NAME:

MATH 100 Final

December 13, 2017

- You have 3 hours.
- This is a non-collaborative closed-book exam. You are not allowed to use books, notes, or any electronic devices (such as calculators, phones, computers) during the exams.
- There are a total of 10 problems and a total of 22 pages.
- You need to justify all answers.
- Write your solutions in the space below the questions. If you need more space use the back of the page.
- Do not forget to write your name in the space above.

2

1	10
2	10
3	10
4	10
5	10
6	10
7	10
8	10
9	10
10	10
Total	100
Do not write in this box.	

(Q-1) Prove by induction on $n \geq 1$ that

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n}
$$

(Q-2) If $a, b, c \in \mathbb{R}$ are required to satisfy $a^{2}+b^{2}+c^{2}=1$, what is the maximum of the expression $3 a+4 b+12 c$? When is it attained?
(Q-3) Find all pairs of integers (x, y) satisfying $7 x-4 y=1$.
(Q-4) Prove that the polynomial $x^{3 a}+x^{3 b+1}+x^{3 c+2}$ is divisible by $x^{2}+x+1$ for all natural numbers a, b, c.
(Q-5) Sum the series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}
$$

(Q-6) What is the probability that the geometric mean of two random numbers x, y chosen (uniformly and independently) from $[0,1]$ is greater than 0.5 ?
(Q-7) Let $A B C$ be an equilateral triangle of side length d, and let O be its centroid. Let P be a point at distance r from O. Calculate

$$
P A^{2}+P B^{2}+P C^{2}
$$

in terms of d and r.
(Q-8) Count the number of functions $\{1,2,3\} \rightarrow\{1,2, \ldots, 100\}$ that are:
(a) Injective.
(b) Strictly increasing.
(c) Increasing, but not necessarily strictly.
(Q-9) Solve the recurrence relation

$$
a_{n}=a_{n-1}+a_{n-2}-a_{n-3}
$$

with initial conditions $a_{0}=1, a_{1}=2$, and $a_{2}=4$.
(Q-10) Calculate the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{k^{2}+n^{2}}
$$

