Mathematics 170B - Selected HW Solutions.

F_{4}. Suppose X_{n} is $B(n, p)$.
(a) Find the moment generating function $M_{n}(s)$ of $\left(X_{n}-n p\right) / \sqrt{n p(1-p)}$.

Write $q=1-p$. The MGF of X_{n} is $\left(p e^{s}+q\right)^{n}$, since X_{n} can be written as the sum of n independent Bernoulli's with parameter p, and these have MGF $p e^{s}+q$. Therefore,
$M_{n}(s)=E \exp \left\{s \frac{X_{n}-n p}{\sqrt{n p q}}\right\}=e^{-s \sqrt{n p / q}}\left[p e^{s / \sqrt{n p q}}+q\right]^{n}=\left[p e^{s \sqrt{q / n p}}+q e^{-s \sqrt{p / n q}}\right]^{n}$.
(b) Compute the limit

$$
\lim _{n \rightarrow \infty} M_{n}(s),
$$

directly, without using the central limit theorem.
We want to write $M_{n}(s)$ in the form $\left(1+\frac{a_{n}}{n}\right)^{n}$. Solving for a_{n} gives

$$
a_{n}=n\left[p e^{s \sqrt{q / n p}}+q e^{-s \sqrt{p / n q}}-1\right] .
$$

Recalling that the expansion of the exponential is $e^{x}=1+x+x^{2} / 2+\cdots$ suggests that this should be rewritten in the form

$$
a_{n}=n p\left[e^{s \sqrt{q / n p}}-1-s \sqrt{q / n p}\right]+n q\left[e^{-s \sqrt{p / n q}}-1+s \sqrt{p / n q}\right] .
$$

Since

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\frac{1}{2} \tag{1}
\end{equation*}
$$

(by applying L'Hopital's rule twice),

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{s^{2}}{2}
$$

So,

$$
\lim _{n \rightarrow \infty} M_{n}(s)=e^{s^{2} / 2}
$$

which is the mgf of the $N(0,1)$ distribution.
F_{5}. Suppose X_{n} is Poisson with parameter n.
(a) Find the moment generating function $M_{n}(s)$ of $\left(X_{n}-n\right) / \sqrt{n}$.

Since the MGF of the Poisson with parameter n is

$$
\begin{gathered}
e^{n\left(e^{s}-1\right)} \\
M_{n}(s)=e^{-s \sqrt{n}+n\left(e^{s / \sqrt{n}}-1\right)} .
\end{gathered}
$$

(b) Compute the limit

$$
\lim _{n \rightarrow \infty} M_{n}(s),
$$

directly, without using the central limit theorem.
Taking logs gives

$$
\log M_{n}(s)=n\left[e_{1}^{s / \sqrt{n}}-\frac{s}{\sqrt{n}}-1\right]
$$

so using (1) again gives

$$
\lim _{n \rightarrow \infty} \log M_{n}(s)=\frac{s^{2}}{2}
$$

so that

$$
\lim _{n \rightarrow \infty} M_{n}(s)=e^{s^{2} / 2}
$$

as in Problem F_{4}.
G_{2}. Suppose the random variables X_{n} satisfy $E X_{n}=0, E X_{n}^{2} \leq 1$, and $\operatorname{Cov}\left(X_{n}, X_{m}\right) \leq 0$ for $n \neq m$. Show that

$$
\frac{S_{n}}{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

converges to 0 in probability.
Solution: The proof follows the proof of the WLLN under a second moment assumption: By Chebyshev,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right) \leq \frac{1}{\epsilon^{2} n^{2}} \operatorname{var}\left(S_{n}\right) .
$$

But

$$
\operatorname{var}\left(S_{n}\right)=\sum_{i, j=1}^{n} \operatorname{cov}\left(X_{i}, X_{j}\right) \leq \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right) \leq n .
$$

Combining these gives

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right) \leq \frac{1}{\epsilon^{2} n},
$$

which tends to zero as $n \rightarrow \infty$.
G_{3}. Show that in each of the cases (a), (c), and (d) of Problem 5 on page 288 , the sequence actually converges a.s.

Solution: For (a): $E Y_{n}^{2}=\frac{1}{3 n^{2}}$, so $\sum_{n} E Y_{n}^{2}<\infty$. Therefore $Y_{n}^{2} \rightarrow 0$ a.s., so $Y_{n} \rightarrow 0$ a.s. For (c), $E\left|Y_{n}\right|=\frac{1}{2^{n}}$, so $\sum_{n} E\left|Y_{n}\right|<\infty$. Therefore $Y_{n} \rightarrow 0$ a.s. For (d), there are two possible approaches: One is to show that $E\left(1-Y_{n}\right)^{2}=\frac{8}{(n+1)(n+2)}$, and proceed as in the other cases. The other is to note that Y_{n} is nondecreasing in n and is bounded above by 1. Therefore, $Y=\lim _{n \rightarrow \infty} Y_{n}$ exists for every ω, and satisfies $Y \leq 1$. To show that $Y=1$ a.s., take $0<\epsilon<1$ and write

$$
P(Y \leq 1-\epsilon) \leq P\left(Y_{n} \leq 1-\epsilon\right)=(1-(\epsilon / 2))^{n},
$$

which tends to zero as $n \rightarrow \infty$. Therefore $P(Y<1)=\lim _{\epsilon \downarrow 0} P(Y \leq$ $1-\epsilon)=0$.
G_{4}. Suppose each X_{n} takes the values ± 1 with probability $\frac{1}{2}$ each. Show that the random series

$$
\sum_{n=1}^{\infty} \frac{X_{n}}{n^{p}}
$$

converges a.s. (which means that the partial sums converge a.s.) if $p>1$.

Solution: The series converges absolutely, since

$$
\sum_{n=1}^{\infty} \frac{\left|X_{n}\right|}{n^{p}}=\sum_{n=1}^{\infty} \frac{1}{n^{p}}<\infty
$$

Now use the fact that absolute convergence of a series implies convergence.
H_{1}. Suppose X_{n} are i.i.d. non-negative random variables.
(a) Show that

$$
\frac{X_{n}}{n} \rightarrow 0
$$

in probability with no further assumptions. (You did this before in case they are uniformly distributed on $[-1,1]$.)

Solution:

$$
P\left(X_{n} / n>\epsilon\right)=P\left(X_{1}>n \epsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$.
Consider now two cases: (i) $E X<\infty$ and (ii) $E X=\infty$. Recall that the series

$$
\sum_{k} P\left(X_{1}>k\right)=\sum_{k} P\left(X_{k}>k\right)
$$

converges in case (i) and diverges in case (ii). (See Problem 3 on page 184. This gives the statement in terms of integrals rather than sums, but there is no real difference.)
(b) Express

$$
P\left(X_{k} \leq k \text { for all } k \geq n\right)
$$

in terms of the probabilities $P\left(X_{k}>k\right)$.

Solution:

$$
\prod_{k=n}^{\infty}\left[1-P\left(X_{1}>k\right)\right] .
$$

(c) Show that

$$
\lim _{n \rightarrow \infty} P\left(X_{k} \leq k \text { for all } k \geq n\right)=1
$$

in case (i) and $P\left(X_{k} \leq k\right.$ for all $\left.k \geq n\right)=0$ for all n in case (ii). (Suggestion: take logs.)

Solution: Since $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$ by L'Hopital, there is an $\epsilon>0$ so that

$$
\frac{x}{2} \leq|\log (1-x)| \leq \frac{3 x}{2} \quad \text { for } 0 \leq x \leq \epsilon
$$

Therefore, for sufficiently large k,

$$
\frac{1}{2} P\left(X_{1}>k\right) \leq\left|\log \left[1-P\left(X_{1}>k\right)\right]\right| \leq \frac{3}{2} P\left(X_{1}>k\right)
$$

The required statement now follows from the comparison theorem for series.
(d) Conclude that

$$
P\left(\bigcup_{n=1}^{\infty}\left\{X_{k} \leq k \text { for all } k \geq n\right\}\right)
$$

$=1$ in case (i) and =0 in case (ii).
Solution: In case (i), this follows from

$$
P\left(\bigcup_{n=1}^{\infty}\left\{X_{k} \leq k \text { for all } k \geq n\right\}\right) \geq P\left(X_{k} \leq k \text { for all } k \geq m\right)
$$

for any m. In case (ii), it follows from

$$
P\left(\bigcup_{n=1}^{\infty}\left\{X_{k} \leq k \text { for all } k \geq n\right\}\right) \leq \sum_{n=1}^{\infty} P\left(X_{k} \leq k \text { for all } k \geq n\right)
$$

Note that by applying this to the random variables X_{n} / ϵ, the case (i) statement can be strengthened to

$$
P\left(\bigcup_{n=1}^{\infty}\left\{X_{k} \leq \epsilon k \text { for all } k \geq n\right\}\right)=1
$$

By considering a sequence of ϵ 's tending to 0 , it can be further strengthened to

$$
P\left(\forall \epsilon>0 \exists n \geq 1 \text { such that } \forall k \geq n, X_{k} \leq \epsilon k\right)=1
$$

(e) Use part (d) to show that

$$
\frac{X_{n}}{n}
$$

converges to 0 a.s. in case (i) but not in case (ii).
Solution: In case (i), this now follows from part (d) and the definition of the limit: for every
$\omega \in\left\{\forall \epsilon>0 \exists n \geq 1\right.$ such that $\left.\forall k \geq n, X_{k} \leq \epsilon k\right\}$,
$X_{n}(\omega) / n \rightarrow 0$. Case (ii) is similar.
H_{2}. Let U be uniform on $[0,1]$, and define random variables X_{1}, X_{2}, \ldots by writing the decimal expansion of U as

$$
U=. X_{1} X_{2} X_{3} \cdots .
$$

(a) Show that X_{1}, X_{2}, X_{3} are independent.

Solution: For $k=0,1, \ldots, 9$,

$$
P\left(X_{1}=k\right)=P\left(\frac{k}{10}<U<\frac{k+1}{10}\right)=\frac{1}{10} .
$$

Similarly,

$$
P\left(X_{1}=k, X_{2}=l, X_{3}=m\right)=\frac{1}{10^{3}} .
$$

(b) Let P_{n} be the proportion of 3's in the first n decimal digits of U. Using the fact that the full sequence X_{1}, X_{2}, \ldots is i.i.d., show that $P_{n} \rightarrow \frac{1}{10}$ a.s.
Solution: Let Y_{i} be the indicator of the event $\left\{X_{i}=3\right\}$. Then

$$
P_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} .
$$

Therefore, this follows from the SLLN.
(c) If we take the probability space to be $\Omega=[0,1]$ with the usual assignment of probabilities and $U(\omega)=\omega$, is it true that $P_{n} \rightarrow \frac{1}{10}$ for every $\omega \in \Omega$? Explain.
Solution: No, e.g., $\omega=.5$.
(d) Let Q_{n} be the proportion of 3's in the first n decimal digits of U that are followed immediately by a 7 . Show that $Q_{n} \rightarrow \frac{1}{100}$ a.s. (Suggestion: consider separately the even k 's for which $X_{k}=3, X_{k+1}=$ 7 and the odd k 's for which $X_{k}=3, X_{k+1}=7$.)
Solution: Now let Y_{i} be the indicator of the event $\left\{X_{i}=3, X_{i+1}=7\right\}$. The Y_{i} 's are no longer independent, but the sequences Y_{1}, Y_{3}, \ldots and Y_{2}, Y_{4}, \ldots are each i.i.d. Therefore, by the SLLN,

$$
\frac{1}{n} \sum_{i=0}^{n-1} Y_{2 i+1} \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} Y_{2 i}
$$

each converges to $\frac{1}{100}$ a.s. It follows that

$$
Q_{2 n}=\frac{1}{2 n} \sum_{i=0}^{n-1} Y_{2 i+1}+\frac{1}{2 n} \sum_{i=1}^{n} Y_{2 i} \rightarrow \frac{1}{100} \quad \text { a.s. }
$$

The same argument works for $Q_{2 n+1}$.
You don't need to show it, but the same argument can be used to show that for any finite block of digits (say $238 \cdots 47$), that block occurs
with limiting frequency $\frac{1}{10^{n}}$ a.s., where n is the length of the block. A number in $[0,1]$ is called normal to the base 10 if it has this property (for all finite blocks). An example of a normal number is obtained by listing the positive integers in order:

$$
.123456789101112131415161718 \cdots
$$

(e) Show that the set of normal numbers to the base 10 in $[0,1]$ has probability 1. (This is known as the Borel Law of Normal Numbers.) Solution: For each finite block B, let
$A_{B}=\{\omega: B$ does not occur with the right limiting frequency in $\omega\}$.
There are countably many such blocks, and $P\left(A_{B}\right)=0$ for each B, so

$$
P\left(\bigcup_{B} A_{B}\right)=0
$$

Any $\omega \notin \cup_{B} A_{B}$ is normal.
Of course, the same is true for any base $b=1,2,3, \ldots$. A number is called completely normal if it is normal to every base.
(f) Show that the set of completely normal numbers in $[0,1]$ has probability 1 .
Solution: The argument is the same as that for part (e), since there are countably many bases.
K_{2}. Consider a sequence of independent trials, each of which has three possible outcomes, A, B, C, with respective probabilities p, q, r $(p+q+r=1)$. Find the probability of the event D that an A run of length m occurs before a B run of length n.

Solution: Let

$$
u=P\left(D \mid X_{1}=A\right), v=P\left(D \mid X_{1}=B\right), w=P\left(D \mid X_{1}=C\right)=P(D)
$$

Then

$$
\begin{aligned}
u= & \sum_{k=2}^{\infty} P\left(D \mid X_{1}=A, \ldots, X_{k-1}=A, X_{k}=B\right) p^{k-2} q \\
& +\sum_{k=2}^{\infty} P\left(D \mid X_{1}=A, \ldots, X_{k-1}=A, X_{k}=C\right) p^{k-2} r \\
= & \sum_{k=2}^{m} v p^{k-2} q+\sum_{k=m+1}^{\infty} p^{k-2} q+\sum_{k=2}^{m} w p^{k-2} r+\sum_{k=m+1}^{\infty} p^{k-2} r \\
= & \frac{q v+r w}{q+r}\left(1-p^{m-1}\right)+p^{m-1} .
\end{aligned}
$$

Similarly,

$$
v=\frac{p u+r w}{p+r}\left(1-q^{n-1}\right) .
$$

Solving gives

$$
P(D)=w=\frac{(q+r) p^{m}\left(1-q^{n}\right)}{(q+r) p^{m}+(p+r) q^{n}-(p+q) p^{m} q^{n}} .
$$

Recall that a Poisson process with parameter λ is a random collection of points on $[0, \infty)$ whose distribution is determined by the following equivalent properties:
(A) If T_{1}, T_{2}, \ldots are the successive spacings between points, then T_{1}, T_{2}, \ldots are i.i.d. with the exponential distribution with parameter λ.
(B) If $N(t)$ is the number of points in $[0, t]$, then for $t_{1}<t_{2}<\cdots$, the random variables $N\left(t_{1}\right), N\left(t_{2}\right)-N\left(t_{1}\right), N\left(t_{3}\right)-N\left(t_{2}\right), \ldots$ are independent Poisson random variables with parameters $\lambda t_{1}, \lambda\left(t_{2}-t_{1}\right), \lambda\left(t_{3}-\right.$ $\left.t_{2}\right), \ldots$.

In class, we checked part of the equivalence: (i) If (B) holds, then T_{1} is Exponential (λ), and (ii) If (A) holds, then $N(t)$ is Poisson (λ). In the next two problems, you will check another case of the equivalence.
K_{3}. Suppose (B) holds.
(a) Write the event $\left\{T_{1}>s, T_{1}+T_{2}>s+t\right\}$ in terms of the random variables $N(s)$ and $N(s+t)$, and use this to compute its probability.

Solution:

$P\left(T_{1}>s, T_{1}+T_{2}>s+t\right)=P(N(s)=0, N(s+t) \leq 1)=e^{-\lambda(s+t)}(1+\lambda t)$.
(b) Write $P\left(T_{1}>s, T_{1}+T_{2}>s+t\right)$ in terms of the joint density of T_{1} and T_{2}.
Solution: Letting f be the joint density,

$$
P\left(T_{1}>s, T_{1}+T_{2}>s+t\right)=\int_{0}^{\infty} \int_{s}^{\infty} f(u, v) d u d v-\int_{0}^{t} \int_{s}^{s+t-v} f(u, v) d u d v
$$

(c) Use the fact that the answers to parts (a) and (b) are equal to show that T_{1} and T_{2} are independent Exponential (λ).
Solution: Equating the above expressions and differentiating with respect to s gives

$$
\lambda e^{-\lambda(s+t)}(1+\lambda t)=\int_{0}^{t} f(s+t-v, v) d v+\int_{t}^{\infty} f(s, v) d v
$$

Differentiating this identity with respect to t gives (where f_{1} is the partial derivative of f with respect to the first variable)

$$
\int_{0}^{t} f_{1}(w-v, v) d v=-\lambda^{3} t e^{-\lambda w}
$$

where $w=s+t$. Differentiating with respect to t gives

$$
f_{1}(w-t, t)=-\lambda^{3} e^{-\lambda w}
$$

i.e.

$$
f_{1}(s, t)=-\lambda^{3} e^{-\lambda(s+t)}
$$

Integrating gives

$$
f(s, t)=\lambda^{2} e^{-\lambda(s+t)}
$$

K_{4}. Suppose (A) holds.
(a) Write the event $\{N(s)=k, N(s+t)-N(s)=l\}$ in terms of the random variables T_{1}, T_{2}, \ldots.
Solution: Letting $S_{n}=T_{1}+\cdots+T_{n}$,
$P(N(s)=k, N(s+t)-N(s)=l)=P\left(S_{k}<s<S_{k+1}, S_{k+l}<s+t<S_{k+l+1}\right)$.
(b) Use the fact that the sum of k independent Exponential (λ) distributed random variables is Gamma (k, λ) to show that $N(s)$ and

$$
N(s+t)-N(s)
$$

are independent Poisson distributed random variables with parameters λs and λt respectively.
Solution: Conditioning on the values of $S_{k}, T_{k+1}, S_{k+l}-S_{k+1}$, and letting $f_{k}(x)$ be the $\operatorname{Gamma}(k, \lambda)$ density, gives the following expression for the above probability: (WLOG, assume $l \geq 1$)

$$
\iiint_{A} f_{k}(x) f_{1}(y) f_{l-1}(z) e^{-\lambda(s+t-x-y-z)} d z d y d x
$$

where $A=\{x<s<x+y, x+y+z<s+t\}$. The integrand is

$$
e^{-\lambda(s+t)} \frac{\lambda^{k+l}}{(k-1)!(l-2)!} x^{k-1} z^{l-2} .
$$

Integrating on $0<z<s+t-x-y$ gives the following expression for the integral:

$$
e^{-\lambda(s+t)} \frac{\lambda^{k+l}}{(k-1)!(l-1)!} \iint_{x<s<x+y<s+t} x^{k-1}(s+t-x-y)^{l-1} d y d x
$$

Integrating $s-x<y<s+t-x$ gives

$$
e^{-\lambda(s+t)} \frac{\lambda^{k+l}}{(k-1)!(l-1)!} \int_{0}^{s} x^{k-1} \frac{t^{l}}{l} d x .
$$

Integrating on $0<x<s$ gives

$$
e^{-\lambda(s+t)} \frac{\lambda^{k+l}}{k!l!} t^{l} s^{k}
$$

as required.

