(Q-1) Let $p>5$ be a prime. Show that the number $\overbrace{11 \ldots 11}^{p-1}$ (with $p-1$ digits of 1) is divisible by p.
(Q-2) Calculate $2^{998}(\bmod 121)$.
(Q-3) Let $p>5$ be a prime. Prove that $p^{8} \equiv 1(\bmod 240)$.
(Q-4) Find polynomials $F(x)$ and $G(x)$ such that

$$
\left(x^{8}-1\right) F(x)+\left(x^{5}-1\right) G(x)=x-1
$$

(Q-5) Show that $x^{4 a}+x^{4 b+1}+x^{4 c+2}+x^{4 d+3}, a, b, c, d$ positive integers, is divisible by $x^{3}+x^{2}+x+1$. (Hint: $\left.x^{3}+x^{2}+x+1=\left(x^{2}+1\right)(x+1).\right)$
(Q-6) Factor $x^{8}+x^{4}+1$ into irreducibles
(a) over the rationals,
(b) over the reals,
(c) over the complex numbers.
(Q-7) Here are two results that are useful in factoring polynomials with integer coefficients into irreducibles.
Rational-Root Theorem. If $P(x)=a_{n} x^{n}+\cdots+a_{0}$ is a polynomial with integer coefficients, and if the rational number r / s (r and s are relatively prime) is a root of $P(x)=0$, then r divides a_{0} and s divides a_{n}.

Gauss' Lemma Let $P(x)$ be a polynomial with integer coefficients. If $P(x)$ can be factored into a product of two polynomials with rational coefficients, then $P(x)$ can be factored into a product of two polynomials with integer coefficients
(a) Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial of degree n with integral coefficients. If a_{0}, a_{n} and $f(1)$ are odd, prove that $f(x)=0$ has no rational roots.
(b) For what integer a does $x^{2}-x+a$ divide $x^{13}+x+90$?
(Q-8) (a) Let $F(x)$ be a polynomial over the real numbers. Prove that a is a zero of multiplicity $m+1$ if and only if $F(a)=F^{\prime}(a)=\cdots=F^{(m)}(a)=0$ and $F^{(m+1)}(a) \neq 0$.
(b) The equation $f(x)=x^{n}-n x+n-1=0, n>1$, is satisfied by $x=1$. What is the multiplicity of this root?
(Q-9) Given r, s, t are the roots of $x^{3}+a x^{2}+b x+c=0$,
(a) Evaluate $1 / r^{2}+1 / s^{2}+1 / t^{2}$, provided $c \neq 0$.
(b) Find a polynomial equation whose roots are r^{2}, s^{2}, t^{2}.
(Q-10) Prove that if p is a prime, then $a b^{p}-b a^{p}$ is divisible by p.

