Name:

Math 100 : Problem Solving
Final Exam
Instructor: Ciprian Manolescu

You have 180 minutes.

Each problem is worth 10 points.
No books, notes or calculators are allowed.

1. Use induction on n to prove that

$$
\left(1+\frac{1}{1^{2}}\right)\left(1+\frac{1}{2^{2}}\right) \ldots\left(1+\frac{1}{n^{2}}\right) \leq 5\left(1-\frac{1}{n}\right)
$$

for all $n \geq 2$.
2. If $a, b, c>0$ are required to satisfy $a^{2}+b^{2}+c^{2}=1$, what is the maximum of the expression $a+2 b+2 c$?
3. Find all pairs of integers (x, y) such that $4 x-3 y=1$.
4. Let a, b, c be the roots of the equation

$$
x^{3}+2 x^{2}-9 x-1=0 .
$$

Write down a cubic equation whose roots are $a b, b c$, and $a c$.
5. Let F_{n} be the Fibonacci numbers, defined by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$.
(a) Show that

$$
\frac{1}{F_{n-1} F_{n+1}}=\frac{1}{F_{n-1} F_{n}}-\frac{1}{F_{n} F_{n+1}}
$$

for $n \geq 2$.
(b) Sum the infinite series:

$$
\sum_{n=2}^{\infty} \frac{1}{F_{n-1} F_{n+1}} .
$$

6. Multiple choice: Circle the correct answer. (No justifications necessary in this problem.)
(a) The number of all functions $f:\{1,2,3\} \rightarrow\{1,2, \ldots, 50\}$ is
(A) $3 \cdot 50$;
(B) $50 \cdot 49 \cdot 48$;
(C) $\binom{50}{3}$;
(D) 3^{50};
(E) 50^{3}.
(b) The number of injective functions $f:\{1,2,3\} \rightarrow\{1,2, \ldots, 50\}$ is
(A) 0;
(B) $50 \cdot 49 \cdot 48$;
(C) $\binom{50}{3}$;
(D) $\binom{52}{50}$;
(E) $\binom{52}{3}$.
(c) The number of surjective functions $f:\{1,2,3\} \rightarrow\{1,2, \ldots, 50\}$ is
(A) 0 ;
(B) $50 \cdot 49 \cdot 48$;
(C) $\binom{50}{3}$;
(D) $50^{3}-50 \cdot 49^{3}$;
(E) $50^{3}-50 \cdot 49^{3}+\binom{50}{2} \cdot 48^{3}$.
(d) The number of strictly increasing functions $f:\{1,2,3\} \rightarrow\{1,2, \ldots, 50\}$ is
(A) 0 ;
(B) $50 \cdot 49 \cdot 48$;
(C) $\binom{50}{3}$;
(D) $\binom{52}{50}$;
(E) $\binom{52}{3}$.
7. Solve the recurrence relation $9 a_{n}=6 a_{n-1}-a_{n-2}$ with initial conditions $a_{0}=6, a_{1}=5$.
8. Let $A B C D$ be a square with center O and side length d, and let P be a point in the plane with $|P O|=r$. Express the quantity

$$
|P A|^{2}+|P B|^{2}+|P C|^{2}+|P D|^{2}
$$

in terms of d and r.
9. Let a, b, c be real numbers satisfying the condition:

$$
a \cdot \frac{\pi}{2}+b \cdot \frac{\pi^{2}}{8}+c \cdot \frac{\pi^{3}}{24}=1
$$

Show that the equation

$$
\cos x=a+b x+c x^{2}
$$

has at least one real solution.
10. Find

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{4 n+1}+\frac{1}{4 n+2}+\cdots+\frac{1}{5 n}\right)
$$

Do not write on this page.

1		out of 10 points
2		out of 10 points
3		out of 10 points
4		out of 10 points
5		out of 10 points
6		out of 10 points
7		out of 10 points
8		out of 10 points
9		out of 10 points
10		out of 10 points
Total		out of 100 points

