
Mathematics 170B – Selected HW Solutions.

F4. Suppose Xn is B(n, p).

(a) Find the moment generating functionMn(s) of (Xn−np)/
√

np(1− p).

Write q = 1 − p. The MGF of Xn is (pes + q)n, since Xn can be
written as the sum of n independent Bernoulli’s with parameter p, and
these have MGF pes + q. Therefore,

Mn(s) = E exp

{

s
Xn − np√

npq

}

= e−s
√

np/q
[

pes/
√
npq+q

]n
=

[

pes
√

q/np+qe−s
√

p/nq
]n
.

(b) Compute the limit

lim
n→∞

Mn(s),

directly, without using the central limit theorem.

We want to write Mn(s) in the form (1 + an
n
)n. Solving for an gives

an = n
[

pes
√

q/np + qe−s
√

p/nq − 1
]

.

Recalling that the expansion of the exponential is ex = 1+x+x2/2+· · ·
suggests that this should be rewritten in the form

an = np
[

es
√

q/np − 1− s
√

q/np
]

+ nq
[

e−s
√

p/nq − 1 + s
√

p/nq
]

.

Since

(1) lim
x→0

ex − 1− x

x2
=

1

2

(by applying L’Hopital’s rule twice),

lim
n→∞

an =
s2

2
.

So,

lim
n→∞

Mn(s) = es
2/2,

which is the mgf of the N(0, 1) distribution.

F5. Suppose Xn is Poisson with parameter n.
(a) Find the moment generating function Mn(s) of (Xn − n)/

√
n.

Since the MGF of the Poisson with parameter n is

en(e
s−1),

Mn(s) = e−s
√
n+n(es/

√

n−1).

(b) Compute the limit

lim
n→∞

Mn(s),

directly, without using the central limit theorem.

Taking logs gives

logMn(s) = n

[

es/
√
n − s√

n
− 1

]

,

1
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so using (1) again gives

lim
n→∞

logMn(s) =
s2

2
,

so that

lim
n→∞

Mn(s) = es
2/2

as in Problem F4.

G2. Suppose the random variables Xn satisfy EXn = 0, EX2
n ≤ 1,

and Cov(Xn, Xm) ≤ 0 for n 6= m. Show that

Sn

n
=

X1 + · · ·+Xn

n

converges to 0 in probability.

Solution: The proof follows the proof of the WLLN under a second
moment assumption: By Chebyshev,

P (|Sn/n| ≥ ǫ) ≤ 1

ǫ2n2
var(Sn).

But

var(Sn) =

n
∑

i,j=1

cov(Xi, Xj) ≤
n

∑

i=1

var(Xi) ≤ n.

Combining these gives

P (|Sn/n| ≥ ǫ) ≤ 1

ǫ2n
,

which tends to zero as n → ∞.

G3. Show that in each of the cases (a), (c), and (d) of Problem 5 on
page 288, the sequence actually converges a.s.

Solution: For (a): EY 2
n = 1

3n2 , so
∑

n EY 2
n < ∞. Therefore Y 2

n → 0

a.s., so Yn → 0 a.s. For (c), E|Yn| = 1
2n
, so

∑

nE|Yn| < ∞. Therefore
Yn → 0 a.s. For (d), there are two possible approaches: One is to show
that E(1 − Yn)

2 = 8
(n+1)(n+2)

, and proceed as in the other cases. The

other is to note that Yn is nondecreasing in n and is bounded above by
1. Therefore, Y = limn→∞ Yn exists for every ω, and satisfies Y ≤ 1.
To show that Y = 1 a.s., take 0 < ǫ < 1 and write

P (Y ≤ 1− ǫ) ≤ P (Yn ≤ 1− ǫ) = (1− (ǫ/2))n,

which tends to zero as n → ∞. Therefore P (Y < 1) = limǫ↓0 P (Y ≤
1− ǫ) = 0.
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G4. Suppose each Xn takes the values ±1 with probability 1
2
each.

Show that the random series
∞
∑

n=1

Xn

np

converges a.s. (which means that the partial sums converge a.s.) if
p > 1.

Solution: The series converges absolutely, since
∞
∑

n=1

|Xn|
np

=

∞
∑

n=1

1

np
< ∞.

Now use the fact that absolute convergence of a series implies conver-
gence.

H1. Suppose Xn are i.i.d. non-negative random variables.
(a) Show that

Xn

n
→ 0

in probability with no further assumptions. (You did this before in
case they are uniformly distributed on [−1, 1].)
Solution:

P (Xn/n > ǫ) = P (X1 > nǫ) → 0

as n → ∞.
Consider now two cases: (i) EX < ∞ and (ii) EX = ∞. Recall that

the series
∑

k

P (X1 > k) =
∑

k

P (Xk > k)

converges in case (i) and diverges in case (ii). (See Problem 3 on page
184. This gives the statement in terms of integrals rather than sums,
but there is no real difference.)
(b) Express

P (Xk ≤ k for all k ≥ n)

in terms of the probabilities P (Xk > k).
Solution:

∞
∏

k=n

[1− P (X1 > k)].

(c) Show that

lim
n→∞

P (Xk ≤ k for all k ≥ n) = 1

in case (i) and P (Xk ≤ k for all k ≥ n) = 0 for all n in case (ii).
(Suggestion: take logs.)



4

Solution: Since limx→0
log(1+x)

x
= 1 by L’Hopital, there is an ǫ > 0 so

that
x

2
≤ | log(1− x)| ≤ 3x

2
for 0 ≤ x ≤ ǫ.

Therefore, for sufficiently large k,

1

2
P (X1 > k) ≤ | log[1− P (X1 > k)]| ≤ 3

2
P (X1 > k).

The required statement now follows from the comparison theorem for
series.
(d) Conclude that

P

( ∞
⋃

n=1

{Xk ≤ k for all k ≥ n}
)

= 1 in case (i) and = 0 in case (ii).
Solution: In case (i), this follows from

P

( ∞
⋃

n=1

{Xk ≤ k for all k ≥ n}
)

≥ P (Xk ≤ k for all k ≥ m)

for any m. In case (ii), it follows from

P

( ∞
⋃

n=1

{Xk ≤ k for all k ≥ n}
)

≤
∞
∑

n=1

P (Xk ≤ k for all k ≥ n).

Note that by applying this to the random variables Xn/ǫ, the case
(i) statement can be strengthened to

P

( ∞
⋃

n=1

{Xk ≤ ǫk for all k ≥ n}
)

= 1

By considering a sequence of ǫ’s tending to 0, it can be further strength-
ened to

P (∀ǫ > 0 ∃n ≥ 1 such that ∀k ≥ n,Xk ≤ ǫk) = 1.

(e) Use part (d) to show that

Xn

n

converges to 0 a.s. in case (i) but not in case (ii).
Solution: In case (i), this now follows from part (d) and the definition
of the limit: for every

ω ∈ {∀ǫ > 0 ∃n ≥ 1 such that ∀k ≥ n,Xk ≤ ǫk},
Xn(ω)/n → 0. Case (ii) is similar.
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H2. Let U be uniform on [0, 1], and define random variablesX1, X2, ...
by writing the decimal expansion of U as

U = .X1X2X3 · · · .
(a) Show that X1, X2, X3 are independent.

Solution: For k = 0, 1, . . . , 9,

P (X1 = k) = P

(

k

10
< U <

k + 1

10

)

=
1

10
.

Similarly,

P (X1 = k,X2 = l, X3 = m) =
1

103
.

(b) Let Pn be the proportion of 3’s in the first n decimal digits of
U . Using the fact that the full sequence X1, X2, . . . is i.i.d., show that
Pn → 1

10
a.s.

Solution: Let Yi be the indicator of the event {Xi = 3}. Then

Pn =
1

n

n
∑

i=1

Yi.

Therefore, this follows from the SLLN.
(c) If we take the probability space to be Ω = [0, 1] with the usual

assignment of probabilities and U(ω) = ω, is it true that Pn → 1
10

for
every ω ∈ Ω? Explain.
Solution: No, e.g., ω = .5.
(d) Let Qn be the proportion of 3’s in the first n decimal digits

of U that are followed immediately by a 7. Show that Qn → 1
100

a.s.
(Suggestion: consider separately the even k’s for which Xk = 3, Xk+1 =
7 and the odd k’s for which Xk = 3, Xk+1 = 7.)
Solution: Now let Yi be the indicator of the event {Xi = 3, Xi+1 = 7}.
The Yi’s are no longer independent, but the sequences Y1, Y3, . . . and
Y2, Y4, . . . are each i.i.d. Therefore, by the SLLN,

1

n

n−1
∑

i=0

Y2i+1 and
1

n

n
∑

i=1

Y2i

each converges to 1
100

a.s. It follows that

Q2n =
1

2n

n−1
∑

i=0

Y2i+1 +
1

2n

n
∑

i=1

Y2i →
1

100
a.s.

The same argument works for Q2n+1.
You don’t need to show it, but the same argument can be used to

show that for any finite block of digits (say 238 · · ·47), that block occurs
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with limiting frequency 1
10n

a.s., where n is the length of the block. A
number in [0, 1] is called normal to the base 10 if it has this property
(for all finite blocks). An example of a normal number is obtained by
listing the positive integers in order:

.123456789101112131415161718 · · · .
(e) Show that the set of normal numbers to the base 10 in [0,1] has

probability 1. (This is known as the Borel Law of Normal Numbers.)
Solution: For each finite block B, let

AB = {ω : B does not occur with the right limiting frequency in ω}.
There are countably many such blocks, and P (AB) = 0 for each B, so

P

(

⋃

B

AB

)

= 0.

Any ω /∈ ∪BAB is normal.
Of course, the same is true for any base b = 1, 2, 3, . . . . A number is

called completely normal if it is normal to every base.
(f) Show that the set of completely normal numbers in [0,1] has

probability 1.
Solution: The argument is the same as that for part (e), since there
are countably many bases.

K2. Consider a sequence of independent trials, each of which has
three possible outcomes, A,B,C, with respective probabilities p, q, r
(p+ q + r = 1). Find the probability of the event D that an A run of
length m occurs before a B run of length n.

Solution: Let

u = P (D | X1 = A), v = P (D | X1 = B), w = P (D | X1 = C) = P (D).

Then

u =

∞
∑

k=2

P (D | X1 = A, . . . , Xk−1 = A,Xk = B)pk−2q

+

∞
∑

k=2

P (D | X1 = A, . . . , Xk−1 = A,Xk = C)pk−2r

=
m
∑

k=2

vpk−2q +
∞
∑

k=m+1

pk−2q +
m
∑

k=2

wpk−2r +
∞
∑

k=m+1

pk−2r

=
qv + rw

q + r
(1− pm−1) + pm−1.
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Similarly,

v =
pu+ rw

p+ r
(1− qn−1).

Solving gives

P (D) = w =
(q + r)pm(1− qn)

(q + r)pm + (p+ r)qn − (p+ q)pmqn
.

Recall that a Poisson process with parameter λ is a random collection
of points on [0,∞) whose distribution is determined by the following
equivalent properties:
(A) If T1, T2, . . . are the successive spacings between points, then

T1, T2, . . . are i.i.d. with the exponential distribution with parameter
λ.
(B) If N(t) is the number of points in [0, t], then for t1 < t2 < · · · , the

random variables N(t1), N(t2)−N(t1), N(t3)−N(t2), . . . are indepen-
dent Poisson random variables with parameters λt1, λ(t2 − t1), λ(t3 −
t2), . . . .
In class, we checked part of the equivalence: (i) If (B) holds, then T1

is Exponential (λ), and (ii) If (A) holds, then N(t) is Poisson (λ). In
the next two problems, you will check another case of the equivalence.

K3. Suppose (B) holds.
(a) Write the event {T1 > s, T1+T2 > s+ t} in terms of the random

variables N(s) and N(s + t), and use this to compute its probability.
Solution:

P (T1 > s, T1+T2 > s+t) = P (N(s) = 0, N(s+t) ≤ 1) = e−λ(s+t)(1+λt).

(b) Write P (T1 > s, T1 + T2 > s+ t) in terms of the joint density of
T1 and T2.
Solution: Letting f be the joint density,

P (T1 > s, T1+T2 > s+t) =

∫ ∞

0

∫ ∞

s

f(u, v)dudv−
∫ t

0

∫ s+t−v

s

f(u, v)dudv.

(c) Use the fact that the answers to parts (a) and (b) are equal to
show that T1 and T2 are independent Exponential (λ).
Solution: Equating the above expressions and differentiating with
respect to s gives

λe−λ(s+t)(1 + λt) =

∫ t

0

f(s+ t− v, v)dv +

∫ ∞

t

f(s, v)dv.



8

Differentiating this identity with respect to t gives (where f1 is the
partial derivative of f with respect to the first variable)

∫ t

0

f1(w − v, v)dv = −λ3te−λw,

where w = s+ t. Differentiating with respect to t gives

f1(w − t, t) = −λ3e−λw,

i.e.
f1(s, t) = −λ3e−λ(s+t).

Integrating gives
f(s, t) = λ2e−λ(s+t).

K4. Suppose (A) holds.
(a) Write the event {N(s) = k,N(s+ t)−N(s) = l} in terms of the

random variables T1, T2, . . . .
Solution: Letting Sn = T1 + · · ·+ Tn,

P (N(s) = k,N(s+t)−N(s) = l) = P (Sk < s < Sk+1, Sk+l < s+t < Sk+l+1).

(b) Use the fact that the sum of k independent Exponential (λ)
distributed random variables is Gamma (k, λ) to show that N(s) and

N(s + t)−N(s)

are independent Poisson distributed random variables with parameters
λs and λt respectively.
Solution: Conditioning on the values of Sk, Tk+1, Sk+l − Sk+1, and
letting fk(x) be the Gamma(k, λ) density, gives the following expression
for the above probability: (WLOG, assume l ≥ 1)

∫ ∫ ∫

A

fk(x)f1(y)fl−1(z)e
−λ(s+t−x−y−z)dzdydx,

where A = {x < s < x+ y, x+ y + z < s+ t}. The integrand is

e−λ(s+t) λk+l

(k − 1)!(l − 2)!
xk−1zl−2.

Integrating on 0 < z < s+ t− x− y gives the following expression for
the integral:

e−λ(s+t) λk+l

(k − 1)!(l − 1)!

∫ ∫

x<s<x+y<s+t

xk−1(s+ t− x− y)l−1dydx.

Integrating s− x < y < s+ t− x gives

e−λ(s+t) λk+l

(k − 1)!(l − 1)!

∫ s

0

xk−1 t
l

l
dx.
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Integrating on 0 < x < s gives

e−λ(s+t)λ
k+l

k!l!
tlsk

as required.


