Solutions to the Exercises of Section 2.7.

2.7.1. Let S; be a convex set in Fj, let A= S51,let © ={6;,...,0,} and consider the game (0, A, L)
with L(6;,a) = a;. If the random variable available to the statistician is degenerate at 0 for all § € ©, then
D =A, D*=A*, and (O, D*, R) is the same as (0, .A*, L). The risk set of Equation (2.3) reduces to

S ={(y1,...,yk) : for some § € A*, y; = L(0;,0), for j=1,...,k}.

We are to show S = S;.

(a) S1 CS: Let a€ Sy and let § be degenerate at a. Then a; = L(6;,9) so a€ S.

(b) S C Si: Let y € S and find a distribution § over A such that y; = L(6;,0) for all j. Then
y;j = EL(0;,Z) = EZ; where Z has distribution ¢. Since Sy is convex, we have y = EZ € S; from Lemma
3, thus showing S C 5.

2.7.2. Suppose © = {0;,...,0,} is finite, D is compact, and R(f,d) is continuous in d for each 6 € ©.
Then, the nonrandomized risk set, Sy, is the continuous image of the compact set, D, and hence is compact.
Since S is the convex hull of Sy by Corollary 1, and since the convex hull of a compact set is compact by
Theorem 2.4.2, it follows that S is compact.

2.7.3. Let S7 and S5 be disjoint closed convex subsets of k-space, and suppose that S; is bounded
and hence compact. Let S = {z:z=x—y}. Then S is convex and 0 ¢ S as in the proof of Theorem
1. Moreover, S is closed. (Proof. If z, € S and z, — 2z, find x, € S; and y, € Sz such that
Z, = X, — yn. Since S; is compact, there exists a subsequence x,  that converges, say x, — x € S7.
Then, y, =Xy —2p 2 X—2Z=y €Ss,80 z=x—y €5. ®m) Now by Lemma 1, there is a p such that
plz >0 forallz € S. Since S is closed, € = inf,cs p’z > 0, which implies 0 < € = infxes, yes, P’ (x—y) =
infyes, p7x — supy g, 'y, completing the proof.

2.7.4. In two dimensions, let S; = {(z1,22) : 1 > 0,22 > 1/x1} and Sz = {(y1,42) : y1 = 0, —00 <
y2 < oo}. Then S; and Sy are disjoint closed and convex sets. The separating hyperplane is unique and is
given by pT = (1,0). Yet, infycs, p'x =0 and SUDycsg, ply=0.

2.7.5. Suppose S is strictly convex and xg is not an interior point of S. If x( is not on the boundary of
S, then x, is not in the closure which is also convex so by Lemma 1 there is a p # 0 such that p? (x—xg) > 0
for all x € S and we are done. So assume that x( is on the boundary of S. By Theorem 1, there exists a
point p # 0 such that p7x > pTx( forall x € S.

Suppose pTx = pTxg for some x € S, x # x¢. If x is on the boundary of S, then since S is strictly
convex, the point (x+X¢)/2 is in the interior of S and p”(x+x¢)/2 = p?x(. Thus we may assume without
loss of generality that x is in the interior of S. But then y — e p is in the interior of S for sufficiently small
€, and this implies that pTxg < pT(x —ep) = pTx —ep’p < p'x = pT'x0, a contradiction that completes
the proof.



