(20) 1. (a) State Markov's inequality.

Solution: If $X \geq 0$, then $P(X \geq a) \leq E X / a$ for $a>0$.
(b) Prove Markov's inequality.

Solution: $a 1_{\{X \geq a\}} \leq X$. Taking expected values gives $a P(X \geq a) \leq E X$.
(c) Suppose X is $N(0,1)$. What explicit upper bound for $P\left(X^{2} \geq 3\right)$ does Markov's inequality provide?
Solution: $P\left(X^{2} \geq 3\right) \leq \frac{1}{3}$, since $E X^{2}=1$.
(15) 2. (a) State Chebyshev's inequality.

Solution: If $E X^{2}<\infty$, then

$$
P(|X-E X| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

(b) Deduce Chebyshev's inequality from Markov's inequality.

Solution: Apply Markov to the random variable $Y=(X-E X)^{2}$:

$$
P(|X-E X| \geq \epsilon)=P\left(Y \geq \epsilon^{2}\right) \leq \frac{E Y}{\epsilon^{2}}=\frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

(15) 3. (a) State the Weak Law of Large Numbers (WLLN).

Solution: If X_{1}, X_{2}, \ldots are i.i.d. with $E\left|X_{1}\right|<\infty$, and $S_{n}=X_{1}+\cdots+X_{n}$, then

$$
\frac{S_{n}}{n} \rightarrow E X_{1} \quad \text { in probability }
$$

(b) Prove the WLLN under a second moment assumption.

Solution: Assume $E X_{1}^{2}<\infty$. By Chebyshev, for $\epsilon>0$,

$$
P\left(\left|\frac{S_{n}}{n}-E X_{1}\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}\left(S_{n} / n\right)}{\epsilon^{2}}=\frac{\operatorname{Var}\left(X_{1}\right)}{n \epsilon^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$.
(10) 4. (a) Consider the three modes of convergence we discussed: A. Convergence in distribution, B. Convergence in probability, and C. Convergence a.s. (or with probability 1). Place the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in the spaces below so that the following is correct:

$$
(C) \text { implies }(B) \text { implies }(A) \text {. }
$$

(b) Give a counterexample that shows that the reverse of the second implication above is false. No explanation is necessary.
Solution: Let X_{1}, X_{2}, \ldots be i.i.d. non-constant random variables. Then $X_{n} \rightarrow X_{1}$ in distribution, but not in probability.
(20) 5. Suppose that X_{n} is $N\left(0, \frac{1}{n}\right)$.
(a) Show that $X_{n} \rightarrow 0$ in probability.

Solution:

$$
P\left(\left|X_{n}\right| \geq \epsilon\right) \leq \frac{E X_{n}^{2}}{\epsilon^{2}}=\frac{1}{n \epsilon^{2}} \rightarrow 0
$$

as $n \rightarrow 0$.
(b) Show that $X_{n} \rightarrow 0$ a.s.

Solution: Since

$$
\begin{gathered}
X_{n} \text { and } \frac{X_{1}}{\sqrt{n}} \text { have the same distribution, } \\
E X_{n}^{4}=\frac{E X_{1}^{4}}{n^{2}}
\end{gathered}
$$

so $\sum E X_{n}^{4}<\infty$. It follows that $X_{n}^{4} \rightarrow 0$ a.s., and hence $X_{n} \rightarrow 0$ a.s.
(20) 6. (a) State the Central Limit Theorem.

Solution: If X_{1}, X_{2}, \ldots are i.i.d. with $E X_{1}^{2}<\infty$, and $S_{n}=X_{1}+\cdots+X_{n}$, then

$$
\frac{S_{n}-n E X_{1}}{n \sqrt{\operatorname{Var}\left(X_{1}\right)}} \rightarrow N(0,1) \quad \text { in distribution. }
$$

(b) A UCLA basketball player knows that he usually makes 60% of his free throw attempts. What is the (approximate) probability that in 24 attempts he will make more than half of his shots?
Solution: Let S be the number of free throws he makes. Then

$$
\frac{S-14.4}{2.4} \sim N(0,1) \text { distributed. }
$$

Therefore

$$
P(S>12)=P\left(\frac{S-14.4}{2.4}>-1\right) \sim .8413 .
$$

