Mathematics 170B - HW3 - Due Tuesday, April 17, 2012.
Problems 17, 19, 22, 24 on pages 249-252, and
C_{1}. A fair die is tossed n times. Let X be the number of 1 's obtained, and Y be the number of 6's obtained. Find the covariance and correlation coefficient of X and Y (without using the joint distribution of X and Y).
C_{2}. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with mean μ and variance σ^{2}, and let

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

be the sample mean. Show that $X_{i}-\bar{X}$ and \bar{X} are uncorrelated.
C_{3}. Compute $E(X \mid X+Y)$, where X and Y are independent random variables with the $B(n, p)$ distribution.
C_{4}. Suppose the continuous random variables X, Y have joint density

$$
f(x, y)=\frac{e^{-x / y} e^{-y}}{y}, \quad 0<x, y<\infty
$$

Find $E(X \mid Y)$.
C_{5}. Suppose X_{1}, X_{2}, \ldots are independent Bernoulli random variables with parameter p, and let $N=\min \left\{i: X_{i}=1\right\}$ be the time of the first 1. Compute $E N$ and $\operatorname{var}(N)$ by conditioning on the value of X_{1} (i.e., without using the distribution of N).
C_{6}. Suppose that U is uniform on $[0,1]$, and that the conditional distribution of X given $U=p$ is $B(n, p)$. What is the distribution of X ?

