Solutions to Exercises 7.2.2 to 7.2.4, and 7.2.6 to 7.2.9.

7.2.2. At stage 0, the Bayes expected loss is fol(e —a)?/(8(1 — 0))df = oo for all a, so that
po = oo. At stage j, the posterior distribution of 6 given X; = —1,...,X; = —1 is still ¢(0,1), so
pi(—=1,...,—1) = oo for all j. Hence U;(—1,...,—1) = oo for all j as well. For any given truncation
integer, J, V}J)(—l, ...,—1) = 00, and by backward induction for any 0 < j < J, Vj(‘])(—l, e, —1) =
(1/2)‘/}(_1_]1(—1, ..., —1)+---=00. Thus, Vb(‘]) = oo for all J.

Now consider the sequential decision rule: Stop sampling at the first N such that Xy # —1;if Xy =0,
estimate 6 as 0, and if X5y = 1, estimate # as 1. The expected terminal loss is the same if Xy = 0 or
Xy =1, namely f01(92/(9(1 —0)))2(1 —0)df = 2f01 0df = 1. The expected sampling cost is EgcN = 2c.

Since this rule has finite risk, VO(OO) is finite.

7.2.3. Proof. Let a; denote the constant Uj(z1,...,z;). Then, V}J) = ay, and by backward in-

duction, Vj(‘]) = min{a;,...,ay} for 0 < j < J. Hence the Bayes rule for the problem truncated at
J is the fixed sample size rule that stops at m(J), where a,(;) = min{ag,a1,...,as}, and we have
VO(J) = min{ap, a1,...,as}. If in addition, VO(J) — VO(OO) as J — oo, then, since our assumption on

the cost function implies that a; — oo as j — oo, we have VO(OO) = min{ag, a1, ...} = a, for some finite m.
The Bayes sequential rule is the fixed sample size rule that stops at stage m whatever the observations. m

7.2.4. (a) The posterior diatribution of 6 given Xi,..., X, is the gamma, G(S; +1,1/(j + 1)), where
S; = 2]1 X;. Tha Bayes estimate of 6 after stopping at stage j is the mean of this distribution, 6, =
(Sj+1)/(j+1). The Bayes terminal risk is K times the variance of this distribution, p; = K(S;+1)/(j+1)2.

(b) The conditional distribution of X; given S;_1 (with € integrated out) is the negative binomial,
NB(Sj—1+1,1/(j +1)). This has mean (S;j_1 +1)/j, so

K
E(pj(Xl, .. -;Xj—lanlea .. .,Xj_l) = WE(‘S] + 1|Sj_1)
K Si—1+1 K(S;—1+1)
= —Gat 1+ L) =—2
Grip )=+

(c) With K = 12 and ¢ = 1, we have U; = p; +j = 12(S; + 1)/(j + 1)*> + j and E(U;|S;-1) =
12(S;-1+1)/(j( +1)) + 7. We have V3(3) =U; = (3/4)(S3+1)+3 and E(VS(B)|SQ) = Sy +4. We compute
a table similar to Table 7.1.

S 4 U E(VVIS) Y 68

0 1/3  10/3 4 10/3 1

1 2/3  14/3 5 14/3 1

2 3/3  18/3 6 6 any

3 4/3  22/3 7 7 0

S1 df U EB(Y|S) v 1
0 1/2 4 4-(1/54) 4—(1/54) 0
1 2/2 7T 6-(4/21)  6—(4/21) 0
2 3/2 10 7+(1/2) 74(1/2) 0
3 42 13 9 9 0
Sodf  Uo B Y|S) vy 0

0 1 12 6-(8/27)  6—(8/27) 0




An optimal stopping rule for the problem truncated at 3 is to stop at stage 2 if Sy < 2 and stop at stage 3
otherwise. The value is 5.7037 - - -.

5. The posterior distribution of 6 given Xi,...,X; is Be(S;+1,j—S;+1), where S; = X1 +---+ X;.
The mean of the posterior is (S; +1)/(j + 2). The Bayes terminal decision rule, d;, at stage j is to take
action a; if S; < j/2 and to take action as otherwise. The Bayes terminal loss, p;, is K(S; +1)/(j + 2)
it S; <j/2 and K(j —S; +1)/(j +2) otherwise. We compute a table similar to Table 7.1 for the problem
truncated at J = 5.

S5 dg Cost P5 U5 = ‘/5(5)

0 ai ) 8 13
1 ai ) 16 21
2 ai ) 24 29
3 as ) 24 29
4 az ) 16 21
5 az ) 8 13
S4 dg Cost P4 U4 E(‘/5(5) |S4) ‘/4(5) 510)
0 a1 4 9.333 13.333 14.333 13.333 1
1 a1 4 18.667 22.667 23.667 22.667 1
2 ay 4 28.000 32.000 29.000 29.000 0
3 as 4 18.667 22.667 23.667 22.667 1
4 as 4 9.333 13.333 14.333 13.333 1
Sy d}  Cost  ps Us BV S v &
0 ai 3 11.200 14.200 15.200 14.200 1
1 ay 3 22.400 25.400 25.200 25.200 0
2 as 3 22.400 25.400 25.200 25.200 0
3 az 3 11.200 14.200 15.200 14.200 1
SQ dg Cost P2 U2 E(‘/}’(5)|SQ) ‘/2(5) (20)
a1 2 14.000 16.000 16.950 16.000 1
1 ay 2 28.000 30.000 25.200 25.200 0
as 2 14.000 16.000 16.950 16.000 1
Sl d(l) Cost P1 U1 E(VYQ(5)|31) ‘/1(5) (10)
a1 1 18.667 19.667 19.067 19.067 0
1 as 1 18.667 19.667 19.067 19.067 0
Sod}  Cost  p Uy BOVS) v 5
0 a1 0 28.000 28.000 19.067 19.067 0

7.2.6. (a) The joint density of Xi,..., X, and 6 is proportional to exp{—(1/2)(}_] X? —26S,, +n6?) —
(1/202)6?} where S, = >°] X;, so the posterior density of § given Xi,..., X, is proportional to this also.
This gives

114 no? o2S,
g0 Xy1,..., Xpn) = ceXp{—§ (0 — T no?

This is the normal distribution, A (62S,, /(1 +no?),02/(1 + no?)).

(b) With squared error loss, the Bayes terminal decision rule is d = E(0| X1, ..., X,,) = 025, /(14+no?),
with expected loss p, = 02/(1 +no?). Thus, the U, = nc+ (¢2/(1 + no?)) is constant, and since p,, — 0,
Theorems 3 and 4 imply that the Bayes sequential decision rule is the fixed sample size rule: Take a sample
of size n, where n is that value of j that minimizes U;, and estimate 6 to be 025, /(1 +no?. It has Bayes
risk min; (je + (02/(1 + no?)).

(¢) Let n be the integer j that minimizes jc+ 1/j. The rule that observes a fixed sample of size n
and estimates 6 to be S, /n is minimax since it has constant risk, nc + Eg(0 — S, /n)? = nc + 1/n, and is
extended Bayes (since the minimum Bayes risk of part (b) converges to nc+ 1/n as o?

)}

g
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7.2.7. (a) The posterior density of § given Xi, ..., X; is proportional to 8% +*~1exp{—0(A+5)}, which
makes it the gamma distribution, G(S; + a, (A +j)71).

(b) E(0 — a)?/60 is minimized by a = 1/Ef~! and the minimum value is Ef — 1/Ef~!. For the
G(S; +a,(A+4)71) distribution, we have E§ = (S; +«)/(A+j) and EO~ = (A +j)/(S; + a —1). So the
Bayes estimate is do = (S; + a —1)/(A +j) and the Bayes expected loss is p; = (A + 7).

(c) Since the U; = jc+ (A +j)~! are constant and since p; — 0, we have from Theorems 3 and 4 that
the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n is that value
of j that minimizes Uj, stop and estimate 6 to be (S, +a)/(A+n). It has Bayes risk min;(je+ (A +5)71).
Since n is the first j such that (j+1)c+(j+1)"! > je+j71, it is also the first j such that j(j +1) > 1/c,
and (adding 1/4 to both sides), the first j such that (j — 1/2)* > (1/c) + (1/4). From this we see that
n = [y/1/c+ 1/4], where [z] denotes the integer nearest to z.

(d) Consider the rule, call it (d,¢): Find n that minimizes jc + j~!, take a sample of size n and
estimate 6 to be S,/n. This corresponds to the rule of part (c) with & = 0 and A = 0. We will show
it is minimax by showing it has constant risk, and is extended Bayes. The risk function is R(6, (d, ¢)) =
je+Eg(0—S;/5)?/0 = je+ Var(S;/j)/0 = jc+1/j, independentof 6. Since the Bayes risks of (c), namely
min; (jc + (A +j)~1), converge to min;(je +j7!) as A — 0, we see that the rule (d,¢) is extended Bayes
and hence minimax.

7.2.8. (a) The joint density of X71,...,X,, and @ is proportional to "7~ !exp{\ + S,} where S, =
Y7 Xi, so the posterior density of 6 given Xi, ..., X,, must be proportional to this also. This is the gamma
distribution, G(n + a, (A +S,)71).

(b) E(f — a)?/6? is minimized by a = E(0~1)/E(6=2) and the minimum value is 1 — (E~1)2/E§2.
For the G(n+a, (A\+S,)~!) distribution, we have E§~! = (A+S,,)/(n+a—1) and E§=2 = (A+5,)?/((n+
a—1)(n+a—2)). Therefore, the Bayes estimate is d°, = (n +a —2)/(A+S,) and the Bayes terminal risk
is pp =1/(n+ a —1). (Note the misprint in the text.)

(¢c) Since the U, = nc+ 1/(n+ a — 1) are constant and since p, — 0, we have from Theorems 3 and
4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n
minimizes Uj, stop and estimate 6 to be (n+a —2)/(A+S,,). It has Bayes risk min; U;.

(d) Consider the rule, call it (d,¢): Find j that minimizes jc + (j — 1)~!, take a sample of size j and
estimate 6 to be (j —2)/S;. This corresponds to the rule of part (c) with & =0 and A = 0. We will show
it is minimax by showing it has constant risk, and is extended Bayes. The risk function is

R(0,(d, ¢)) = je + Eq(0 — (j — 2)/5;)* /6
=je+1-2(j = 2)Ee(05;)7" + (j — 2)°E(65;) >

The distribution of 6S; is G(j, 1) independent of 6 so the risk is independent of §. We find E(6S;)~! =
1/(j — 1) and E(0S;)"2 = 1/((j — 1)(j — 2)), provided j > 2. Substitution into the formula for R gives
R(9,(d,¢)) = jc+ (5 —1)~1. (This formula also holds for j = 2 as is checked by direct computation.) Since
the Bayes risks of (c), namely min, {nc+1/(n+a—1)}, converge to jc+(j—1)"! = min,{nc+1/(n—1)} as
a — 0, we see that the rule (d, ¢) is extended Bayes and minimax. The optimal j =1+ [\/(1/¢) + (1/4)],
where [z] denotes the integer nearest to x, is always at least 2.

7.2.9. (a) The joint density of Xi,...,X; and € is proportional to §~U+o+ exp{(\ + S;)/0} so the
posterior distribution of § given Xj,...,X; is proportional to this also. This is the reciprocal gamma
G+, (\+5;) ).

(b) For the G71(j + o, (A + S;)~ 1) distribution, we have E0~! = (j + «)/(A + S;) and EO72 =
(j+a)(j+a—1)/(A+S,)*. Therefore, the Bayes estimate is d} = E(6~")/E(072) = (A + S;)/(j +a +1)
and the Bayes terminal risk is p; =1 — (E071)2/E072=1/(j + a + 1).

(c) Since the U; = je+ (j + a+ 1)~! are constant and since p; — 0, we have from Theorems 3 and
4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n
minimizes Uj, stop and estimate 6 to be (A +S,)/(n + a +1). It has Bayes risk nc+ (n +a + 1)1,

(d) Consider the rule, call it (d,¢): Find j that minimizes jc + (j + 1)~!, take a sample of size j and
estimate 6 to be S;/(j + 1). This corresponds to the rule of part (c) with & =0 and A = 0. We will show
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it is minimax by showing it has constant risk, and is extended Bayes. The risk function is

R(0,(d,$)) = je+Eqg(0 — S;/(j +1))*/6°
=je+1-2(j+1)""Eg(S;/0) + (j + 1) *Eq(S;/6)*.

The distribution of S;/6 is G(j,1) independent of 6 so the risk is independent of §. We find E(S;/0) = j
and E(S;/0)%? = j(j +1). Substitution into the formula for R gives R(6, (d,¢)) = jc+ (j +1)~!. Since the
Bayes risks of (c), namely min;{jc+ (n+«a —1)7'}, converge to je+ (j — 1)~ = min;{jc+ (n — 1)~} as
a — 0, we see that the rule (d, ¢) is extended Bayes and minimax. The optimal j is [y/(1/c) + (1/4)] — 1,
where [x] denotes the integer nearest to z.



