## Mathematics 170B - HW7 - Due Tuesday May 15, 2012.

Problems \#8,9,10,11 on page 290.
$G_{1}$. Recall that $X_{n}$ converges to $X$ in distribution if the corresponding distribution functions $F_{n}, F$ satisfy

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for all $x$ so that $F$ is continuous at $x$.
Show that if $X_{n}$ converges to 0 in distribution, then $X_{n}$ converges to 0 in probability.
$G_{2}$. Suppose the random variables $X_{n}$ satisfy $E X_{n}=0, E X_{n}^{2} \leq 1$, and $\operatorname{Cov}\left(X_{n}, X_{m}\right) \leq 0$ for $n \neq m$. Show that

$$
\frac{X_{1}+\cdots+X_{n}}{n}
$$

converges to 0 in probability.
Definition. A sequence $Y_{n}$ of random variables converges to $Y$ a.s. if

$$
P\left(\lim _{n \rightarrow \infty} Y_{n}=Y\right)=1
$$

Note: In class, I will show that if $\sum_{n=1}^{\infty} E\left|Y_{n}-Y\right|<\infty$, then $Y_{n}$ converges to $Y$ a.s.
$G_{3}$. Show that in cases (a), (c) and (d) of Problem 5 on page 288, the sequence actually converges a.s. (In case (b) it does not, but you need not show that.)
$G_{4}$. Suppose each $X_{n}$ takes the values $\pm 1$ with probability $\frac{1}{2}$ each. Show that the random series

$$
\sum_{n=1}^{\infty} \frac{X_{n}}{n^{p}}
$$

converges a.s. (which means that the partial sums converge a.s.) if $p>1$. (Actually, if the $X_{n}$ 's are also independent, then the random series converges if and only if $p>\frac{1}{2}$, but this is harder to prove.)

