Name:

Math 100 : Problem Solving
Final Exam
Instructor: Ciprian Manolescu

You have 180 minutes.

Each problem is worth 10 points.
No books, notes or calculators are allowed.

1. Prove by induction on $n \geq 1$ that

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<2 \sqrt{n}
$$

2. (a) Find the minimum of the expression

$$
(a+b)(b+2 c)(c+5 d)(a+10 d)
$$

over all possible $a, b, c, d>0$ such that $a b c d=500$.
(b) For what values of a, b, c, d is the minimum attained?
3. Find all pairs of integers (x, y) such that $9 x+5 y=2$.
4. For what values of $a, b \in \mathbb{R}$ is the polynomial $P(x)=x^{50}+a x+b$ divisible by $(x+1)(x+2) ?$
5. Calculate the infinite series:

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}
$$

6. (a) How many functions $f:\{1,2,3\} \rightarrow\{1,2,3,4\}$ are there?
(b) How many of these functions are one-to-one (injective)?
7. Pick two real numbers $x, y \in[0,10]$ at random. What is the probability that $x+y \leq 12$?
8. Let $A B C$ be a triangle and let $D \in B C, E \in A C, F \in A B$ be such that

$$
\frac{B D}{B C}=\frac{C E}{A C}=\frac{A F}{A B}=\frac{1}{3} .
$$

Show that the triangles $A B C$ and $D E F$ have the same centroid.
9. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)=\sqrt{f(x)^{2}+f(y)^{2}}
$$

for all $x, y \in \mathbb{R}$.
10. Calculate the integral

$$
\int_{0}^{1} \frac{e^{x+3}}{e^{x+3}+e^{4-x}} d x
$$

Do not write on this page.

1		out of 10 points
2		out of 10 points
3		out of 10 points
4		out of 10 points
5		out of 10 points
6		out of 10 points
7		out of 10 points
8		out of 10 points
9		out of 10 points
10		out of 10 points
Total		out of 100 points

