(Q-1) Find the power series expansion for $1 /\left(x^{2}+5 x+6\right)$.
(Q-2) Solve the recurrence relation $a_{0}=1, a_{1}=0, a_{2}=-5$, and for $n \geq 3$

$$
a_{n}=4 a_{n-1}-5 a_{n-2}+2 a_{n-3}
$$

(Q-3) Sum the finite series $a_{0}+a_{1}+\cdots+a_{n}$, where $a_{0}=2, a_{1}=17$, and for $i>1, a_{i}=7 a_{i-1}-12 a_{i-2}$.
(Q-4) Solve the recurrence relation:

$$
a_{n}=\left(\sqrt{a_{n-1}}+2 \sqrt{a_{n-2}}\right)^{2}
$$

with initial condition $a_{0}=a_{1}=1$.
(Q-5) Solve the recurrence relation:

$$
a_{n}=\sqrt{\frac{a_{n-2}}{a_{n-1}}}
$$

with initial condition $a_{0}=8, a_{1}=1 /(2 \sqrt{2})$. (Hint: Let $b_{n}=\ln a_{n}$.)
(Q-6) Find the general term formula for the sequence $\left(y_{n}\right)_{n \geq 0}$ with $y_{0}=1$ and $y_{n}=a y_{n-1}+b^{n}$ for $n \geq 1$, where a and b are two fixed distinct real numbers.
(Q-7) Prove the inclusion-exclusion principle:
$\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right|$
by induction on n.
(Q-8) How many positive integers less than 1000 are not divisible by 2,3 , or 7 ?
(Q-9) What is the probabiliy that the sum of two (uniform) randomly chosen numbers in the interval $[0,1]$ does not exceed 1 and their product does not exceed $\frac{2}{9}$?
(Q-10) Let $\alpha \in(0,1)$. If two points are selected (uniformly) at random from a straight line segement of length 1 , what is the probability that the distance between them is at least α ?

