Mathematics 170B - HW6 - Due Tuesday, May 8, 2012.

Problem 5 on page 288.
F_{1}. (a) Use the Schwartz inequality to show that for any random variable $X,\left(E X^{2}\right)^{2} \leq E X^{4}$.
(b) Find a PDF for which the corresponding random variable X satisfies $E X^{4}=\infty$ and $E X^{2}<\infty$.
F_{2}. Suppose X_{1}, X_{2}, \ldots are i.i.d. random variables satisfying $E X_{i}=$ 0 and $E X_{i}^{4}=1$. Letting $S_{n}=X_{1}+\cdots+X_{n}$, use problems E_{1} and $F_{1}(a)$ to show that

$$
P\left(\left|\frac{S_{n}}{n}\right|>1\right) \leq \frac{6}{n^{2}}
$$

(Recall that if $E X^{2}<\infty$, the proof of the WLLN shows that the above probability converges to zero at least at the rate c / n for some c. This problem shows that the stronger fourth moment assumption leads to a stronger conclusion on the rate of convergence.)
F_{3}. (a) Explain why if $a_{n}, a>0$,

$$
\lim _{n \rightarrow \infty} a_{n}=a \text { is equivalent to } \lim _{n \rightarrow \infty} \log a_{n}=\log a
$$

(b) Using part (a) and the fact that $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$, show that

$$
\lim _{n \rightarrow \infty} a_{n}=a \quad \text { implies } \quad \lim _{n \rightarrow \infty}\left(1+\frac{a_{n}}{n}\right)^{n}=e^{a} .
$$

(You will find this useful in doing the next two problems.)
F_{4}. Suppose X_{n} is $B(n, p)$.
(a) Find the moment generating function $M_{n}(s)$ of $\left(X_{n}-n p\right) / \sqrt{n p(1-p)}$.
(b) Compute the limit

$$
\lim _{n \rightarrow \infty} M_{n}(s),
$$

directly, without using the central limit theorem.
F_{5}. Suppose X_{n} is Poisson with parameter n.
(a) Find the moment generating function $M_{n}(s)$ of $\left(X_{n}-n\right) / \sqrt{n}$.
(b) Compute the limit

$$
\lim _{n \rightarrow \infty} M_{n}(s),
$$

directly, without using the central limit theorem.

