Math 131BH - Week 6
Textbook pages covered: 185-192

Periodic functions

Inner products, the L? metric, and convolution for periodic functions
Trigonometric polynomials

Approximation by trigonometric polynomials

Fourier series; Fourier and Plancherel theorems
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Overview of Fourier series

In the last two weeks, we discussed the issue of how certain functions
(for instance, compactly supported continuous functions) could be ap-
proximated by polynomials. Later, we showed how a different class
of functions (real analytic functions) could be written exactly (not ap-
proximately) as an infinite polynomial, or more precisely a power series.

Power series are already immensely useful, especially when dealing with
special functions such as the exponential and trigonometric functions
discussed earlier. However, there are some circumstances where power
series are not so useful, because one has to deal with functions (e.g. /)
which are not real analytic, and so which do not have power series.

Fortunately, there is another type of series expansion, known as Fourier
series, which is also a very powerful tool in analysis (though used for
slightly different purposes). Instead of analyzing compactly supported
functions, it instead analyzes periodic functions; instead of decompos-
ing into polynomials, it decomposes into trigonometric polynomials.
Roughly speaking, the theory of Fourier series asserts that just about
every periodic function can be decomposed as an (infinite) sum of sines
and cosines.



A historical note: Jean-Baptiste Fourier (1768-1830) was, among other
things, the governor of Egypt during the reign of Napoleon. After the
Napoleonic wars, he returned to mathematics. He introduced Fourier
series in an important 1807 paper in which he used them to solve what
is now known as the heat equation. At the time, the claim that every
periodic function could be expressed as a sum of sines and cosines was
extremely controversial, even such leading mathematicians as Euler
declared that it was impossible. Nevertheless, Fourier managed to show
that this was indeed the case, although the proof was not completely
rigorous and was not totally accepted for almost another hundred years.

There will be some similarities between the theory of Fourier series and
that of power series, but there are also some major differences. For
instance, the convergence of Fourier series is usually not uniform (i.e.
not in the L* metric), but instead we have convergence in a different
metric, the L?-metric. Also, we will need to use complex numbers
heavily in our theory, while they played only a tangential role in power
series.

The theory of Fourier series (and of related topics such as Fourier inte-
grals and the Laplace transform) is vast, and deserves an entire course
in itself. (At UCLA, that course is Math 133, Introduction to Fourier
Analysis). It has many, many applications, most directly to differential
equations, signal processing, electrical engineering, physics, and analy-
sis, but also to algebra and number theory. We will only give the barest
bones of the theory here, however, and almost no applications.
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Periodic functions

The theory of Fourier series has to do with the analysis of (complex-
valued) periodic functions, which we now define.

Definition Let L > 0 be a real number. A function f : R — C is
periodic with period L, or L-periodic, if we have f(x + L) = f(x) for
every real number z.

Example The real-valued functions f(z) = sin(z) and f(z) = cos(x)
are 2m-periodic, as is the complex-valued function f(z) = e*. These
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functions are also 4w-periodic, 67-periodic, etc. (why?). The function
f(z) = z, however, is not periodic. The constant function f(z) =1 is
L-periodic for every L.

If a function f is L-periodic, then we have f(x + kL) = f(x) for ev-
ery integer k (why? Use induction for the positive k, and then use
a substitution to convert the positive k result to a negative k result.
The k = 0 case is of course trivial). In particular, if a function f is
1-periodic, then we have f(z + k) = f(z) for every k € Z. Because
of this, 1-periodic functions are sometimes also called Z-periodic (and
L-periodic functions called LZ-periodic).

Example For any integer n, the functions cos(27nz), sin(2rnx), and
e?m are all Z-periodic. (What happens when n is not an integer?).
Another example of a Z-periodic function is the function f : R — C
defined by f(z) := 1 when & € [n,n + 3) for some integer n, and
f(z) := 0 when z € [n+ 3,n+ 1) for some integer n. This function is
an example of a square wave.

Henceforth, for simplicity, we shall only deal with functions which are
Z-periodic (for the general theory of L-periodic functions, see the home-
work). Note that in order to completely specify a Z-periodic function
f : R — C, one only needs to specify its values on the interval [0, 1),
since this will determine the values of f everywhere else. This is be-
cause every real number x can be written in the form x = k + y where
k is an integer (called the integer part of z, and sometimes denoted [z])
and y € [0,1) (this is called the fractional part of z, and sometimes
denoted {z}). (For those of you who have seen the construction of the
real numbers in 131AH, you can challenge yourself to actually prove
that this decomposition x = k + y exists and is unique). Because of
this, sometimes when we wish to describe a Z-periodic function f we
just describe what it does on the interval [0, 1), and then say that it is
extended periodically to all of R. This means that we define f(z) for
any real number z by setting f(z) := f(y), where we have decomposed
x = k + y as discussed above. (One can in fact replace the interval
[0,1) by any other half-open interval of length 1, but we will not do so
here).



e The space of complex-valued continuous Z-periodic functions is denoted
C(R/Z;C). (The notation R/Z comes from algebra, and denotes the
quotient group of the additive group R by the additive group Z; more
information in this can be found in Math 110B). By “continuous” we
mean continuous at all points on R; merely being continuous on an
interval such as [0, 1] will not suffice, as there may be a discontinuity
between the left and right limits at 1 (or at any other integer). Thus
for instance, the functions sin(27wnz), cos(2mnz), and €*™ are all ele-
ments of C(R/Z; C), as are the constant functions, however the square
wave function described earlier is not in C'(R/Z; C) because it is not
continuous. Also the function sin(z) would also not qualify to be in
C(R/Z; C) since it is not Z-periodic.

e A couple basic properties of C(R/Z; C).
e Lemma 1

e (i) (Continuous periodic functions are bounded) If f € C(R/Z;C),
then f is bounded (i.e. there exists a real number M > 0 such that
|f(z)| < M for all x € R).

e (ii) (Continuous periodic functions form a vector space and an algebra)
If f,g € C(R/Z;C), then the functions f + g, f — g, and fg are also
in C(R/Z;C). Also, if ¢ is any complex number, then the function c¢f
is also in C(R/Z; C).

e (iii) (Uniform limit of continuous periodic functions is continuous peri-
odic) If (f,)5° is a sequence of functions in C(R/Z; C) which converges
uniformly to another function f : R — C, then f is also in C(R/Z; C).

e Proof. See Week 6 homework. O

e One can make C'(R/Z;C) into a metric space by re-introducing the
now familiar sup-norm metric

doo(f,9) = sup [f(z) = g(z)| = sup |f(z) - g(2)|

zeR z€[0,1)

of uniform convergence. (Why is the first supremum the same as the
second?). Using this metric, one can show that C(R/Z;C) is a com-
plete metric space, but we will not need to do so here.
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Inner products on periodic functions

e From Lemma 1 we know that we can add, subtract, multiply, and take
limits of continuous periodic functions. We will need a couple more
operations on the space C'(R/Z;C), though. The first one is that of
inner product.

e Definition If f,g € C(R/Z; C), we define the inner product (f, g) to
be the quantity

(f,9)= ]f(x)g(a:) dzx.

0,1

e (Note: in order to integrate a complex-valued function, f(z) = g(z) +
ih(z), we use the definition that [, f = [, 9+ 1 [, le we
integrate the real and imaginary parts of the function separately. Thus
for instance [, ,(1+iz) dz = [, 41l do +i [, yode=1+3i Itis
easy to verify that all the standard rules of calculus (integration by
parts, fundamental theorem of calculus, substitution, etc.) still hold
when the functions are complex-valued instead of real-valued).

e Example Let f be the constant function f(z) := 1, and let g(z) be
the function g(z) := *™*®. Then we have

e—27rz':u e—27ri _ 60 1—=1

— 1e2miz dp = 2T g0 — z=1 _ _ 0.
29) /[0,1] ‘ ! /[0,1}6 v —2m =0 —2m1 —2mi

e In general, the inner product {f,g) will be a complex number. (Note
that f(z)g(z) will be Riemann integrable since both functions are
bounded and continuous.)

e Roughly speaking, the inner product is to the space C(R/Z; C) as the
dot product z -y is to Euclidean spaces such as R"; see Math 115A for
more details on this. We list some basic properties of the inner product
below (for a more in-depth study of inner products on vector spaces,
see Math 115A).

e Lemma 2. Let f,g,h € C(R/Z;C).



(i) (Hermitian property) We have (g, f) = (f, ).

(ii) (Positivity) The number (f, f) is real and non-negative: (f, f) > 0.
We have (f, f) =0 if and only if f =0 (i.e. f(z) =0 for all z € R).

(iii) (Linearity in the first variable) We have (f + g, h) = (f, h) + (g, h).
For any complex number ¢, we have (cf, g) = ¢(f, g)-

(iv) (Antilinearity in the second variable) We have (f,g+h) = (f, g) +
(f, h). For any complex number ¢, we have (f, cg) = ¢(f, g).

Proof. See Week 6 homework. O

From the positivity property, it makes sense to define the L? norm || f||»
of a function f € C(R/Z;C) by the formula

1fll2 = V{F F) = ( f(x)f(x)dw)1/2=(/ [f (@) dz)'/2.
] (0,1

[0,1

Thus ||f]|2 > 0 for all f. The norm || f||2 is sometimes called the root
mean square of f.

Example If f(x) is the function €*™*, then

I = ([ e dnr = ([ vanr ==,
[0,1]

[0,1]

This L? norm is related to, but is distinct from, the L® norm || f||« =
sup, R |f(z)|. For instance, if f(r) = sin(z), then | f|l.c = 1 but
flle = % In general we always have the inequality [|f|l2 < ||flle
(why?).

Some basic properties of the L? norm are given below.
Lemma 3. Let f,g € C(R/Z;C).

(i) (Non-degeneracy) We have || f||s = 0 if and only if f = 0.
(ii) (Cauchy-Schwarz inequality) We have [(f, g)| < || fll2]lg||2-

(iii) (Triangle inequality) We have || f + gll2 < ||f]l2 + [|9]|2-
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(iv) (Pythagoras theorem) If (f, g) = 0, then ||f + g||3 = || fI[3 + Ilgll3-
(v) (Homogeneity) If ¢ is a complex number, then ||cf||2 = |c||| f||2-
Proof. See Week 6 homework. 0

In light of Pythagoras’s theorem, we sometimes say that f and g are
orthogonal iff (f, g) = 0.

We can now define the L? metric d: on C(R/Z;C) by defining

dps(f,9) = |f —gllo = ( / (@) - (@) dz)l2.

[0,1]

One can easily verify that d» is indeed a metric (this is similar to
Q2(b) of Assignment 1). Indeed, the L? metric is very similar to the /2
metric on Euclidean spaces R", which is why the notation is deliber-
ately chosen to be similar; you should compare the two metrics yourself
to see the analogy.

Note that a sequence f;, of functions in C(R/Z; C) will converge in the
L? metric to f € C(R/Z;C) if di2(fn, f) — 0 as n — oo, or in other
words that

lim | fu(z) — f(2)|* dz = 0.
]

n—oQ [0’1

The notion of convergence in L? metric is different from that of uniform
or pointwise convergence; see homework.

The L? metric is not as well-behaved as the L> metric. For instance,
it turns out the space C(R/Z;C) is not complete in the L? metric,
despite being complete in the L metric; for instance, it is easy to find
a sequence of continuous periodic functions which converge in L? to a
discontinuous periodic function. (Can you think of one? Try converging
to the square wave function).

X %k ok ok ok

Trigonometric polynomials



We now define the concept of a trigonometric polynomial. Just as poly-
nomials are combinations of the functions z™ (sometimes called mono-
mials), trigonometric polynomials are combinations of the functions

e?™e (sometimes called characters).

Definition For every integer n, we let e, € C(R/Z;C) denote the

function

en(x) = 2™,

This is sometimes referred to as the character with frequency n.

Definition A function f € C(R/Z;C) is said to be a trigonometric
polynomial if we can write f = ZT]:]:_N cné, for some integer N > 0
and some complex numbers (c,) .

Example. The function f = 4e_y +ie_; —2e5+ 0e; — 3ey is a trigono-
metric polynomial; it can be written more explicitly as

f(x) — 46—47ri.’13 + ie—?ﬂ'i.’l) _ 2 _ 3647”:$.

Example. For any integer n, the function f(x) := cos(2wnz) is a
trigonometric polynomial, since cos(2mnz) = w and thus
f = te_, + 3e,. Similarly the function f(z) := sin(2mnz) is a trigono-
metric polynomial since f = ;—ile_n + %en. In particular, any linear

combination of sines and cosines is also a trigonometric polynomial, for
instance f(z) =3+ icos(2rx) + 4isin(4rz) is a trigonometric polyno-
mial.

The Fourier theorem will allow us to write any function in C(R/Z; C)
as a Fourier series, which is to trigonometric polynomials as power series
is to polynomials. To do this we will use the inner product structure
from the previous section. The key computation is

Lemma 4. (Characters are an orthonormal system) For any integers
n and m, we have (e,,e,) = 1 when n = m and (e,, e,) = 0 when
n # m. Also, we have ||e,|| = 1.

Proof. See Week 6 homework. O



As a consequence, we have a formula for the co-efficients of a trigono-
metric polynomial.

Corollary 5. Let f = 3V

ne_nN Cn€n be a trigonometric polynomial.
Then we have the formula

Cn = <f, en>
for all integers —N < n < N. Also, we have 0 = (f,e,) whenever
n > N or n < —N. Also, we have the identity

N

IF15="2 leal

n=—N
Proof. See Week 6 homework. O

We rewrite the conclusion of this corollary in a different way.

Definition For any function f € C(R/Z;R), and any integer n € Z,
we define the n'® Fourier coefficient of f, denoted f(n), by the formula

A~

f(n):=(feq) = (z)e™2™n dy.

[0,1]

The function f : Z — C is called the Fourier transform of f.

N
n=-—

From Corollary 5, we thus see that whenever f = >
trigonometric polynomial, we have

N Cnén is a

o

f: Z <f,en>en = Z <faen)en

n—=——oo

and in particular we have the Fourier inversion formula

or in other words



Also, from the second identity of Corollary 5 we have the Plancherel

formula
o

IFz= > 1/ ()P

n=-—oo

e We stress that at present we have only proven the Fourier inversion and
Plancherel formulae in the case when f is a trigonometric polynomial.
Note that in this case that the Fourier coefficients f(n) are mostly zero
(indeed, they can only be non-zero when —N < n < N), and so this
infinite sum is really just a finite sum in disguise. In particular there
are no issues about what sense the above series converge in; they both
converge pointwise, uniformly, and in L? metric, since they are just
finite sums.

e In the next few sections we will extend the Fourier inversion and Plancherel
formulae to general functions in C'(R/Z;C), not just trigonometric
polynomials. (It is also possible to extend the formula to discontinuous
functions such as the square wave, but we will not do so here). To do
this we will need a version of the Weierstrass approximation theorem,
this time requiring that a continuous periodic function be approxi-
mated uniformly by trigonometric polynomials. Just as convolutions
were used in the proof of the polynomial Weierstrass approximation
theorem, we will also need a notion of convolution tailored for periodic
functions.

* % k % %

Periodic convolutions

e The goal of this section is to prove the

e Weierstrass approximation theorem for trigonometric poly-
nomials. Let f € C(R/Z;C), and let ¢ > 0. Then there exists a
trignometric polynomial P such that ||f — Pl < e.

e In other words, any continuous periodic function can be uniformly ap-
proximated by trigonometric polynomials. To put it another way, if we
let P(R/Z;C) denote the space of all trigonometric polynomials, then
the closure of P(R/Z; C) in the L* metric is C(R/Z; C).
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e It is possible to prove this theorem directly from the Weierstrass ap-
proximation theorem from the previous week’s notes; however we shall
instead prove this theorem from scratch, in order to introduce a couple
interesting notions, notably that of periodic convolution. However, the
proof here should strongly remind you of the arguments used to prove
the other Weierstrass approximation theorem.

e Definition Let f,g € C(R/Z; C). Then we define the periodic convo-
lution f x g : R — C of f and g by the formula

frg(x):= | fW)g(x —y) dy.

0,1

e Note that this formula is slightly different from the convolution for
compactly supported functions defined in the previous week’s notes,
because we are only integrating over [0, 1] and not on all of R. Thus,
in principle we have given the symbol f * g two conflicting meanings.
However, in practice there will be no confusion, because it is not possi-
ble for a function to both be periodic and compactly supported (unless
it is zero, but since 0 x f = f * 0 = 0 under both definitions of convo-
lution, there is still no confusion).

e Some basic properties of periodic convolution are as follows.
e Lemma 6 Let f,g,h € C(R/Z;C).

e (i) The convolution f * g is continuous and Z-periodic. In other words,
f+xge€ CR/Z;C).

e (ii) We have fxg=g=x* f.

o (iii) We have fx(g+h)=f+xg+ f+xhand (f+g)xh=fxh+gxh.
For any complex number ¢, we have c¢(f * g) = (cf) * g = f * (cg).

e Proof. See Week 6 homework. O

e Now we observe an interesting identity: for any f € C(R/Z;C) and
any integer n, we have

f *€p = f(n)en

11



e To prove this, we compute

f*@n(.’ll') — f( ) 2min(z—y) dy

[0,1]

= [ et dy = f(m)e*™ = f(n)en
0,1
as desired.

e More generally, we see from Lemma 6(iii) that for any trigonometric
. n=N
polynomial P =) """ c,e,, we have

n=N
f*P= E cn(f xep) = g N)Cpen.-
n—i :

e In particular, the periodic convolution of any function in C'(R/Z;C)
with a trigonometric polynomial, is again a trigonometric polynomial.
(Compare with Lemma 6 of Week 4/5 notes).

e An optional remark: as a consequence of the above identity and Corol-
lary 5, we have

F*P(n) = f(n)e, = f(n)P(n).

This is in fact part of a more general inequality, that

Fxg(n) = f(n)a(n);

a fancy way of saying this is that the Fourier transform intertwines
convolution and multiplication. While this identity is important (and
is very useful in clarifying the nature of convolutions), we will not use
it in this course.

e Next, we introduce the periodic analogue of an approximation to the
identity.

e Definition. Let ¢ > 0 and 0 < § < 1/2. A function f € C(R/Z;C) is
said to be a periodic (¢,6) approzimation to the identity if the following
properties are true:
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(i) f(z) > 0forallz € R, and f, f=1.
(i1) We have f(z) <eforall § < |z| <1 -—0.
Now we have the analogue of Lemma 4 from Week 4/5 notes:

Lemma 7 For every ¢ > 0 and 0 < § < 1/2, there exists a trigonomet-
ric polynomial P which is an (g, ) approximation to the identity.

Proof. We sketch the proof of this lemma here, and leave the comple-
tion of it as homework.

Let N > 1. We define the Fejér kernel Fy to be the function

N

Fy = Z (1- %)en.

n=—N

Clearly Fy is a trigonometric polynomial. We observe the identity

| Nl
Fy =51 el
n=0
(why?). But from the geometric series formula we have

(2) ey —eg  e™WV-DZgin(rNg)
en(z) = =
" e — € sin(7zx)

when z is not an integer, (why?) and hence we have the formula

When z is an integer, the geometric series formula does not apply, but
one has Fy(x) = N in that case, as one can see by direct computation.
In either case we see that Fy(x) > 0 for any z. Also, we have

/ Fy(z)dz =) ( —%)/[Ol]en:(l—%)lzl

[051] n=—N
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(why?). Finally, since sin(mNz) < 1, we have

1
F < <
w(@) < Nsin(rz)? — Nsin(md)?

whenever § < |z| < 1 —§ (this is because sin is increasing on [0, 7/2]
and decreasing on [7/2,7]). Thus by choosing N large enough, we can
make Fy(z) <eforall § < |z] <1-—34. O

e Now we can prove the periodic Weierstrass approximation theorem.
Let f be any element of C(R/Z;C); we know that f is bounded, so
that we have some M > 0 such that |f(z)| < M for all z € R.

e Let £ > 0 be arbitrary. Since f is uniformly continuous, there exists a
0 > O such that |f(z)— f(y)| < € whenever |[z—y| < §. Now use Lemma
7 to find a trigonometric polynomial P which is a (¢, §) approximation
to the identity. Then f x P is also a trigonometric polynomial. We
estimate || f — f * P||oo-

e Let x be any real number. We have
[f(z) = f*P(z)| = If(:rg — P x f(z)|

=[f(@) = Jioq flz = y)P(y) dyl
= | Jou f(@)PW) dy — [, f(x —y)P(y) dyl

< Jou 1/ (@) = flz = )| P(y) dy
< Jiog 1f(@) = fl@ = 9)|PWy) dy + [;5, 51f(2) = fl@ —y)|P(y) dy
+ 1-46.1 |f($) - f(.’E - y)‘P(y) dy

[1-4,1]
0.0 EP () dy + f[é,l—é} 2Me dy
+ f[l—a,l] \[f(x—=1) = f(z—y)|P(y) dy
0,41 eP(y) dy + f[5,1—5} 2Me dy
+f[1—5,1] eP(y) dy
<e+2Me+e¢
= (2M + 2)e.

Thus we have ||f — f * P|loo < (2M + 2)e. Since M is fixed and ¢ is
arbitrary, we can thus make f x P arbitrarily close to f in sup norm,
which proves the periodic Weierstrass approximation theorem.
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The Fourier and Plancherel theorems

Based on the Weierstrass approximation theorem, we can now gen-
eralize the Fourier and Plancherel identities to arbitrary continuous
functions.

/\

Fourier theorem For any f € C(R/Z;C), the series > - f(n)e,
converges in L? metric to f. In other words, we have

N
Jm f = 3 Fmenla =0

Proof. Let ¢ > 0. We have to show that there exists an Ny such that
Ilf — Zfzv: ~ f(n)en]l2 < e for all sufficiently large N.

By the Weierstrass approximation theorem, we can find a trigonometric
polynomial P = Zgi_% Cney such that ||f — Pl < €, for some Ny >
0. In particular we have ||f — P||» < e.

Now let N > Ny, and let Fy := ZZZJXN f(n)en. We claim that ||f —
Fylls < e. First observe that for any |m| < N, we have

N

<f_FN=em) fem Z enaem f(m)—f(m)zo,

where we have used Lemma 4. In particular we have

since we can write Fiy — P as a linear combination of the e,, for which
|m| < N. By Pythagoras’s theorem we therefore have

If =PIl = If = Enllz + |Fx = Pl

and in particular
If=Fnll2 <|[[f=Pll2<e

as desired. O
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e Note that we have only obtained convergence of the Fourier series
> f(n)e, to f in the L? metric. One may ask whether one has
convergence in the uniform or pointwise sense as well, but it turns
out (perhaps somewhat surprisingly) that the answer is no to both of
those questions. However, if one assumes that the function f is not
only continuous, but is also continuously differentiable, then one can
recover pointwise convergence; if one assumes continuously twice differ-
entiable, then one gets uniform convergence as well. We will not prove
these results in this course, as they are a little tricky; they will be cov-
ered however in Math 133. However, we will prove one theorem about

when one can improve the L? convergence to uniform convergence:

e Theorem 8 Let f € C(R/Z; C), and suppose that the series >.°° ___|f(n)]

is absolutely convergent. Then the series
formly to f. In other words, we have

o

. n)e, converges uni-
n= oof( ) n g

N
Jim[If _ZNf(mennoo = 0.

e Proof. By the Weierstrass M-test, we see that ) f(n)e, con-
verges to SOME function F', which by Lemma 1(iii) is also continuous
and Z-periodic. (Strictly speaking, the Weierstrass M test was phrased
for series from n = 1 to n = oo, but also works for series from n = —oo
to n = 4o00; this can be seen by splitting the doubly infinite series into
two pieces). Thus

N
dm IF = 3 fwenll =0

which implies that

N—oo

N
lim |F— > f(n)eall» =0
n=—N

since the L? norm is always less than or equal to the L™ norm. But
the sequence SN f(n)e, is already converging in L? metric to f by
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the Fourier theorem, so can only converge in L? metric to F if F = f
(cf. Lemma 4 of Week 1 notes). Thus F' = f, and so we have

N
Jm s = 32 Fmenllo =0

as desired. O

As a corollary of the Fourier theorem, we can obtain the Plancherel
identity:

Plancherel theorem For any f € C(R/Z; C), the series .2 ___|f(n)?
is absolutely convergent, and

o0

IFz=>_ 1/ )

n=-—oo

Proof. Let ¢ > 0. By the Fourier theorem we know that

N
If =Y fn)eall2 <e
n=—N

if N is large enough (depending on ¢). In particular, by the triangle
inequality this implies that

N
Ifllz=e <1l Y Fneallz < [ fll2 +e
n=—N
On the other hand, by Corollary 5 we have

N
1Y fmealls = ( Z HOIEE
n=—N

and hence

N

(£l = €)* Z < (I£]l2 +2)*.
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Taking lim sup, we obtain

N
(1fll2 —€)* < lim sup o F@)P < (£l +e)*.
—oo, TN

Since ¢ is arbitrary, we thus obtain by the squeeze test that
N

tim sup 3 |Fm)P = 713

N—ox =N

and the claim follows. O

e There are many other properties of the Fourier transform, but we will
not develop them here. In the homework you will see a small application
of the Fourier and Plancherel theorems.
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