(Q-1) The number 3 can be expressed as a sum of one or more positive integers, taking order into account, in four ways, namely, $3,1+2,2+1$, and $1+1+1$. Show that any positive integer n can be so expressed in 2^{n-1} ways.
(Q-2) In how many ways can 10 be expressed as a sum of 5 nonnegative integers, when order is taken into account? (Hint: Find an equivalent problem in which the phrase " 5 nonnegative integers" is replaced by " 5 positive integers".)
(Q-3) Given n objects arranged in a row. A subset of these objects is called unfriendly if no two of its elements are consecutive. Show that the number of unfriendly subsets with k elements is $\binom{n-k+1}{k}$. (Hint: Adopt an idea similar to that used in Larson 1.3.6.)
(Q-4) Let $a_{1}, a_{2}, \ldots, a_{n}$ be a permutation of the set $S_{n}=\{1,2, \ldots, n\}$. An element i of S_{n} is called a fixed point of this permutation if $a_{i}=i$. A derangement of S_{n} is a permutation of S_{n} having no fixed points. Let g_{n} be the number of derangements of S_{n}. Show that

$$
g_{1}=0, \quad g_{2}=1
$$

and

$$
g_{n}=(n-1)\left(g_{n-1}+g_{n-2}\right), \quad \text { for } n>2
$$

(Hint: a derangement either interchanges the first element with another element, or it doesn't.)
(Q-5) Sum: $1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots+(-1)^{n}\binom{n}{n}$.
(Q-6) Sum: $1 \times 2\binom{n}{2}+2 \times 3\binom{n}{3}+\cdots+(n-1) n\binom{n}{n}$.
(Q-7) Sum: $\binom{n}{1}+2^{2}\binom{n}{2}+3^{2}\binom{n}{3}+\cdots+n^{2}\binom{n}{n}$.
(Q-8) Sum: $\binom{n}{1}-2^{2}\binom{n}{2}+3^{2}\binom{n}{3}-\cdots+(-1)^{n+1} n^{2}\binom{n}{n}$.
(Q-9) Prove $\binom{r}{0}\binom{s}{n}+\binom{r}{1}\binom{s}{n+1}+\binom{r}{2}\binom{s}{n+2}+\cdots+\binom{r}{r}\binom{s}{n+r}=\binom{r+s}{s-n}$.
(Q-10) Prove $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}$.

