(10) 1. Suppose X has the Cauchy density

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad-\infty<x<\infty .
$$

Find the density of $Y=2 X+1$.

Solution:

$$
P(Y \leq y)=P\left(X \leq \frac{y-1}{2}\right)=\int_{-\infty}^{\frac{y-1}{2}} \frac{1}{\pi\left(1+x^{2}\right)} d x
$$

so Y has density

$$
\frac{2}{\pi} \frac{1}{4+(y-1)^{2}}
$$

(15) 2. Suppose X, Y, Z are independent random variables with mean zero and variance 1 , and let $U=3 X+4 Y$ and $V=X-2 Y+2 Z$.
(a) Find the variances of U and V.

Solution: $\operatorname{var}(U)=9+16=25$ and $\operatorname{var}(V)=1+4+4=9$.
(b) Find the covariance of U and V.

Solution: $\operatorname{cov}(U, V)=3-8=-5$.
(c) Find the correlation coefficient of U and V.

Solution: $\rho(U, V)=\frac{-5}{15}=-\frac{1}{3}$.
(20) 3. Suppose $X_{1}, X_{2}, X_{3}, \ldots$ are independent Bernoulli random variables with parameter p, and let $N=\min \left\{i: X_{i}=1\right\}$ be the time that the first 1 is observed.
(a) Express $E\left(N \mid X_{1}\right)$ and $E\left(N^{2} \mid X_{1}\right)$ in terms of $E N$ and $E N^{2}$.

Solution: $\left(N \mid X_{1}=1\right)={ }^{d} 1$ and $\left(N \mid X_{1}=0\right)={ }^{d} 1+N$. Therefore $E\left(N \mid X_{1}\right)=1+\left(1-X_{1}\right) E N$ and $E\left(N^{2} \mid X_{1}\right)=1+\left(1-X_{1}\right)(2 E N+$ $\left.E N^{2}\right)$.
(b) Use the result of part (a) to compute $E N$ and $\operatorname{var}(N)$ without using the distribution of N.
Solution: By the law of iterated expectations,

$$
E N=1+E N(1-p), \quad E N^{2}=1+\left(2 E N+E N^{2}\right)(1-p)
$$

Solving gives $E N=\frac{1}{p}, E N^{2}=\frac{2-p}{p^{2}}$, and $\operatorname{var}(N)=\frac{1-p}{p^{2}}$.
(15) 4. A box contains n balls, numbered $1,2, \ldots, n$. A collection of m balls is drawn WITH replacement. Let Z be the largest number drawn.
(a) Find the distribution function of Z.

Solution: For $1 \leq k \leq n$,

$$
F(k)=P(\text { all balls drawn are } \leq k)=\left(\frac{k}{n}\right)^{m}
$$

(b) Find the PMF of Z.

Solution:

$$
p(k)=\left(\frac{k}{n}\right)^{m}-\left(\frac{k-1}{n}\right)^{m} .
$$

(20) 5. Suppose $X_{1}, X_{2}, X_{3} \ldots$ are i.i.d. Bernoulli random variables with parameter p, and $S_{n}=X_{1}+\cdots+X_{n}$ be their partial sums. For $k \geq 1$, let $N_{k}=\min \left\{n \geq 1: S_{n}=k\right\}$ be the time at which the k th 1 is observed. Let $M_{k}(s)$ be the moment generating function of N_{k}.
(a) Compute $M_{1}(s)$.

Solution:

$$
\begin{aligned}
M_{1}(s) & =E e^{s N_{1}}=\sum_{k=1}^{\infty} P\left(N_{1}=k\right) e^{s k}=\sum_{k=1}^{\infty} p(1-p)^{k-1} e^{s k} \\
& =p e^{s} \sum_{k=0}^{\infty}\left[(1-p) e^{s}\right]^{k}=\frac{p e^{s}}{1-(1-p) e^{s}} .
\end{aligned}
$$

(b) Find a relation that expresses $M_{k}(s)$ in terms of $M_{1}(s)$.

Solution: $M_{k}(s)=\left[M_{1}(s)\right]^{k}$.
(c) Use the result of part (b) to compute the mean of N_{k}.

Solution: $E N_{k}=\left.\frac{d}{d s} M_{k}(s)\right|_{s=0}=k\left[M_{1}(0)\right] M_{1}^{\prime}(0)=\frac{k}{p}$.
(20) 6. A fair coin is tossed $n \geq 4$ times. Let X be the number of times that the pattern HTH is observed. Using indicators,
(a) compute $E X$, and

Solution: Let X_{i} be the indicator of the event that HTH is observed on tosses $i, i+1, i+2$. Then $X=\sum_{i=1}^{n-2} X_{i}$. It follows that $E X=\frac{n-2}{8}$.
(b) compute $\operatorname{Var}(X)$.

Solution:

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Cov}(X, X)=\sum_{i, j=1}^{n-2} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =(n-2) \operatorname{Var}\left(X_{1}\right)+2(n-3) \operatorname{Cov}\left(X_{1}, X_{2}\right)+2(n-4) \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
& =\frac{7}{64}(n-2)-\frac{1}{64}(2 n-6)+\frac{1}{64}(2 n-8)=\frac{7 n-16}{64} .
\end{aligned}
$$

