
Solutions to Exercises 7.2.2 to 7.2.4, and 7.2.6 to 7.2.9.

7.2.2. At stage 0, the Bayes expected loss is
∫ 1

0
(θ − a)2/(θ(1 − θ)) dθ = ∞ for all a , so that

ρ0 = ∞ . At stage j , the posterior distribution of θ given X1 = −1, . . . , Xj = −1 is still U(0, 1), so
ρj(−1, . . . ,−1) = ∞ for all j . Hence Uj(−1, . . . ,−1) = ∞ for all j as well. For any given truncation
integer, J , V

(J)
J (−1, . . . ,−1) = ∞ , and by backward induction for any 0 ≤ j < J , V

(J)
j (−1, . . . ,−1) =

(1/2)V (J)
j+1(−1, . . . ,−1) + · · · =∞ . Thus, V

(J)
0 =∞ for all J .

Now consider the sequential decision rule: Stop sampling at the first N such that XN �= −1; if XN = 0,
estimate θ as 0, and if XN = 1, estimate θ as 1. The expected terminal loss is the same if XN = 0 or
XN = 1, namely

∫ 1

0
(θ2/(θ(1 − θ)))2(1 − θ) dθ = 2

∫ 1

0
θ dθ = 1. The expected sampling cost is EθcN = 2c .

Since this rule has finite risk, V
(∞)
0 is finite.

7.2.3. Proof. Let aj denote the constant Uj(x1, . . . , xj). Then, V
(J)
J = aJ , and by backward in-

duction, V
(J)
j = min{aj, . . . , aJ} for 0 ≤ j ≤ J . Hence the Bayes rule for the problem truncated at

J is the fixed sample size rule that stops at m(J), where am(J) = min{a0, a1, . . . , aJ} , and we have
V

(J)
0 = min{a0, a1, . . . , aJ} . If in addition, V

(J)
0 → V

(∞)
0 as J → ∞ , then, since our assumption on

the cost function implies that aj → ∞ as j → ∞ , we have V
(∞)
0 = min{a0, a1, . . .} = am for some finite m .

The Bayes sequential rule is the fixed sample size rule that stops at stage m whatever the observations.

7.2.4. (a) The posterior diatribution of θ given X1, . . . , Xj is the gamma, G(Sj + 1, 1/(j + 1)), where
Sj =

∑j
1 Xj . Tha Bayes estimate of θ after stopping at stage j is the mean of this distribution, θ̂j =

(Sj+1)/(j+1). The Bayes terminal risk is K times the variance of this distribution, ρj = K(Sj+1)/(j+1)2 .
(b) The conditional distribution of Xj given Sj−1 (with θ integrated out) is the negative binomial,

NB(Sj−1 + 1, 1/(j + 1)). This has mean (Sj−1 + 1)/j , so

E(ρj (X1, . . . , Xj−1, Xj|X1, . . . , Xj−1) =
K

(j + 1)2
E(Sj + 1|Sj−1)

=
K

(j + 1)2
(Sj−1 + 1 +

Sj−1 + 1
j

) =
K(Sj−1 + 1)

j(j + 1)
.

(c) With K = 12 and c = 1, we have Uj = ρj + j = 12(Sj + 1)/(j + 1)2 + j and E(Uj |Sj−1) =
12(Sj−1+1)/(j(j +1)) + j . We have V

(3)
3 = U3 = (3/4)(S3+1)+ 3 and E(V

(3)
3 |S2) = S2+4. We compute

a table similar to Table 7.1.

S2 d0
2 U2 E(V (3)

3 |S2) V
(3)
2 φ0

2

0 1/3 10/3 4 10/3 1
1 2/3 14/3 5 14/3 1
2 3/3 18/3 6 6 any
3 4/3 22/3 7 7 0
...

...
...

...
...

...

S1 d0
1 U1 E(V (3)

2 |S1) V
(3)
1 φ0

1

0 1/2 4 4− (1/54) 4− (1/54) 0
1 2/2 7 6− (4/27) 6− (4/27) 0
2 3/2 10 7 + (1/2) 7 + (1/2) 0
3 4/2 13 9 9 0
...

...
...

...
...

...

S0 d0
0 U0 E(V (3)

1 |S0) V
(3)
0 φ0

0

0 1 12 6− (8/27) 6− (8/27) 0



An optimal stopping rule for the problem truncated at 3 is to stop at stage 2 if S2 ≤ 2 and stop at stage 3
otherwise. The value is 5.7037 · · ·.

5. The posterior distribution of θ given X1, . . . , Xj is Be(Sj +1, j−Sj+1), where Sj = X1+ · · ·+Xj .
The mean of the posterior is (Sj + 1)/(j + 2). The Bayes terminal decision rule, dj , at stage j is to take
action a1 if Sj ≤ j/2 and to take action a2 otherwise. The Bayes terminal loss, ρj , is K(Sj + 1)/(j + 2)
if Sj ≤ j/2 and K(j − Sj + 1)/(j + 2) otherwise. We compute a table similar to Table 7.1 for the problem
truncated at J = 5.

S5 d0
5 Cost ρ5 U5 = V

(5)
5

0 a1 5 8 13
1 a1 5 16 21
2 a1 5 24 29
3 a2 5 24 29
4 a2 5 16 21
5 a2 5 8 13

S4 d0
4 Cost ρ4 U4 E(V (5)

5 |S4) V
(5)
4 φ

(0)
4

0 a1 4 9.333 13.333 14.333 13.333 1
1 a1 4 18.667 22.667 23.667 22.667 1
2 a1 4 28.000 32.000 29.000 29.000 0
3 a2 4 18.667 22.667 23.667 22.667 1
4 a2 4 9.333 13.333 14.333 13.333 1

S3 d0
3 Cost ρ3 U3 E(V (5)

4 |S3) V
(5)
3 φ

(0)
3

0 a1 3 11.200 14.200 15.200 14.200 1
1 a1 3 22.400 25.400 25.200 25.200 0
2 a2 3 22.400 25.400 25.200 25.200 0
3 a2 3 11.200 14.200 15.200 14.200 1

S2 d0
2 Cost ρ2 U2 E(V (5)

3 |S2) V
(5)
2 φ

(0)
2

0 a1 2 14.000 16.000 16.950 16.000 1
1 a1 2 28.000 30.000 25.200 25.200 0
2 a2 2 14.000 16.000 16.950 16.000 1

S1 d0
1 Cost ρ1 U1 E(V (5)

2 |S1) V
(5)
1 φ

(0)
1

0 a1 1 18.667 19.667 19.067 19.067 0
1 a2 1 18.667 19.667 19.067 19.067 0

S0 d0
0 Cost ρ0 U0 E(V (5)

1 |S0) V
(5)
0 φ

(0)
0

0 a1 0 28.000 28.000 19.067 19.067 0

7.2.6. (a) The joint density of X1, . . . , Xn and θ is proportional to exp{−(1/2)(
∑n

1 X2
i −2θSn+nθ2)−

(1/2σ2)θ2} where Sn =
∑n

1 Xi , so the posterior density of θ given X1, . . . , Xn is proportional to this also.
This gives

g(θ|X1 , . . . , Xn) = c exp{−1
2
1 + nσ2

σ2
(θ − σ2Sn

1 + nσ2
)2}.

This is the normal distribution, N (σ2Sn/(1 + nσ2), σ2/(1 + nσ2)).
(b) With squared error loss, the Bayes terminal decision rule is d0

n = E(θ|X1, . . . , Xn) = σ2Sn/(1+nσ2),
with expected loss ρn = σ2/(1 + nσ2). Thus, the Un = nc+ (σ2/(1 + nσ2)) is constant, and since ρn → 0,
Theorems 3 and 4 imply that the Bayes sequential decision rule is the fixed sample size rule: Take a sample
of size n , where n is that value of j that minimizes Uj , and estimate θ to be σ2Sn/(1+ nσ2 . It has Bayes
risk minj(jc + (σ2/(1 + nσ2)).

(c) Let n be the integer j that minimizes jc + 1/j . The rule that observes a fixed sample of size n
and estimates θ to be Sn/n is minimax since it has constant risk, nc+ Eθ(θ − Sn/n)2 = nc + 1/n , and is
extended Bayes (since the minimum Bayes risk of part (b) converges to nc+ 1/n as σ2 → ∞).
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7.2.7. (a) The posterior density of θ given X1, . . . , Xj is proportional to θSj+α−1 exp{−θ(λ+j)} , which
makes it the gamma distribution, G(Sj + α, (λ+ j)−1).

(b) E(θ − a)2/θ is minimized by a = 1/Eθ−1 and the minimum value is Eθ − 1/Eθ−1 . For the
G(Sj +α, (λ+ j)−1) distribution, we have Eθ = (Sj +α)/(λ+ j) and Eθ−1 = (λ+ j)/(Sj +α− 1). So the
Bayes estimate is d0 = (Sj + α − 1)/(λ + j) and the Bayes expected loss is ρj = (λ + j)−1 .

(c) Since the Uj = jc+ (λ+ j)−1 are constant and since ρj → 0, we have from Theorems 3 and 4 that
the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n , where n is that value
of j that minimizes Uj , stop and estimate θ to be (Sn+α)/(λ+n). It has Bayes risk minj(jc+(λ+ j)−1).
Since n is the first j such that (j+1)c+(j +1)−1 ≥ jc+ j−1 , it is also the first j such that j(j+1) ≥ 1/c ,
and (adding 1/4 to both sides), the first j such that (j − 1/2)2 ≥ (1/c) + (1/4). From this we see that
n = [

√
1/c+ 1/4] , where [x] denotes the integer nearest to x .

(d) Consider the rule, call it (d, φ): Find n that minimizes jc + j−1 , take a sample of size n and
estimate θ to be Sn/n . This corresponds to the rule of part (c) with α = 0 and λ = 0. We will show
it is minimax by showing it has constant risk, and is extended Bayes. The risk function is R(θ, (d, φ)) =
jc+Eθ(θ − Sj/j)2/θ = jc+Var(Sj/j)/θ = jc+ 1/j , independentof θ . Since the Bayes risks of (c), namely
minj(jc + (λ + j)−1), converge to minj(jc + j−1) as λ → 0, we see that the rule (d, φ) is extended Bayes
and hence minimax.

7.2.8. (a) The joint density of X1, . . . , Xn and θ is proportional to θn+α−1 exp{λ + Sn} where Sn =∑n
1 Xi , so the posterior density of θ given X1, . . . , Xn must be proportional to this also. This is the gamma

distribution, G(n+ α, (λ+ Sn)−1).
(b) E(θ − a)2/θ2 is minimized by a = E(θ−1)/E(θ−2) and the minimum value is 1 − (Eθ−1)2/Eθ−2 .

For the G(n+α, (λ+Sn)−1) distribution, we have Eθ−1 = (λ+Sn)/(n+α−1) and Eθ−2 = (λ+Sn)2/((n+
α− 1)(n+α− 2)). Therefore, the Bayes estimate is d0

n = (n+α− 2)/(λ+ Sn) and the Bayes terminal risk
is ρn = 1/(n+ α − 1). (Note the misprint in the text.)

(c) Since the Un = nc+ 1/(n + α − 1) are constant and since ρn → 0, we have from Theorems 3 and
4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n , where n
minimizes Uj , stop and estimate θ to be (n+ α − 2)/(λ+ Sn). It has Bayes risk minj Uj .

(d) Consider the rule, call it (d, φ): Find j that minimizes jc + (j − 1)−1 , take a sample of size j and
estimate θ to be (j − 2)/Sj . This corresponds to the rule of part (c) with α = 0 and λ = 0. We will show
it is minimax by showing it has constant risk, and is extended Bayes. The risk function is

R(θ, (d, φ)) = jc + Eθ(θ − (j − 2)/Sj)2/θ2

= jc + 1− 2(j − 2)Eθ(θSj )−1 + (j − 2)2Eθ(θSj )−2.

The distribution of θSj is G(j, 1) independent of θ so the risk is independent of θ . We find E(θSj )−1 =
1/(j − 1) and E(θSj )−2 = 1/((j − 1)(j − 2)), provided j > 2. Substitution into the formula for R gives
R(θ, (d, φ)) = jc+(j − 1)−1 . (This formula also holds for j = 2 as is checked by direct computation.) Since
the Bayes risks of (c), namely minn{nc+1/(n+α−1)} , converge to jc+(j−1)−1 = minn{nc+1/(n−1)} as
α → 0, we see that the rule (d, φ) is extended Bayes and minimax. The optimal j = 1 + [

√
(1/c) + (1/4)] ,

where [x] denotes the integer nearest to x , is always at least 2.

7.2.9. (a) The joint density of X1, . . . , Xj and θ is proportional to θ−(j+α+1) exp{(λ + Sj)/θ} so the
posterior distribution of θ given X1, . . . , Xj is proportional to this also. This is the reciprocal gamma
G−1(j + α, (λ+ Sj)−1).

(b) For the G−1(j + α, (λ + Sj)−1) distribution, we have Eθ−1 = (j + α)/(λ + Sj) and Eθ−2 =
(j + α)(j + α − 1)/(λ+ Sn)2 . Therefore, the Bayes estimate is d0

j = E(θ
−1)/E(θ−2) = (λ + Sj)/(j + α+ 1)

and the Bayes terminal risk is ρj = 1− (Eθ−1)2/Eθ−2 = 1/(j + α+ 1).
(c) Since the Uj = jc + (j + α + 1)−1 are constant and since ρj → 0, we have from Theorems 3 and

4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n , where n
minimizes Uj , stop and estimate θ to be (λ+ Sn)/(n+ α+ 1). It has Bayes risk nc+ (n+ α+ 1)−1 .

(d) Consider the rule, call it (d, φ): Find j that minimizes jc + (j + 1)−1 , take a sample of size j and
estimate θ to be Sj/(j + 1). This corresponds to the rule of part (c) with α = 0 and λ = 0. We will show
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it is minimax by showing it has constant risk, and is extended Bayes. The risk function is

R(θ, (d, φ)) = jc+ Eθ(θ − Sj/(j + 1))2/θ2

= jc+ 1− 2(j + 1)−1Eθ(Sj/θ) + (j + 1)−2Eθ(Sj/θ)2.

The distribution of Sj/θ is G(j, 1) independent of θ so the risk is independent of θ . We find E(Sj/θ) = j
and E(Sj/θ)2 = j(j + 1). Substitution into the formula for R gives R(θ, (d, φ)) = jc+ (j +1)−1 . Since the
Bayes risks of (c), namely minj{jc+ (n+ α− 1)−1} , converge to jc+ (j − 1)−1 = minj{jc+ (n− 1)−1} as
α → 0, we see that the rule (d, φ) is extended Bayes and minimax. The optimal j is [

√
(1/c) + (1/4)]− 1,

where [x] denotes the integer nearest to x .
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