and partition I into
subintervals I; so that

(8.7) /1 N(t)?dt <n;

this requires at most =1 x RHS many intervals.
For each j, we may choose t; € I; so that

(8.8) N(t)*|1;] < 21.
By Sobolev embedding, Strichartz, Holder, and Bernstein, we obtain

lull 2we2 SIVUll iz 20@e2)
d—2

I a2 L, d2+4

t,x t

d+2
< |ttt ATy (¢ . 2aa+2) + ||Vu -2
~ H ( J)HLf(‘szQ) LFQ‘*'T H HLtz(dd:rQZ) sztji(;:f)

S uzno ) g + 2 NG ) g+ 1Vull 50, 2@ -
v v Lﬁde2+4

t
where all spacetime norms are over I; x R%. Choosing Ny as a large multiple of
N(t;) and using almost periodicity modulo symmetries, we can make the first term
as small as we wish. Subsequently, choosing 1 sufficiently small depending on E(u)
and invoking (8.8]), we may also render the second term arbitrarily small. Thus, by
the usual bootstrap argument we obtain

ull 2wi2) SVl aars) 22 <1l

L, 372 (I;xRY) L, 977 L, (1 xR
Using the bound on the number of intervals I;, this leads to (3.6)).
Next we prove

2(d+2)
(8.9) // lu(t,z)| == dxdt 2U/N(t)2dt.
I JRE I
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Using almost periodicity and Sobolev embedding, we can guarantee that

(8.10) lu(t, )| 72 dz >, 1

/Iﬂv—»'C(t)ISC(u)J\’(t)1
uniformly for ¢ € I. On the other hand, by Hoélder,

2(d+2) 2d_
/ lu(t, z)| 2 dx =, (/ |u(t, z)|7-2 dgc)
R lo—=(t)|<C(u)N(t) =1
Using (8.10) and integrating over I we obtain (8.9). O

Corollary 8.6. Let u: I x R? — C be a non-zero almost periodic modulo symme-
tries solution to (6.1) with frequency scale function N : I — R*. Then

IVul? <. 1+/N(t)2dt.
L2L272 (IxR4) I

d+2

d

N(t)2.

Proof. Exercise! O

The next proposition tells us that for a minimal blowup solution v : I x R — C,
the free evolution coming for the endpoints of the maximal-lifespan I converges
weakly to zero in H; Intuitively, we expect this to be the case since the free
evolution is nothing but radiation and radiation does not directly contribute to
blowup. However, a minimal blowup solution needs all its norm in order to blow
up and so cannot waste any norm on a radiation term.

Proposition 8.7 (Reduced Duhamel formulas, [22 [36]). Let v : I x R? — C
be a mazximal-lifespan almost periodic modulo symmetries solution to . Then
e~ Au(t) converges weakly to zero in H; ast — supl ort — inf I. In particular,
we have the ‘reduced’ Duhamel formulas

T
u(t) =1 lim ei(t_S)A|u(s)|df2 u(s)ds
T—supl Jy
(8.11) )
— : i(t—s)A A
ZTBIiII}fI . e lu(s)| 72 u(s) ds,

where the limits are to be understood in the weak Hi topology.

Proof. We prove the claim as ¢t — sup I; the proof in the reverse time direction is
similar.

Assume first that sup I < co. Then by Corollary

lim N(t) = oc.
t—sup [l

By almost periodicity, this implies that u(t) converges weakly to zero as t — sup I.
As sup I < oo and the map ¢ — e*2 is continuous in the strong operator topology
on H}, we see that e *“u(t) converges weakly to zero, as desired.

Now suppose that sup I = co. We need to prove that

Jin (10,620) 5, =0

for all test functions ¢ € C°(RY). Let > 0 be a small parameter. By Cauchy—
Schwarz and almost periodicity,

‘ <u(t)7 eitA¢>H1 ’

x

2
S Vu(t, z)etAVe(z) dz

- /m—r(t)éc(n)/N(t)
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2

+ ‘/ Vu(t, z)etAVo(z) dz
lz—z(t)|=C(n)/N(t)

< ||u(t)||§;1/ €2V e(@)[* da + ) 6]1F,-
* Jle—ai<om/n :

Therefore, to obtain the claim we merely need to show that
/ €AV (z) > dz — 0 as 7 — 0.
lz—z(t)|<C(n)/N(t)
This follows from Lemma [8.8 below, Corollary and a change of variables. O

Lemma 8.8 (Fraunhofer formula). For v € L*(R?) and t — +oo,

(8.12) e8] () — (2it) =2 et/ (5) | = 0.

2t

Proof. This asymptotic is most easily understood in terms of stationary phase.
However, our proof will be based on the exact formula for the Schrédinger propa-
gator, which we derived in Section 2] We have the identity

LHSEIZ) = |(amie) # [ et/ i) ay)
Rd

L3
_ Hez‘tA [(1 o 671‘\.\2/4t)w] HL?
= [l = e,
The result now follows from the dominated convergence theorem. ([l

So far we have proved that if Theorem fails, then there exists a minimal
witness to its failure. This is a maximal-lifespan almost periodic solution w : I X
R? — C which blows up in both time directions; see Theorem Moreover, we
have recorded some basic properties satisfied by the modulation parameters N ()
and z(t). Thus, to prove Theorem [6.1] we have to rule out the existence of these
minimal counterexamples. In order to achieve this, we need more quantitative
information regarding N (¢) and z(¢). The first modest step in this direction is the
following theorem, which asserts that we may assume N (t) is bounded from below;
the price we pay for this information is that we can no longer guarantee that wu
blows up in both time directions.

For an argument that is upside down relative to the one we present below,
see Theorem 3.3 in [35]. This reference treats the mass-critical NLS and restricts
attention to almost periodic solutions with N(¢) < 1.

Theorem 8.9. Suppose Theorem[6.]] fails to be true. Then there exists an almost
periodic modulo symmetries solution u : I x R* — C such that S;(u) = oo and

(8.13) N({t)>1 foral tel.

Proof. By Theorem there exists a maximal-lifespan solution v : J x R* — C
to the defocusing energy-critical NLS which is almost periodic modulo symmetries
and which blows up in both time directions in the sense that S>o(v) = S<o(v) = oc.
Let N, (t) denote the frequency scale function associated to v. We will obtain the
desired u satisfying from v, by rescaling appropriately.
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Write J as a nested union of compact intervals J; C Jo C ... C J. On each
compact interval .J,,, we have v € C;H}(J,, x R%), which easily implies that N,(t)
is bounded above and below on J,,. Thus, we may find ¢,, € J,, such that

(8.14) Ny(t,) <2N,(t) forall te J,.

Now consider the normalizations vltnl : I,, x R? — C with I, = {t e R:
tn + Ny(t,) 7%t € J,}. Using almost periodicity and passing to a subsequence, we
get that vltn (0) converge in H ; to some ug. From the conservation of energy, we see
that ug is not identically zero. Let u : (—T_, T} ) x R? — C be the maximal-lifespan
solution with data u(0) = uy.

Now let vy, : I,, xR? — C be the maximal-lifespan solution which agrees with vt~
on I,,. If K is any compact subinterval of (—7_, T ) containing 0, then S (u) < oo.
From the stability result Theorem for sufficiently large n we must have K C I,,
and Sk (v,) < oo uniformly in n. As Sy, (v) = Sr, (v,) — 00 as n — oo, we must
have I,, ¢ K for n large. Passing to subsequence if necessary, this leaves only two
possibilities:

e For every 0 <t < T4, [0,t] C I, for all sufficiently large n.

e For every —T_ <t <0, [t,0] C I, for all sufficiently large n.
By time reversal symmetry, it suffices to consider the former possibility. Let I :=
[0, 7). We will prove that u : I x R? — C satisfies the conclusions of Theorem

We first note that u : I x R* — C is almost periodic modulo symmetries. Indeed,
for any 0 < t < T4, u(t) can be approximated to arbitrary accuracy in H; by
vltal(t), which is a rescaled version of a function in the orbit {v(t) : t € J}. As the
orbit of v is precompact in H} modulo symmetries, then so is {u(t) : 0 <t < T }.

Next we prove that Sy(u) = co. Otherwise we would have Ty = oo and [0, 00) C
I, for n large. Moreover, by the stability theory, for n large we get SZQ(U[t"]) =
S, (v) < 0o, which contradicts the fact that v blows up forward in time.

Finally, we prove . Let n > 0 to be chosen later. Fix ¢t € I. By the stability
result, for n large we have t € I, and

[0t (#) —u(t)|| g — 0 as n — oo

Combining this with (8.14)) and almost periodicity, we find that there exists ¢(n) > 0
such that

> o(t, €)|? dé = ot (8, )2 d
nﬁmmmmmua|§légwwmmww”m (L) de

Ny (tn)
z/ \@Mw@ﬁm%/ gt € de.
|€1<3c(n) |€1<Zc(n)

Combining this with the definition of almost periodicity, we derive (8.13]). This
completes the proof of the theorem. O

Putting together the results of this section we can restrict attention to the fol-
lowing very specific enemy to Theorem [6.1

Theorem 8.10. Suppose Theorem[6.1] fails to be true. Then there exists an almost
periodic solution u : [0, Tyhaz) X R* — C such that

Tmaz 2(d42)
S10,Tan) () :/ / lu(t, z)| =2 dxdt = +o0.
0 Rd
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Moreover, we may write [0, Tynaz) = UgJr with Ji being intervals of local constancy
and

N({t)=Np>1 foreach te Jy.

In the following two sections we will see how to preclude the existence of the al-
most periodic solution described in Theorem [8:10] for the defocusing energy-critical
NLS in four spatial dimensions:

(8.15) i = —Au+ |ufu  with u(0) =uy € HL(RY).

Some of the arguments that follow work also in higher dimensions, as well as for
the focusing equation; however, in these notes we are not aiming for the greatest
generality, but rather we try to demonstrate how these techniques can be used to
settle Theorem in the particular case d = 4.

Before we launch into the involved argument that will preclude the existence of
the enemy described in Theorem [B.10] let us first pause and collect the rewards of
this section. In particular, we will see that our enemy must be global forward in
time; strictly speaking this step is not necessary for the argument that follows, but
it is always good to realize how far we have come and how much further there is to

go.

Theorem 8.11. Let u : [0, Tpaz) X R* — C be an almost periodic solution to (8.15))
with Sio.1,,,,,)(u) = 00. Then Tpae = 00.

Proof. We argue by contradiction. Assume that T},,4, < 0o. Using Proposition [8.7]
the Strichartz inequality, Holder’s inequality, and the conservation of energy, we
estimate

(Trmaz — t)l/Q||UH?Z§°Lg([t,TmM)xR4)
u (Tmaz - t)l/zv

lusn()llzz S I1Pon (P 25y 1, sy S
<

uniformly in N € 2%. Letting N — 0 we deduce that u has finite mass; letting
t — Thae and invoking the conservation of mass, we deduce that

M(u(t)) = / lu(t,z)|*dz =0 for all t € [0,Taz)
R4

In particular, u = 0, which contradicts the fact that S 7,,,.)(u) = occ.
This completes the proof of the theorem. ([l

9. LONG-TIME STRICHARTZ ESTIMATES AND APPLICATIONS

In this section, we prove a long-time Strichartz inequality for solutions to (8.15))
as described in Theorem [8.10] This will then be used to rule out rapid frequency
cascade solutions, namely, solutions which also satisfy

Timax
/ N(t)"tdt < .
0

9.1. A long-time Strichartz inequality. Long-time Strichartz inequalities orig-
inate in the work of Dodson [I5] on the mass-critical NLS. The main result of this
section is a long-time Strichartz estimate for solutions to . This was proved
in [40]; we review the proof below.
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Theorem 9.1 (Long-time Strichartz estimates). Let u : [0, Thae) X R* — C be
an almost periodic solution to with N(t) = Nx. > 1 on each characteristic
interval Jy, C [0, Tynaz). Then, on any compact time interval I C [0, Tinaz), which
is a union of contiguous intervals Ji, and for any frequency M > 0,

(9.1) [Vu<mllpzos (rxrey Sul+ M3PEY?,

where K := [, N(t)~'dt. Moreover, for any n > 0 there exists Mo = Mo(n) > 0
such that for all M < My,

(9.2) IVucnrllzzrarxrsy Sun(l+MP2KV?).

Importantly, the constant My and the implicit constants in (9.1) and (9.2) are
independent of the interval 1.

Proof. Fix a compact time interval I C [0, Tynq4z), which is a union of contiguous
intervals J;,. Throughout the proof all spacetime norms will be on I x R*, unless we
specify otherwise. Let 1g > 0 be a small parameter to be chosen later. By almost
periodicity, there exists ¢g = ¢g(19) such that

(9.3) [Vu<e,n@yllzserz < no-
For M > 0 we define
A(M) = HVUSMHLng(IxW)-
Note that Corollary implies
[, N(t)*dt

1/3
3/21-1/2
(94) A(M) Su ].—|—M / K / Whenever M 2 <W> 5

and, in particular, whenever M > Ny,qq 1= sup,c; N(t). We will obtain the result
for arbitrary frequencies M > 0 by induction. Our first step is to obtain a recurrence
relation for A(M). We start with an application of the Strichartz inequality:

(9-5) AM) S inf [Vusn (D)2 + VP F ()| 2 par0-

To continue, we decompose u = u<nr/y, + Usnrr/p, and then further decompose
u(t) = <o N ) (1) + Uscon ) (t). Thus we may write

3
(9:6)  F(u) = O(usnrjnu?) + O((Pecowvyizarsng) ) + O (uZprmetscons))
where we use the notation @O(X) to denote a quantity that resembles X, that is,
a finite linear combination of terms that look like those in X, but possibly with
some factors replaced by their complex conjugates and/or restricted to various
frequencies. Next, we will estimate the contributions of each of these terms to

53).

To estimate the contribution of the first term on the right-hand side of (9.6),
we use the Bernstein inequality followed by Lemma [A79] Lemma [AZ6] Holder, and
Sobolev embedding:

|V Pt @ (s nrymou®) HL%Li/s S M5/3H|V‘72/3®(“>M/no“2)HLEL‘;/S‘
S MBIV B us gy, HL,?Lg IV 0 u?)
SR RN [ S A T e

S M1 rt g | I

HLgOLi/Z
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(9.7) Su Y (%)5/314@).

L>M/mno
We turn now to the contribution of the second term on the right-hand side of
(9.6). Employing Hélder and (9.3), we obtain
3
[V P<p@(Peconiyuisarsm) ) p2pars S IVucarmollezrsluceonm T s
(9.8) Su 1 A(M/m0).-

Finally, we consider the contribution of the third term on the right-hand side of
(9.6). By Bernstein and then Holder,

[V P D (uZ g uscon(s)) ||L?Li/3 S Mllusmmollez i lusarmtseonelez,
Su MHUSM/TIOU>CON(U ”L?T

To continue, we decompose the time interval I into intervals of local constancy J
and apply the bilinear Strichartz estimate Corollary [2.10 on each Ji. Note that by
Lemma [85] Corollary [B.6] and Holder’s inequality, on each Jj, we have

IVullzzsoxray + IVE()ll a2, ey Sul  and hence  [[Vulls; () Su 1.

Thus, using also Bernstein’s inequality,

(M /o)
HuSM/nou>CoN(t)||Lfyx(Jk.><]R4) S WHVUSMMO||sg(Jk)HU>coNk\

S5 (k)

M1/2
S 7”VU<M/ | sz .
~U 79 3/24.3/2 <M/no (Jx)
770/ Co/ Nk/ ’

The term [|Vu<pr/n, ||z () Will be essential in obtaining the small parameter 7 in
claim and this is why we choose to keep it in the display above rather than
discarding it. Summing the estimates above over the intervals J; and invoking
again the local constancy property Lemma [8.3] we find

M1/2 1 \1/2
([t <t /o U o (2 < 7( 7) sup ||V /nlls; (s
<M /no>co ()Hng(lxRél) “77(1)/203/2 szc:zNij Jocr <M /no 1155 (Jk)
M1/2K1/2
Su 13373 S [Vucn
' 08/203/2 ch1| <24/

S5 (k)

Thus, the contribution of the third term on the right-hand side of can be
bounded as follows:

M3/2K1/2
(9.9) HVPSMQ(“QSM/no“XoN(t))HL?Li/S Su 172 32 SUP IVu<nr/mllsg -
¢ Ny ¢~ JkCI

Collecting (9.5) through , we obtain

MB/2K1/2
A(M) <, inf MTR T
(M) Su b [|Vucn @)z + IR j:lCI)I||VUSM/ﬁ0‘

(9.10) + 3 (%)5/314@).
L

>M
=m0

S&(Jk)

The inductive step in the proof of claims (9.1]) and (9.2) will rely on this recurrence
relation.
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Let us first address (9.1]). Recall that by (9.4), the claim holds for M > Ny,
that is,

(9.11) A(M) < C(u)[1+ M*2K12],
for some constant C'(u) > 0 and all M > N,,... Now using the fact that (9.10)
implies
~ M3/2K1/2 MA5/3
(9.12) AM) < C(u){l + e (f) A(L)},
Mo Co L>M

we can inductively prove the claim by halving the frequency M at each step. For
example, assuming that (9.11) holds for frequencies larger or equal to M, an appli-

cation of (9.12)) (with no < 1/2) yields

- 3/2r1/2 5/3
A(M)2) < C(u){l + % +C) Y (%) [1+ L3/2K1/2]}
Mo Co L>M 2L

_ M/2 3/2K1/2
< C(u){l + % + o2 (u) + 2ng/60(u)(M/2)3/2K1/2}.
Mo Co

Choosing 19 = no(u) small enough so that né/ﬁé(u) < 1/4, we thus obtain

(M/2)3/2K1/2
BYERTE }

A(M/2) < %C(u){l + (M/2)3/2K1/2} + C’(u){l +

The claim now follows by setting C'(u) > 2@(u)n51/2053/2.
Next we turn to (9.2). To exhibit the small constant 7, we will need the following

Lemma 9.2 (Vanishing of the small frequencies). Under the assumptions of The-

orem we have

f(M) = |[Vu<nm||zgor2((0,Tmar) xr)+  SUP ||Vu§M||Sa(Jk) -0 as M —D0.
JkC[07Trnaz)

Proof. As by hypothesis inf,c(o 7,,,,) N(t) > 1, almost periodicity yields
(9.13) A [[Vusarllze £z (0,7 xr1) = 0.

Now fix a characteristic interval J; C [0, T)q,) and recall that all Strichartz
norms of u are bounded on Ji. In particular, we have

IVullzps (g xrey + [ull L3 piz g, xray + ullLe | (goxre) Su .

Using this followed by the decomposition v = u<p1/2 + us p1/2, Holder, and Bern-
stein, for any frequency M > 0 we estimate

IVucnrllsg ) = Vusmlligrz + VP F(u)| a2
< ||V“§M||L§°L§ + ||VPSMF(U>M1/2)HL;“>/2 + HVU>M1/2U3M1/2UHL§/2
+ ||VU<M1/2u2||L3/2
- t,x
S IVusnr|lpeerz + M||“>M1/2\|L§L§||“>M1/2\|ng||U>M1/2||L§°L§
+ ||VU>M1/2HL$L,§,HUSMU?HL?"L;‘EHUHng + ||VU§M1/2||L?Li||UH%gL;2

Su IVusnrlpgerz + MY? + | Vucrpellers .
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All spacetime norms in the estimates above are on J; x R*. As Ji, C [0, Thnaz) Was
arbitrary, we find

sup  [[Vu<mllsg () Su M2 || Vucnr| pse 12 (0,700 ) x&4)
JeCl0,Trmaz)

+ [[Vuc izl Lo £2 (0, Tmas) xR -

The claim now follows by combining this with (9.13]). O
We are now ready to prove (9.2)). Using (9.1)) and Lemma[9.2} the estimate (9.10)
implies
M3/2K1/2 M\5/3
AM) Su FOD) + = FOD + Y () AWD)
o o L>M

— 10

f(M
o A ng/g " { 1/(2 3)/2 + 3/6 MR,
o Co
Thus, for any n > 0, choosing first 79 = no(n) such that 171/6 < 7 and then
My = My(n) such that % <1, we obtain
o™ o

AM) Sun(1+M3PKEY?) forall M < M.
This completes the proof of Theorem 0

Next, we record a consequence of Theorem[9.1] which will be useful in the deriva-
tion of a frequency-localized interaction Morawetz inequality.

Corollary 9.3 (Low and high frequencies control). Let u : [0, Tpaz) x R* — C be
an almost periodic solution to with N(t) = Nx > 1 on each characteristic
interval Jy, C [0, Tnaz). Then, on any compact time interval I C [0, Tinaz), which
is a union of contiguous intervals Jy, and for any frequency M > 0,

(9.14)

lusnmllpacr (rxre) Su M1 —|—M3K)% for all % +2 =1 with 3 < ¢ < 0.
Moreover, for any n > 0 there exists My = My(n) such that for all M < My we
have
(9.15) [[Vu<mllLopr (rxrsy Sun(l+ MgK)% for all % +2 =1 with2 < q < .

The constant My and the implicit constants in (9.14) and (9.15)) are independent
of the interval I.

Proof. We first address (9.14]). By (9.1) and Bernstein’s inequality, for any € > 0
and any frequency M > 0 we have

[T PR Sl L e
L>M

u Z L~ 3/2— E L3/2K1/2)
L>M

<u M_3/2_€(1+M3K)1/2.

The claim now follows by interpolating with the energy bound:

= 2/ 1-2/
||U>M||LqL7 (IxR4) HW‘ Ea U>M’|L?(1L‘;(IXR4)||VU>MHL°°L3(I><R4)
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<o MY+ M3K)Y,

Whenever%+%:1and3<q§oo.
We turn now to (9.15). As inf;e; N(¢) > 1, using almost periodicity, for any

7 > 0 we can find My(n) such that for all M < M,
Vu<ar|peorz (1xray < 1.
The claim follows by interpolating with (9.2]). O

9.2. The rapid frequency cascade scenario. In this subsection, we preclude the
existence of almost periodic solutions as in Theorem for which f Tmaz N(t)~tdt <
0o. We will show their existence is inconsistent with the conservation of mass.

Theorem 9.4 (No rapid frequency cascades). There are no almost periodic solu-
tions u : [0, Typaz) X RT — C to (8.15) with N(t) = N > 1 on each characteristic
interval Ji, C [0, Tinas) such that [[ullLs ((0,1,,..)xr1) = +00 and

Trmax
(9.16) / N(t)~tdt < cc.
0
Proof. We argue by contradiction. Let u be such a solution. Then by Corollary [8:4]
(9.17) lim N(t) = oo,
t—=Tmaz

whether T, is finite or infinite. Thus, by almost periodicity we have
(9.18) lim ||Vu<p(t)||2 =0 for any M > 0.
t—T, - x

mazx

Now let I, be a nested sequence of compact subintervals of [0, T},q.) that are
unions of contiguous characteristic intervals Ji. On each I,, we may now apply
Theorem Specifically, using (9.10) together with the hypothesis (9.16]), we get
Ap(M) = Vu<mllzzra(r, xra)

M3/2 Tmax 1/2 M 5/3
Su inf [Vusar(®)llzz + 7[/ N(t)! dt} + (f) An(L)
[SY % - ° 0

1/2 3/2
o™ o L>M
>

. M3/2 5/3
Su tlenlf [Vu<n (t)|[zz + 1/2 3/2 + Z ( ) (D)
n L>M M

=0

for all frequencies M > 0. Arguing as for (9.1), we find
||VU§M||L§L§(IH><R4) Su tienlf Vu<ar(t)|lz2 + M3/? forall M > 0.

Letting n tend to infinity and invoking (9.18)), we obtain

(9.19) IVucnr|l L2 0 (0, 7ym0n) xrt) Su MP? for all M > 0.
Our next claim is that (9.19)) implies
(9.20) Vsl Lge L2 (0T ) x1) Su M/ for all M > 0.

Fix M > 0. Using the Duhamel formula from Proposition together with the
Strichartz inequality, the decomposition u = u<as +us s, Lemma[A-9] Lemma[A 6]
(9.19), Bernstein, Holder, and Sobolev embedding, we find

IVusnlpgrz S IVP<m F(w)l s pars
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SIVP<urF(usan)ll o pars + IV P<arO(uspru?) |

L2L% L2La?

S IVusnlpzrallusar|Zoe o + M2V 720 (us pru®) HL2L4/3
u M3/2 + M5/3H‘V‘ 2/3U>MHL§L§H|v|2/3“||Lf°Li2/5”u”Li”Li

Su M3/2+M5/3 Z L_S/SHV’U’LHLZLAL
L>M o

<u M3/2+M5/3 Z L—1/6
L>M
<. M3/2.

All spacetime norms in the estimates above are on [0, Traq) X R%.
With (9.20) in place, we are now ready to finish the proof of Theorem

First note that by Bernstein’s inequality and (9.20), v € Lt‘”H;lM([O, Trnaz) X RY);
indeed,

[IVI™ Y4 ul| g2 S IV usill g e + |1V uzt | poore

<. Z M54 4 Z MY4<, 1.

M>1 M<1

Now fix t € [0,T}42) and let 7 > 0 be a small constant. By almost periodicity,
there exists ¢(n) > 0 such that

/ €Pla(t,€) de < n.
[€]<c(n)N(t)

Interpolating with u € LtOOHgC_l/4, we find

(9.21) / 0(t,€)?dE S/
|€]<c(n)N(t)
Meanwhile, by elementary considerations,
(9.22)
/ )P g < NOI [ 6P OF ds <, et V(o)
[€]=>c(n) N (t)

Collecting (9.21) and - and using Plancherel’s theorem, we obtain
0< Mu / lu(t, z) > dz <o n'/° + c(n) 2N (t)~2

forallt € [0, Tynqq)- Letting 7 tend to zero and invoking ((9.17)) and the conservation
of mass, we conclude M (u) = 0 and hence v is identically zero. This contradicts

[l LS ((0,Tmae) xRE) = 00, thus settling Theorem O
10. FREQUENCY-LOCALIZED INTERACTION MORAWETZ INEQUALITIES AND
APPLICATIONS

Our goal in this section is to prove a frequency-localized interaction Morawetz
inequality. This will then be used to preclude the existence of almost periodic
solutions as in Theorem @ for which fo ™ N(t)~1 dt = co. These results appear
in [40]; we review the proof below.

Before we delve into the gory details, let us pause to assess where we are. In view
of Theorems and the only enemy we are left to face is an almost periodic
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solution u : [0,00) x R* — C to (8.15)) with N(t) = N, > 1 on each characteristic
interval Ji, C [0,00) such that [lul[zs (j0,00)xr1) = +00 and

/ N(t)~tdt < .
0

In order to rule out this quasi-soliton solution we need tools that express the de-
focusing nature of the equation. These are the various versions of the Morawetz
inequality.

The Morawetz inequality originates in classical mechanics: in the presence of a
repulsive potential, the quantity p(¢) - ;Egl is monotone. Here p denotes the mo-
mentum of the particle and x denotes its position. The natural quantum mechanical

analogue of the quantity p(t) - &g& is the Morawetz action

M(t) :==2Im 5 u(t, z)Vu(t,x) - é—‘ dz,

where u is a solution to (8.15)). A direct computation shows that

2 4
22 [ L0 4y [,
R4

R |of? |z
Integrating with respect to time and using Cauchy—Schwarz we derive the Lin—
Strauss Morawetz inequality, [25]:

ju(t, )
on) [ [ B drde S szl sy

There are two obvious drawbacks when attempting to use this formula to pre-
clude our final enemy. The first one is that it favours the origin: it basically says
that if the solution is in L{°H?, then it cannot spend a lot of time near the spatial
origin. Secondly, in order to exploit inequality (10.1]), we need the solution to lie in
L H!. However, even if we only cared about Schwartz solutions, when we apply
the concentration compactness argument to exhibit a minimal counterexample to
Theorem [6.1) we lose all information about the solution that is not left invariant
by the symmetries of the equation; in particular, we are left with a solution that is
merely in L{°HL.

Bourgain [5] showed us how to resolve the second issue above. His solution was
to truncate in space; this is equivalent to throwing away the low frequencies of the
solution. (Incidentally, truncating an L;’OH; solution to high frequencies places
it in L°H], although the truncation will no longer be a solution.) In this way,
Bourgain obtained the following Morawetz inequality:

|u(t,=)|* /2,112
(10.2) /I/|w<A|I|1/2 wadt S A [l 1 (rcray:

Compared with (10.1]), it still favours the spatial origin, but at least now we can
control the right-hand side.

Let us quickly see how to use to complete the proof of Theorem for
radial initial data in dimension d = 4:
Step 1: We note that by rotation invariance and uniqueness of solutions to ,
solutions with radial initial data are radial for all time.
Step 2: Radial almost periodic solutions must concentrate near the spatial origin.
Indeed, if |z(t)| > N(t)~!, then by spherical symmetry there exist a very large
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number of disjoint balls on which u(t) concentrates a nontrivial portion of its energy.
This however contradicts the conservation of energy. Thus we must have |z(t)] <
N(t)~1. At this point we may set x(t) = 0 by modifying the compactness modulus
function accordingly.
Step 3: By Sobolev embedding and almost periodicity, we can find C(u) > 0 such
that
lu(t,z)|[* dx =, 1 uniformly for ¢ € [0, 00).

2] <C(u)/N(t)
Step 4: Using and Step 3 above, for any time interval I C [0, 00) which is
a contiguous union of intervals of local constancy Ji, we obtain

4
|]|1/2 Zu// dedt
lsl<c@lr/z |l
t
>/ ot
T Jz|<C(u)| T |12 \$|

/ / N®)lult, )| dz dt
Jr J|z|<C(u)/N(t)

JkCI

Jk cI

2 D |

JCI

> /IN(t) dt

Recalling that inf,c(g ) N(t) > 1, we derive a contradiction by taking the interval
I C [0, 00) sufficiently large.

This completes the proof of Theorem for radial initial data in dimension
d=4.

To handle nonradial initial data, Colliander—Keel-Staffilani-Takaoka—Tao [13]
made use of an interaction Morawetz inequality, which they introduced in [12].
(Strictly speaking they treated the case d = 3. In what follows we consider the
d = 4 analogue; see also [30].) Their idea was to center the Morawetz action not at
the origin, but rather where the solution actually lives:

Minteract(t) == 2Im/ / u(t, z)Vu(t, z) - |u(t y) > dz dy.
Rt SR | \

A computation gives

w(t, )| |u(t,y ut,:z:4ut,y2
Oty 2 [ [ WL | WD
R4 JR4

lz -y |z —y|

Thus, by the fundamental theorem of calculus and Cauchy—Schwarz,

t (t,y)? t )| Hut, y)|?
/// u(t.2)Pult ) | fult )t )P
R4 JRa |x—y| |$—y|

(10.3) S ”uHi;’OLg(IXR‘*)”uHLthll,(IxR“)'

This interaction Morawetz inequality has an obvious drawback, namely, in order
to exploit it we need the solution to belong to L{°HL. However, as noted before,
our last enemy belongs merely to LtO"HCE1 Therefore, in order to employ this new
monotonicity formula, Colliander—Keel-Staffilani-Takaoka—Tao truncated the so-
lution to frequencies greater than some frequency N € 2%, which is chosen small
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enough so that the truncation captures most of the norm of the solution. By almost
periodicity, it is possible to chose N independent of time since our enemy satisfies
infycj0,00) N(t) > 1. Of course, since u>x no longer solves , there are addi-
tional errors introduced on the right-hand side of - Schematlcally7 we obtain
something of the form

// usn (b, @) Plusn (G y)? dydt
R4 JR4

|z —y[3

S ||U2N||igoLg(1xR4)||U2N||L50H;(IxR4) + errors
(10.4) <u N73 4+ errors.

If these errors were magically zero, then it would be a relatively easy task to use
to rule out our last enemy; see Theorem below. However, these errors
are not zero and controlling them is highly nontrivial.

Nowadays, there are two ways of handling the error terms on the right-hand
side of . Colliander—Keel-Staffilani-Takaoka—-Tao estimate these errors using
solely the left-hand side in . The smallness needed to close the resulting
bootstrap comes from the fact that u>x captures most of the norm of the solution
and so ||u<NHLocH1 < 1. A second approach inspired by Dodson’s work on the
mass-critical NLS is to first obtain additional a priori control in the form of the long-
time Strichartz inequality we derived in Section [0} this is then used to control error
terms in (T0.4). It is this second approach that we will discuss here following [40].
This approach has also been adapted to the three dimensional problem originally
treated by Colliander—Keel-Staffilani-Takaoka—Tao [13] in [21].

10.1. A frequency-localized interaction Morawetz inequality. In this sub-
section we derive a frequency-localized interaction Morawetz inequality, using the
Dodson approach to control the error terms. We start by recalling the interaction
Morawetz inequality in four spatial dimensions in slightly more generality; for de-
tails, see [30]. For a solution ¢ : I x R* — C to the equation i¢; + Ap = N, we
define the interaction Morawetz action

Mznteract =2 Im/ / |2 T | V(/I)(t .’I/')¢(t, .’IJ) dx dy
R4 JR4

Standard computations show

o(t, (t
8t znteract > 3/ / . | |¢ 3 y)| dx dy
R4 JR4

[z =yl

x—y —
vatm [, ¢}m<t,y>ﬁv¢<t,w>¢<t,x> d dy

—I—Z// ty
R4 |

where the mass bracket is given by {N, gb}m := Im(N¢) and the momentum bracket
is given by {N, ¢}, := Re(N'V¢ — ¢VN). Thus, integrating with respect to time,
we obtain

(t,x) dzx dy,

Proposition 10.1 (Interaction Morawetz inequality).

R4 JR4 |~’C—y|
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w2 [ [ ] e I N o) do dy
1 JRs JR4 |z -yl
< 200l 130y + A0l 100 ey 1A Sl

where all spacetime norms are over I x R?.

We will apply Proposition with ¢ = uspr and N = Pspr(|uf?u) for M small
enough that the Littlewood—Paley projection captures most of the solution. More
precisely, we will prove

Proposition 10.2 (Frequency-localized interaction Morawetz estimate, [40]). Let
w: [0, Thpaz) X RY — C be an almost periodic solution to such that N(t) =
N > 1 on each characteristic interval Jy, C [0, Tpnae). Then for any n > 0 there
exists My = Mo(n) such that for M < My and any compact time interval I C
[0, Tonaz), which is a union of contiguous intervals Ji, we have

(t, ty)?
R4 JR* |I - ?J|3

The zmplzczt constant does not depend on the interval I.

Proof. Fix a compact interval I C [0, Tnaz), which is a union of contiguous intervals
Ji, and let K := [[ N I ~ldt. Throughout the proof, all spacetime norms will be
on I x R4,

Fix n > 0 and let My = Mp(n) be small enough that claim of Corollary[0.3]
holds; more precisely, for all M < My,

(10.5) [Vusarllpory, Sun(l+ M3K)Y4 for all gt 2=1 with 2<g<oco
Choosing M even smaller if necessary, we can also guarantee that
(10.6) lusnellpgere Sun®M™" forall M < M.

Now fix M < My and write u, 1= u<pr and up; = uspr. With this notation,

becomes
(10.7) | Vuollzzzy Sun(l+MPK)Y9 forall 1+4+2=1 with 2<g<oo.
We will also need claim of Corollary which reads
(10.8) flunillpor, Su M™H(1+MPK)Y? forall 142=1 with 3<gq<oo.
Note that by , the endpoint ¢ = oo of the inequality above is strengthened to
(10.9) unillLerz Sun®M~"

To continue, we apply Proposition with ¢ = up; and N' = Pp; F(u) and use

(10.9); we obtain

i(t, i(t,
/] st o)) o
R4 JR4 |z — yl

(10.10) + / / i (t, )2 { P F (1), uni b (t, 7) de dy dt
IJRYJRA |z -y

Su M7 4+ M7 PuiF (w), wniml 1t (1xm9)-

We first consider the contribution of the momentum bracket term. We write

{PriF(u), unitp
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={F(u),u}p — {F (o), woltp — {1F(u) = F(uio), o }p — {ProF' (), uni}p
= —3V[Jul* — Jwo|*] = {F(u) = F(uo), o}y — { PioF (), uni’}p
= I+ II+1II1I.

After an integration by parts, the term I contributes to the left-hand side of (10.10)
a multiple of

J t it
// Jni (8, 9) Pluni DI o
R4 JR4 |{L'_y|
+Z// / [uni () Pluni (8, 2)1 [wao (8, 2) 77, o
= 7 JR4 JRA |$7y|

In order to estimate the contribution of I7 to (10.10), we use {f, g}, = VO(fg) +
O(fVg) to write

3
{F(u) = F(uo), Wotp = ZV@ uhlulo Z@(u{liuiijulo).

Jj=1

Integrating by parts for the first term and bringing absolute values inside the in-
tegrals for the second term, we find that I1 contributes to the right-hand side of

(10.10) a multiple of
3 ) , s
(T, i(t, ) uo(t, J
Z// / [uni (t, y)|? [uni(t, 2)) [uio(t, )| o diy i
j=1 /1R JRe |z =yl

3
+Z//4/4|uhi(t,y)|2\uhi(t,x)\j\Vulo(t,a:)|\ulo(t7x)\3_j dx dy dt.
=1 /1 /R JR

Finally, integrating by parts when the derivative (from the definition of the mo-
mentum bracket) falls on uy,;, we estimate the contribution of 1171 to the right-hand

side of (10.10) by a multiple of

) 20, .
/ / / [una(t,9) P uns (6, 2) | Po (b, 2Dy
7 JR4 JR4 |I_y|

+// / |uhi(t,y)|2|um-(t,;E)HVPlOF(u(t,x))\dxdydt.
1 JRe JR4

Consider now the mass bracket appearing in (10.10)). Exploiting cancellation,
we write

{PriF(u), uni fm
= {PniF(u) — F(uni), unitm
= {Pui[F(u) = F(uni) = F (o), tunitm + {PriF (wi0), unitm — {PioF (uni), tnitm
= O(upuio) + D(ujuip) + { PriF (wo), uhz‘}m —{PioF (uni), uni}m-
Putting everything together and using m ) becomes
(10.11)

2 t 1 t ¥ t ¥ t7 4
// / |uni(t, ) |Uh3( ¥l dgcdydt+// / uni (t, 2) | |uni(t, y)| du dy dt
R4 JR4 |z — yl R4 JR4 |z — yl
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(10.12)
Su ,'718M73
(10.13)
6 —1 3 2 2
+0° M~ {|lupswoll Ly | + luniugollny | + luniPriF (wio)ll Ly, + luni PioF (uni) ||y | }
(10.14)

3
+ 0P M 7Y iy Vuolly 0P M R uns VP F (u)ll
J=1
(10.15)
+§;///WWMy|mwxwmwxmﬂm@ﬁ
R4 JR4 |z —yl
(10.16)

// / luni(t,y)| \Uhi(tyx)HPloF(“(t’x))'dxdydt.
R4 JR4 |$—y|

Thus, to complete the proof of Proposition we have to show that the error

terms (10.13)) through (10.16]) are acceptable; clearly, (10.12)) is acceptable.

Consider now error term ([10.13)). Using (10.7)), (10.8]), and Sobolev embedding,

we estimate

luhiutollzy , S lunillogrs ||uhiH27/2L14/5||Ulo||L7/3Lgs SunM 21+ M°K)
lhsiolley, S lunillfy pssslwioll Tars Sun®M 214 MPK).
Using Bernstein’s inequality as well, we estimate
uniPaiF (o)l , S Munil papss MTHIVE (uio)l| a/s /s
S M2 M) T s ol
Su M2 (14 M3K).
Finally, by Holder, Bernstein, Sobolev embedding, (10.7]) and (| -,
luniPioF(uni)llzy , < ||Uhi||Lg0/3LgO/7M7/5HF(UM)HLloﬁLl

gu M2/5(1 + MSK)3/10||uth 10/3 20/7Huh1||LooL40/11

swﬂ“mu+wwmww%m$@
<u M72(1 4 M?K).
Collecting the estimates above we find
([0.13) Sun®M*(1+ MPK) Sy n(M~° + K),

and thus this error term is acceptable.
Consider next error term ((10.14]). By (10.7), (10.8)), (10.9)), Sobolev embedding,
and Bernstein,

||Uhiuz20VUlo||L;z S HvuloHLfL;HUhiHLocm ||u10Hi4Ls Su UgM*l(l + MSK)
ks Vuolley , S Vol Lz ra lunill 7y oo llwoll e, Sun® M1+ MPK)

I8V etoll s, S V10770 pasllni 02 sass il o s S nM 721+ MEK),



52 MONICA VISAN

To estimate the second term in (L0.14), we write F(u) = F(uw) + O(uniuj, +
uiiulo + u,"”) Arguing as above, we obtain
luni VPO F (o)l 2y, S Nunill e 2 Vol 2 s lwioll7 s s Su n®M™H(1+ MPK)

iV Pro@(unst) 1y, S Mllunil, s ol s Sun?M7H(1+ MPK)

niV Pio@ (o) llzy , S Mllwnill oo v lwnill e prasslloll p7ro p2s
SunM 14+ M°K)
luniVPoD(uipi) Iy, S Nunill ro7s 200 M2 i | o

10/3
<M12/5” hZH 1{3/3 20/7||uh1||L<x>L40/11

<o MTH1 4 M3K).
Putting everything together, we find
([0-14) Su n?M 31+ M°K) Sun(M~° + K),

and thus this error term is also acceptable.

We now turn to error term (10.15). By easy considerations, we only have to
consider the cases j = 1 and 7 = 3. We start with the case j = 1; using Holder to-
gether with the Hardy—Littlewood—Sobolev inequality, Sobolev embedding, ,

(10.8]), and (10.9)), we estimate
(&, )| [uni (2, o(t, )2
[ ][] e .o
IJR4 JRA |z =yl

& (il )|

<
Huhz”LmL?‘l/ll L8/5p12

<u M2 (1 + M3K)1/6||Uhiu?o||L6/5
Su M2 (14 MPE)Y® upi | oo 12 ”ulOHi}B/SLQ
Sun’M73(1 4+ M3K).

Finally, to estimate the error term corresponding to j = 3, we consider two sce-
narios: If |ug| < 0|up,| for some small § > 0, we absorb this contribution into the

term
i(t, i(t,
// [ o o) Pl )y
R4 JR4 |z — y

which appears in . If instead |up;| < 6~ 1|ug,|, we may estimate the contri-
bution of this term by that of the error term corresponding to j = 1. Thus,

i(t, i,
[0T8) <o n(M 3 + K) +5// / fonilt, Dm0y
R4 JR4

[z =yl
where 0 < § < 1 is a constant small enough that the second term on the right-hand
side above can be absorbed by (10.11)). Thus, the error term (10.15)) is acceptable.
We are left to consider error term (10.16)). Arguing as for the case 7 = 1 of the

error term ([10.15]), we derive
Y2 t T t PD
[ ][ Lol DA 4y,
R* JRY

|z -yl

< llunsl?

& (il 1P F ())|

iz L9/5012
xT
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Su M7 (14 MPE)Y O upi P F (w)]| jo/s
< M_2(1 + M3K)1/6||uhi”LfLi/3 ||P10F(’LL)||L112/7L9204/11

~Uu

Su M73(1 + MSK)S/HHPIOF(’UJ)||L12/7L24/11.

We now write F(u) = F(up;) + O(u}, + ui un; + woui,). Using Holder, Bernstein,
Sobolev embedding, (10.7)), (10.8)), and (10.9), we estimate

1PLo@ i 127 20 S Nwtoll ya 2wss lutol|Zs ps S 1® (14 MPK)T/2
1Po@ (ufouni)l iz 2arne S Mlluounill pro/r pzarne S Mllwol7aps llunil sz 2010
Su 772(1 + M3K>T72

12/7 ;24/17

||F)10®(u50u%n‘)||L12/7L24/11 S M”ulOuhz”L L

S Mllwiol| gz llunill o pssa llwnill Lt
Sun(l+ M3K)/12,
Finally, using Bernstein, Holder, interpolation, , , and , we get
[PioF (uni) pr2m p2am S M13/6||F(Uhi)|\L32/7Li
S M/ [ Hif“”Lis/” [ HLgoLg‘W
Su MYS(L+ MPK) 2|V > Pupi e 2
Sun(l+ MPK)12,
Collecting these estimates, we find
(1016) Su nM~2(1+ MPK) Su (M™% + K),

and thus this last error term is also acceptable.
This completes the proof of Proposition [10.2} O

10.2. The quasi-soliton scenario. With Proposition [10.2] in place, we are now
ready to preclude our last enemy, namely, solutions as in Theorem for which

Jfmes N(£) =t dt =

Theorem 10.3 (No quasi-solitons). There exist no almost periodic solutions u :
[0, Thnaz) X R* — C to (8.15) with N(t) = Ny > 1 on each characteristic interval
Ji C [0, Tinax) which satisfy [[ull s ([0, 7pa0)xr) = +00 and

Trmax
(10.17) / N(t)~'dt = .
0

Proof. We argue by contradiction. Assume there exists such a solution w.

Let n > 0 be a small parameter to be chosen later. By Proposition there
exists My = My(n) such that for all M < M, and any compact time interval
I C [0,T}42), which is a union of contiguous intervals Jy, we have

(t t,y)|?
(10.18) // / [uzar(t, 2)1 |“>3M( )l dxdydt,sun[M*M/N(t)*ldt}.
R4 JR4 |z —yl I
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As infycjo,7,,,.,) N(t) > 1, choosing My even smaller if necessary (depending on 7)
we can also ensure that

(10.19)
HUSMHL?"Li([O,Tmaz)XR“) + HUSMHL,?CH;([O,TmM)xR‘*) <n forall M < M,.

Exercise 10.1. Use almost periodicity to prove that there exists C(u) > 0 such
that

(10.20) N(b)? / lult, )2 dz > 1/C(u)
|z—2(t)|<C(u)/N(t)

uniformly for ¢ € [0, Trnaz)-

Using Hélder’s inequality and (10.19)), we find
C(u 2
usn(t,2) do 5 { e lusarlloze s e e
Sun?C(u)*N(t)~

for all t € [0, Tinaz) and all M < My. Combining this with (10.20) and choosing 7
sufficiently small depending on u, we find

/Ifrr(t)|<C(u)/N(t)

inf N(t)Q/ lusar(t,2)|*de >, 1 forall M < M.
t€[0,Tmaxz) le—z(t)|<C(u)/N(t)

Thus, on any compact time interval I C [0, Tiq,) and for any M < My we have

//IR4 /R4 lus>n(t, rx|_|7;|>3M(t )? dz dy dt
///m yl<2gt 12 ((t))r'uzM(tvﬂC)2U2M(t,y)|2dl“dydt
> [lazl /.-
Zu /IN(t)*l

Invoking (10.18)) and choosing n small depending on u, we find

wulta)do [ fusarltoy)? dye
‘y x(t)‘< N((

u)
= N(t)

/N(t)*l dt <y M3 forall M < M,
I

and all intervals I C [0, T}nq4), which are unions of contiguous intervals Jg. Re-
calling the hypothesis , we derive a contradiction by choosing the interval
I C [0, Tnaz) sufficiently large.

This completes the proof of the theorem. ([l

APPENDIX A. BACKGROUND MATERIAL

A.1. Compactness in LP. Recall that by the Arzela—Ascoli theorem, a family of
continuous functions on a compact set K C R? is precompact in C°(K) if and only
if it is uniformly bounded and equicontinuous. The natural generalization to L”
spaces is due to M. Riesz [29] and reads as follows:

Proposition A.1. Fiz 1 < p < oo. A family of functions F C LP(R?) is precom-
pact in this topology if and only if it obeys the following three conditions:
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(1) There exists A > 0 so that ||f|l, < A for all f € F.
(ii) For any e > 0 there exists § > 0 so that [, |f(x) — f(z +y)[P dz < e for all
feF and all ly| < 6.

(ili) For any € > 0 there exists R so that f‘ [P dx < e forall f € F.

o2k |f

Remark. By analogy to the case of continuous functions (or of measures) it is
natural to refer to the three conditions as uniform boundedness, equicontinuity,
and tightness, respectively.

Proof. If F is precompact, it may be covered by balls of radius %5 around a finite
collection of functions {f;}. As any single function obeys (i)—(iii), these properties
can be extended to the whole family by approximation by an f;.

We now turn to sufficiency. Given € > 0, our job is to show that there are
finitely many functions {f;} so that the e-balls centered at these points cover F.
We will find these points via the usual Arzela—Ascoli theorem, which requires us
to approximate F by a family of continuous functions of compact support. Let
¢ : RY — [0,00) be a smooth function supported by {|z| < 1} with ¢(z) =1 in a
neighbourhood of z = 0 and [, ¢(z) dx = 1. Given R > 0 we define

fala) = (%) [ RU9(Rw =) Fw) dy

and write Fg := {fr : f € F}. Employing the three conditions, we see that it
is possible to choose R so large that ||f — frll, < 3¢ for all f € F. We also
see that Fgr is a uniformly bounded family of equicontinuous functions on the
compact set {|z| < R}. Thus, Fg is precompact and we may find a finite family
{f;} € C°({|z| < R}) so that Fg is covered by the LP-balls of radius 3¢ around
these points. By construction, the e-balls around these points cover F. O

In the L? case it is natural to replace (ii) by a condition on the Fourier transform:

Corollary A.2. A family of functions is precompact in L*(R?) if and only if it
obeys the following two conditions:

(i) There exists A > 0 so that ||f|| < A for all f € F.

(ii) For alle > 0 there exists R > 0 so that flw\zR |f(w)\2dx+f|£|2R If(&)]Pde < e
forall f € F.

Proof. Necessity follows as before. Regarding the sufficiency of these conditions,
we note that

/|ﬂx+w—qudx~/‘w@—lﬂﬂoﬁﬁ,
Rd Rd

which allows us to rely on the preceding proposition. (I

In our applications, regularity allows us to upgrade weak-* convergence to almost
everywhere convergence. The lower semicontinuity of the norm under this notion
of convergence is essentially Fatou’s lemma. The following quantitative version of
this is due to Brézis and Lieb [6] (see also [24] Theorem 1.9]):

Lemma A.3 (Refined Fatou). Suppose {f,} C LP(R?) with limsup || f.|/, < oo.
If fn, — f almost everywhere, then

Lt =152 = s = 157z 0.

In particular, [ fally = |[fa = FI5 = I£15-
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A.2. Littlewood—Paley theory. Let ¢(£) be a radial bump function supported
in the ball {¢ € R? : |¢| < {1} and equal to 1 on the ball {¢ € R? : [¢| < 1}. For
each number N > 0, we define the Fourier multipliers

Pen(6) = ¢(6/N) F(€)
PonF(€) == (1 - ¢(&/N)f(©)
Pr () = (9(§/N) = p(26/N)) f(€)
and similarly P<x and P>py. We also define

Pyc<ni=P<ny— Py = E Py
M<N'<N

whenever M < N. We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2™ for some integer n); in particular, all summations
over N or M are understood to be over dyadic numbers. Nevertheless, it will
occasionally be convenient to allow M and N to not be a power of 2.

Like all Fourier multipliers, the Littlewood—Paley operators commute with the
propagator e**2, as well as with differential operators such as i9; + A. We will use
basic properties of these operators many times, including

Lemma A.4 (Bernstein estimates). For 1 <p < ¢ < oo,
H|V|iSPNfHLp(]Rd) ~ NiSHPNf”LP(]Rd)a
d_d
I1P<n fllzaway S N* ™ ||[P<n fll Lo way,
d_d
1PN fllLa@ay S N7~ || Py fllLe(ray-
Lemma A.5 (Square function estimates). Given a Schwartz function f, let

S(f)(x) = <Z|PNf(x)|2)1/2
N

denote the Littlewood—Paley square function. For 1 < p < oo,

IS e @ey ~ [1fllLr@a)-
More generally,

(A.1) H(ZN25|PNf(I)|2>1/2’
N

foralls > —d and 1 < p < oco.

191l e

Lo(rt)

A.3. Fractional calculus. We first record the fractional product rule from [I1]:

Lemma A.6 (Fractional product rule, [I1]). Let s € (0,1] and 1 < r,p1,p2,q1,q2 <
oo such that % = i + % fori=1,2. Then,

[IVI*(f9)]

We will also need the following fractional chain rule from [II]. For a textbook
treatment, see [37, §2.4].

Lemma A.7 (Fractional chain rule, [I1]). Suppose G € C'(C), s € (0,1], and
1 < p,p1,p2 < oo are such that % = p% + p%. Then,

VGl e ey S NG (W)l Lo ey V] ull Lo (ra)-

L7(R4) S ||f||LP1(Rd)H'V‘SQHqu(Rd) + H|v|sfHLp2(]Rd)||g||Lq2(]Rd)-
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Although we will not need it in our applications here, for completeness we record
the following fractional chain rule for when the function G is no longer C', but
merely Holder continuous:

Lemma A.8 (Fractional chain rule for a Holder continuous function, [39]). Let G
be a Hoélder continuous function of order 0 < o < 1. Then, for every 0 < s < a,
1<p<oo, and £ <o <1 we have

(A.2) 91 G| o gy < N1l

Ivieull;

Lr1(R4 LzP2(Rd)’

provided % = p% + ]%2 and (1 — 22)py > 1.
A.4. A paraproduct estimate. In Section [0] we made use of a paraproduct
estimate from [40]. The proof we present here is different from the one in [40];

however, it only requires basic knowledge of harmonic analysis and so it is better
suited to these lecture notes.

Lemma A.9 (Paraproduct estimate, [40]). We have
H‘v|_2/3(f9)||1:4/3(ua4) S |||v|_2/3fHLP(R4)|||v|2/39HLq(]R4)’

forany§<p<ooandl<q<oosuchthat%+%=%.

Proof. The claim is equivalent to the following estimate

_z 2 _z
(A.3) IVIZ3H{AVIEAUVITEO ] s sy S NF 1w 9]l zocea),
for % < p < oo, 1< g < oo such that %‘F% = % To prove this, we start by

performing the following decomposition:

|V|§{<|V|§f><V|§g>}—|V|3{ > Pv (VIR P, (IV] )

§<qi<s
+ 3 Pa (IVI5 ) Posn, (IV] 3 9)
Ny
(A.4) +ZPN1<|V|%f)P<;N1<|V|§g>}.
N1

Next, we will show how to control the contribution of each of the terms on the

right-hand side of (A.4)) to (A.3]).

Using Sobolev embedding, Cauchy—Schwarz, and the square function estimate
(A.1)), we estimate the contribution of the first term on the right-hand side of (A.4))
as follows:

\Mi S P (V1) P (V] )

1<Mics Lass
<| = NfizvﬁyPNl<|V|%f>HPN2<|V|-%g>\\
1Ny L12/11
sSN,; <8
: ;
_2 2
(2 mEeaewinr) (X miraviior)
1Ny LN L12/11
sS<N, <8 s<w7 <8
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(s (

S IIfIILpllglqu~

Arguing similarly, we estimate the contribution of the second term on the right-
hand side of (A.4)) as follows:

]v P (V1) P (V1)

1
1 2
N1§PN1(|V|§f)I2) 2 |N5PN2(|V'§9>|2>

Ny
<yi<s

Ly La

ool=

14/3

’ZN | Py, (IV]5 f)‘N ‘P>8N1<|V| 9)|

L12/11

Li2/11

<[ (St e (90 P) (S P, (01300
Ny

Ny
S I flzellglzes

where we also used the following consequence of (A.1)):

1
H (Z N23’P>Nh’2) 2
N - Le

It remains to estimate the contribution of the third term on the right-hand side
of (A.4). To do this, we use Lemma the easy estimates |Pyh| < M(h) and
|P<nh| S M(h), and the vector maximal inequality:

Hv S Pa, (V12 ) Pt (91 29)
Ny

~ [IV[*h]|,, forall s>0 and 1<p < oo.

L4/3

1
2

< (Z‘NgPN{ZPN1(|V|§f)P<;N1(|V|gg)”2>
< (Z‘NSM[ > Pl ]\) M(vl )|
iy |NgPN1(|V|§f)|2>QHLPHM“Wgg)HLT

N Ni~N
_2

SIfllee || VI3 g]

where r is such that % + 1 =3 (Note that this is source of the restriction p > %)

The claim now follows by applying Sobolev embedding to the second factor on the
right-hand side of the inequality above. O

L4/3

LT"
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