THE BANACH-TARSKI PARADOX

TERENCE TAO

ABSTRACT. An exposition of the Banach-Tarski paradox.

1. INTRODUCTION

Let SO(3) denote the group of rotation operators on R®. The first version of
the Banach-Tarski paradox, which we give below, shows that we can find a group
of rotations with the curious property that G' can be disassembled into four pieces,
which after rotation can be reassembled to form two complete copies of G.

Theorem 1.1 (Banach-Tarski paradox, first version). There ezists a countable sub-
group G of SO(3), and a partition

G=G1YG8G36Gy
into disjoint sets G1,G2,G3, Gy, such that one can write
G =G1 ¥ AG, = G3 W BGy
for some rotations A, B € SO(3).

Proof We first need to find two rotation operators A, B such that no non-trivial
word from the alphabet A, B, A1, B~! gives the identity, where “nontrivial” means
that the word is non-empty, that A and A~! are never adjacent, and B and B~!
are never adjacent. This is easily done but requires some algebra and we defer it
to the Appendix. Assuming we have these operators, we let G be the subgroup of
SO(3) generated by A, B, A=, B~1; this is thus the group of all non-trivial words
using the alphabet 4, B, A~1, B~!, together with the empty word I, which is the
identity. In particular we have the partition

G={I}UGMA)UGMA HYUGB)UGB™)

where G(A) is the set of all non-trivial words in G which start with A, etc. Observe
that
G=G(A)wAG(A™),

because every word in G either starts with A, or is equal to A times a non-trivial
word beginning with A~!, but never both. Similarly we have

G = G(B)wBG(B™).
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We are almost done, except that we have to deal with the empty word I. But this
is easily accomplished by defining
Gi:=GA)U{l,A 1, A2 43 .}
Go:=GAH\{A A2, 473 ..}

G3 := G(B)
Gy := G(Bil)
and one easily verifies that all the claims of the theorem hold. [ ]

Note that the above theorem did not require the axiom of choice. However, the
following corollary, which passes from the countable rotation group G to most of
the sphere S2, does rely very much on the axiom of choice.

Corollary 1.2 (Hausdorff paradox, first version). There ezists a countable subset
C of the sphere S%, and a decomposition

(52\0) = Ql W Qz W Qg (] Q4
such that
(S2\C) = Q1 W AQ, = Q3 & BQy
for some rotation matrices A, B € SO(3).

Proof Let A, B,G,G1,G2,G3,G4 be as in Theorem 1.1. Each rotation in G fixes
two points on the sphere S? (the intersection of S? with the axis of the rotation);
let C' be the union of all those fixed points. Then the rotation group G acts
freely on the complement S?\C. Thus, using the axiom of choice, one can foliate
S?2\C =W, x Gz for some set X (picking one representative from each G-orbit in

S2\C). If one then sets €; := l), -y Gix then the claim now follows from Theorem
1.1. [ ]

Next, we eliminate this countable set C, using the following simple lemma.

Lemma 1.3. Let C be a countable subset of the sphere S2. Then there exists a
decomposition

52 =Y, WX
such that
S\C = %, ¥ RS,

for some rotation matriz R € SO(3).

Proof Pick R at random. Since C' is countable, then with probability 1 we can
ensure that any two elements of C lie in distinct R-orbits, i.e. R‘C N R'C = ()
whenever i # j. We then set

Y :=CURCUR*CU...; %;:=8%\%,
and the claim follows. [
Combining this Lemma with the preceding corollary, we obtain

Corollary 1.4. There ezists a partition

S2ZF1HJ...H'JF8
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and rotation matrices Ry,... ,Rg € SO(3) such that
4 8
i=1 i=5

Since the punctured ball B3\0 can be viewed in polar co-ordinates as the product
of the sphere S? and the interval (0, 1], we conclude

Corollary 1.5 (Banach-Tarski paradox). There exists a partition
B3\{0}=E 1 ¥...w Eg
and rotation matrices R, ... ,Rg € SO(3) such that

4 8
B3\{0} = Lﬂ R;E; = L+J R;E;.
i=1 i=5
Of course, at least one of the F; has to be non-Lebesgue measurable. One can
eliminate the puncture at the origin if one allows translations as well as rotations,
by using a trick similar to that used to prove Lemma 1.3; we leave this as an exercise
to the reader.

2. APPENDIX: THE ALGEBRAIC BIT

We now give the rotation operators A, B € SO(3) needed to prove Theorem 1.1.
It turns out that we can give very explicit matrices, namely

3 4 4 3 3 4 4 3
A = (< —y,—= - ; B = - —Z,—= -z).
(w,y,2) (5w+ 29 —pet 5y,z), (z,y,2) = (, Yt EH Tyt 52)

These are easily seen to be rotation matrices with inverses

4 .
5% 5% 55 502 5 5
Now we claim that no non-trivial composition of A, B, A=, B~1 gives the iden-
tity. It suffices to show that no non-trivial composition of the operators 5A, 5B,
541, 5B~ gives a linear operator whose coefficients are all divisible by 5. We
now work in the finite field geometry F, where F5 = Z/5Z is the field of order 5.
Then we have

5A(z,y,2) := (3x + 4y, —4z + 3y,0); 5B(x,y,2) := (0,3y + 4z, —4y + 32)
and
5A Y(x,y,2) ;= (3z — 4y, 4z + 3y,0); 5B '(z,y,2) := (0,3y — 42,4y + 32).
Each of these operators are rank one operators in Fg:
range(5A) = span((3, —4,0)) = ker(54~ ")+
range(54 1) = span((3,4,0)) = ker(54)*
range(5B) = span((0,3, —4)) = ker(5B~ ")+
range(5B 1) = span((0,3,4)) = ker(5B)*.

From this we see that any non-trivial combination of 54, 54~!, 5B, 5B~! (in which
5A and 5A~! are never adjacent, and 5B and 5B~ are never adjacent) will always
be a non-zero operator, as desired, because the ranges and kernels are skew.

4 4 4
AN (@,y,2) = (Ca 24202 B@9,2) = (0 3y~ 575y + 39)
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