(Q-1) A real valued continuous function satisfies for all real x and y the functional equation

$$
f\left(\sqrt{x^{2}+y^{2}}\right)=f(x) f(y)
$$

Prove that $f(x)=[f(1)]^{x^{2}}$. [Hint: First prove the theorem for all numbers of the form $2^{n / 2}$ where n is an integer. Then prove the theorem for all numbers of the form $\sqrt{m / 2^{n}}, m$ an integer, n a non-negative integer.]
(Q-2) Let f be defined in the interval $[0,1]$ by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ 1 / q & \text { if } x=p / q \text { (in lowest terms) }\end{cases}
$$

(a) Prove that f is discontinuous on each rational number in $[0,1]$.
(b) Prove that f is continuous on each irrational number in $[0,1]$.
(Q-3) Suppose $f:[0,1] \rightarrow[0,1]$ is continuous. Prove that there exists a number c in $[0,1]$ such that $f(c)=c$.
(Q-4) A rock climber starts to climb a mountain at 7 am on Saturday and gets to the top at 5 pm . He camps on top and climbs back down on Sunday, starting at 7 am and getting back to his original starting point at 5 pm . Show that at some time of day on Sunday he was at the same elevation as he was at that time on Saturday.
(Q-5) Define f by

$$
f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Let $g(x)=x+2 f(x)$. Show that $g^{\prime}(0)>0$ but that g is not monotonic in any open interval about 0 .
(Q-6) (a) Show that $5 x^{4}-4 x+1$ has a root between 0 and 1.
(b) If $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers satisfying

$$
\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0
$$

show that the equation $a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0$ has at least one real root.
(Q-7) Evaluate $\lim _{n \rightarrow \infty} 4^{n}\left(1-\cos \left(\theta / 2^{n}\right)\right)$.
(Q-8) Calculate

$$
\lim _{x \rightarrow \infty} x \int_{0}^{x} e^{t^{2}-x^{2}} d t
$$

(Q-9) Evaluate each of the following:
(a) $\lim _{n \rightarrow \infty}\left(\frac{n}{1^{2}+n^{2}}+\frac{n}{2^{2}+n^{2}}+\cdots+\frac{n}{n^{2}+n^{2}}\right)$.
(b) $\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \ldots\left(1+\frac{n}{n}\right)\right)^{1 / n}$.
(Q-10) Let $f:[0,1] \rightarrow(0,1)$ be continuous. Show that the equation

$$
2 x-\int_{0}^{x} f(t) d t=1
$$

has one and only one solution in the interval $[0,1]$.

