(Q-1) If $a^{-1} b a=b^{-1}$ and $b^{-1} a b=a^{-1}$ for elements a, b of a group, prove that $a^{4}=b^{4}=1$.
(Q-2) Let R be a ring with identity, and let $a \in R$. Suppose there is a unique element a^{\prime} such that $a a^{\prime}=1$. Prove that $a^{\prime} a=1$.
(Q-3) Let p be a prime number, and let $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$. \mathbb{Z}_{p} is a field under the operations of addition and multiplication modulo p.
(a) Show that $0,1, \ldots, p-1$ are the zeros of $x^{p}-x$ (considered as a polynomial over \mathbb{Z}_{p}). Conclude that $x^{p}-x=x(x-1)(x-2) \ldots(x-(p-1))(\bmod p)$.
(b) Wilson's theorem. From part (a), show that

$$
(p-1)!=-1 \quad(\bmod p)
$$

(Q-4) Let $n=2^{p-1}\left(2^{p}-1\right)$, and suppose that $2^{p}-1$ is a prime number. Show that the sum of all (positive) divisors of n, not including n itself, is exactly n. (A number having this property is called a perfect number.)
(Q-5) Sum the series $1+22+333+\cdots+n(\overbrace{11 \ldots 1}^{n})$.
(Q-6) A sequence is defined by $a_{1}=2$ and $a_{n}=3 a_{n-1}+1$. Find the sum $a_{1}+a_{2}+\cdots+a_{n}$.
(Q-7) Verify the following formula:

$$
\sum_{k=1}^{n} \sin ((2 k-1) \theta)=\frac{\sin ^{2}(n \theta)}{\sin \theta}
$$

(Q-8) Sum the following:
(a) $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n-1}{n!}$.
(b) 1×1 ! $+2 \times 2!+3 \times 3!+\cdots+n \times n!$.
(c) $\frac{2}{1 \times 2 \times 3}+\frac{4}{2 \times 3 \times 4}+\frac{6}{3 \times 4 \times 5}+\cdots+\frac{2 n}{n(n+1)(n+2)}$.
(Q-9) Evaluate $\prod_{n=2}^{\infty}\left(1-1 / n^{2}\right)$.
(Q-10) Let F_{1}, F_{2}, \ldots be the Fibonacci sequence. Use the telescoping property to prove

$$
F_{1}+F_{3}+\cdots+F_{2 n-1}=F_{2 n}
$$

