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Abstract. Based on the ideas in [CKP], we introduce the weighted analogue of the branch-
ing rule for the classical hook length formula, and give two proofs of this result. The first
proof is completely bijective, and in a special case gives a new short combinatorial proof of
the hook length formula. Our second proof is probabilistic, generalizing the (usual) hook
walk proof of Green-Nijenhuis-Wilf [GNW1], as well as the q-walk of Kerov [Ker1]. Further
applications are also presented.

Introduction

The classical hook length formula gives a short product formula for the dimensions of irreducible
representations of the symmetric group, and is a fundamental result in algebraic combinatorics.
The formula was discovered by Frame, Robinson and Thrall in [FRT] based on earlier results
of Young [You], Frobenius [Fro] and Thrall [Thr]. Since then, it has been reproved, generalized
and extended in several different ways, and applied in a number of fields ranging from algebraic
geometry to probability, and from group theory to the analysis of algorithms. Still, the hook
length formula remains deeply mysterious and its full depth is yet to be completely understood.
This paper is a new contribution to the subject, giving a new multivariable extension of the
formula, and a new combinatorial proof associated with it.

Let λ = (λ1 ≥ λ2 ≥ . . .) be a partition of n, let [λ] be the corresponding Young diagram, and
let SYT(λ) denote the set of standard Young tableaux of shape λ (full definitions will be given
in the next section). The hook length formula for the dimension of the irreducible representation
πλ of the symmetric group Sn can be written as follows:

(HLF) dim πλ = |SYT(λ)| =
n!

∏

x∈[λ] hx

,

where the first equality is A. Young’s combinatorial interpretation, the product on the right
is over all squares x in the Young diagram corresponding to partition λ, and hx are the hook
numbers (see below). In fact, Young’s original approach to the first equality hints at the
direction of the proof of the second equality. More precisely, he proved the following branching

rules :
(BR) dimπλ =

∑

µ→λ

dimπµ and |SYT(λ)| =
∑

µ→λ

|SYT(µ)| ,

where the summation is over all partitions µ of n − 1 whose Young diagram fits inside that
of λ (the second branching rule is trivial, of course). Induction now implies the first equality
in (HLF).

In a similar way, the hook length formula is equivalent to the following branching rule for

the hook lengths :

(BRHL)
∑

corner (r,s) ∈ [λ]

1

n

r−1
∏

i=1

his

his − 1

s−1
∏

j=1

hrj

hrj − 1
= 1 .
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Although this formula is very natural, it is difficult to prove directly, so only a handful of proofs
employ it (see below and Subsection 6.2).

In an important development, Green, Nijenhuis and Wilf introduced the hook walk which
proves (BRHL) by a combination of a probabilistic and a short but delicate induction argu-
ment [GNW1]. Zeilberger converted this hook walk proof into a bijective proof of (HLF) [Zei],
but lamented on the “enormous size of the input and output” and “the recursive nature of
the algorithm” (ibid, §3). With time, several variations of the hook walk have been discov-
ered, most notably the q-version of Kerov [Ker1], and its further generalizations and variations
(see [CLPS, GH, Ker2]). Still, before this paper, there were no direct combinatorial proofs
of (BRHL).

In this paper we introduce and study the following weighted branching rule for the hook

lengths :

(WHL)

∑

corner (r,s) ∈ [λ]

xrys

r−1
∏

i=1

(

1 +
xi

xi+1 + . . . + xr + ys+1 + . . . + yλi

)

×

s−1
∏

j=1

(

1 +
yj

xr+1 + . . . + xλ′
j

+ yj+1 + . . . + ys

)

=
∑

(i,j)∈[λ]

xiyj .

Here the weights x1, x2, . . . and y1, y2, . . . correspond to the rows and columns of the Young
diagram, respectively, so the weight of square (i, j) is xiyj. Note that (WHL) becomes (BRHL)
for the unit weights xi = yj = 1, and can be viewed both as a probabilistic result (when
the weights are positive), and as a rational function identity (when the weights are formal
commutative variables).

There is an interesting story behind this formula, as a number of its special cases seem to be
well known. Most notably, for the staircase shaped diagrams, Vershik discovered the formula and
proved it by a technical inductive argument [Ver]. In this case, an elegant Lagrange interpolation
argument was later found by Kirillov [Kir] (see also [Ban, Ker2]), while an algebraic application
and a hook walk style proof was recently given by the authors in [CKP]. In a different direction,
there is a standard (still multiplicative) q-analogue of (HLF), which can be obtained as the
branching rule for the Hall-Littlewood polynomials (see [Mac, §3] for the explicit formulas and
references).

There are three main tasks in the paper:

(1) give a direct bijective proof of (BRHL),

(2) prove a weighted analogue (WHL), and

(3) give a hook walk proof of (WHL).

Part (1) is done in Section 2 and is completely self-contained. Part (2) is essentially a simple
extension of part (1), based on certain properties of the bijection. The bijection in (1) is robust
enough to prove several variations on (BRHL), which all have weighted analogues (Section 3). In
a special case this gives certain Kirillov’s summation formulas and Kerov’s q-formulas in [Ker1],
which until now had only analytic proofs.

In Section 4 we define two new walks, a “weighted” and a “modified” hook walk. While
both can be viewed as extensions of the usual hook walk, we show that the latter reduces to
the former. In fact, the modified hook walk is motivated and implicitly studied in our previous
paper [CKP]. The complete proof of (WHL) via the weighted hook walk is then given in
Section 5. We conclude with historical remarks and final observations in Section 6.
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1. Definitions and notations

An integer sequence λ = (λ1, λ2, . . . , λℓ) is a partition of n, write λ ⊢ n, if λ1 ≥ λ2 ≥ . . . ≥
λℓ > 0, and |λ| = λ1 + λ2 + . . . + λℓ = n. From now on, let ℓ = ℓ(λ) denote the number of
parts, and let m = λ1 denote the length of the largest part of λ. Define the conjugate partition

λ′ = (λ′
1, . . . , λ

′
m) by λ′

j = |{i : λi ≥ j}|.

A Young diagram [λ] corresponding to λ is a collection of squares (i, j) ∈ Z
2, such that

1 ≤ j ≤ λi. The hook Hz ⊂ [λ] is the set of squares weakly to the right and below of
z = (i, j) ∈ [λ], and the hook length hz = |Hz| = λi + λ′

j − i− j + 1 is the size of the hook (see

Figure 1).
We say that (i1, j1) ≺ (i2, j2) if i1 ≤ i2, j1 ≤ j2, and (i1, j1) 6= (i2, j2). A standard Young

tableau A of shape λ is a bijective map f : [λ] → [n] = {1, . . . , n}, such that f(i1, j1) < f(i2, j2)
for all (i1, j1) ≺ (i2, j2). We denote the set of standard Young tableaux of shape λ by SYT(λ).
For example, for λ = (3, 2, 2) ⊢ 7, the hook length formula (HLF) in the introduction gives:

|SYT(3, 2, 2)| =
7!

5 · 4 · 3 · 2 · 2 · 1 · 1
= 21.

Throughout the paper, we draw a Young diagram with the first coordinate increasing down-
wards, and the second coordinate increasing from left to right. We then label the rows of
the diagram with variables x1, x2, . . ., and the columns with variables y1, y2, . . . (see Figure 1).
Thus, if the reader prefers the French notation (and standard Descartes coordinates), then a
90◦ counterclockwise rotation of a diagram is preferable to the mirror reflection as suggested
in [Mac].

1 2 7

3 5

4 6

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6

λ A

Figure 1. Young diagram [λ], λ = (6, 6, 5, 3, 2), and a hook H23 with hook
length h23 = 6; a standard Young tableau A of shape (3, 2, 2); a labeling of
rows and columns of λ.

A corner of the Young diagram [λ] is a square (i, j) ∈ [λ] such that (i+1, j) /∈ [λ], (i, j +1) /∈
[λ]. Clearly, (i, j) ∈ [λ] is a corner if and only if hij = 1. By C[λ] we denote the set of corners
of [λ]. For example, the diagram [3, 2, 2] has two corners, (1, 3) and (3, 2).

As in the introduction, we write µ → λ for all |µ| = |λ|−1 such that [µ] ⊂ [λ]. Alternatively,
this is equivalent to saying that [µ] = [λ] r z, for some corner z ∈ C[λ]. Now the branch-

ing rule (BR) for the standard Young tableaux follows immediately by removing the corner
containing n.

2. A new bijective proof of the hook length formula

2.1. The algebraic setup. We start by formalizing the induction approach outlined in the
introduction. First, observe that to obtain the hook length formula (HLF) by induction it
suffices to prove the following identity:

(1)
n!

∏

z∈[λ] hz

=
∑

µ→λ

(n − 1)!
∏

u∈[µ] hu

.
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Indeed, by the branching rule (BR) for the standard Young tableaux, this immediately gives
the induction step:

|SYT(λ)| =
∑

µ→λ

|SYT(µ)| =
∑

µ→λ

(n − 1)!
∏

u∈[µ] hu

=
n!

∏

z∈[λ] hz

,

which proves the (HLF). Rewriting (1), we obtain:

(2) 1 =
∑

µ→λ

(n − 1)!

n!

∏

z∈λ hz

∏

u∈[µ] hu

=
∑

(r,s)∈C[λ]

1

n

r−1
∏

i=1

his

his − 1

s−1
∏

j=1

hrj

hrj − 1
.

Multiplying both sides of (2) by the common denominator, we get the following equivalent
identity:

(3) n ·
∏

z∈[λ]rC[λ]

(hz − 1) =
∑

(r,s)∈C[λ]

r−1
∏

i=1

his

s−1
∏

j=1

hrj

∏

z∈Drs[λ]

(hz − 1) ,

where the last product is over the set

Drs[λ] = {(i, j) ∈ [λ] r C[λ], such that i 6= r, j 6= s}.

Below we prove the following multivariable extension of this identity:

(4)





∑

(p,q)∈[λ]

xpyq



 ·





∏

(i,j)∈[λ]rC[λ]

(

xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

)





=
∑

(r,s)∈C[λ]

xrys





∏

(i,j)∈Drs[λ]

(

xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

)





×

[

r−1
∏

i=1

(xi + . . . + xr + ys+1 + . . . + yλi
)

]

·





s−1
∏

j=1

(

yj + . . . + ys + xr+1 + . . . + xλ′
j

)





Clearly, when x1 = x2 = . . . = y1 = y2 = . . . = 1, we obtain (3).1 Note also that both sides are
homogenous polynomials of degree dλ = |λ| + 2 −

∣

∣C[λ]
∣

∣.

2.2. The bijection. Now we present a bijective proof of (4), by interpreting both sides as
certain sets of arrangements of labels (see Section 1).

For the l.h.s. of (4), we are given:

• special labels xp, yq, corresponding to the first summation
∑

(p,q)∈[λ] xpyq;

• a label xk for some i < k ≤ λ′
j , or yl for some j < l ≤ λi, in every non-corner square

(i, j).

Denote by F the resulting arrangement of dλ labels (see Figure 2, first diagram), and by Fλ

the set of such labeling arrangements F .
For the r.h.s. of (4), we are given

• special labels xr, ys, corresponding to the corner (r, s);
• a label xk for some i < k ≤ λ′

j , or yl for some j < l ≤ λi, in every non-corner square
(i, j), i 6= r, j 6= s;

• a label xk for some i ≤ k ≤ λ′
j , or yl for some s < l ≤ λi, in every non-corner square

(i, s);
• a label xk for some r < k ≤ λ′

j , or yl for some j ≤ l ≤ λi, in every non-corner square

(r, j).

1In fact, equation (4) immediately implies (WHL), but more on this in the next section.
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Denote by G the resulting arrangement of dλ labels (see Figure 2, last diagram), and by Gλ the
set of such labeling arrangements G. The bijection ϕ : F 7→ G is now defined by rearranging
the labels.

Direct bijection ϕ : Fλ → Gλ.

We can interpret the special labels xp, yq as the starting square (p, q). Furthermore, we can
interpret all other labels as arrows pointing to a square in the hook. More specifically, if the
label in square (i, j) is xk, the arrow points to (k, j), and if the label is yl, the arrow points
to (i, l).

Let the arrow from square (p, q) point to a square (p′, q′) in the hook Hpq \{(p, q)}, the arrow
from (p′, q′) point to a square (p′′, q′′) ∈ Hp′q′ \{(p′, q′)}, etc. Iterating this, we eventually obtain
a hook walk W which reaches a corner (r, s) ∈ C[λ] (see Figure 2, second diagram).

Shade row r and column s. Now we shift the labels in the hook walk and in its projection
onto the shaded row and column. If the hook walk has a horizontal step from (i, j) to (i, j′),
move the label in (i, j) right and down from (i, j) to (r, j′), and the label from (r, j) up to (i, j).
If the hook walk has a vertical step from (i, j) to (i′, j), move the label from (i, j) down and
right to (i′, s), and the label from (i, s) left to (i, j). Finally, move the label xp to (p, s), the
label yq to (r, q), the label xr to (r, 0), and the label ys to (0, s). See Figure 2, third diagram.
We denote by G the resulting arrangement of labels (Figure 2, fourth diagram).

We now have labels in all non-corner squares, and special labels xr and ys corresponding to
the corner (r, s). We claim that G ∈ Gλ. Indeed, if there is a horizontal step in the hook walk
from (i, j) to (i, j′), that means that the label in (i, j) is yj′ , and then the new label in (r, j′) is
yj′ ; since the label in that square should be xk for some r < k ≤ λ′

j , or yl for some j′ ≤ l ≤ λi,
this is acceptable. Also, the new label in (i, j) is the old label from (r, j), so it is either xk for
k > r ≥ i or yl for l > j; both are acceptable. The case when the step is vertical is analogous.

x2x2

x3

x3

x3

x3

x4x4

x4 x4

x4x4

x4x4

x4 x4

x4x4

x5

x5x5

x5

x5x5

x5x5

x6

x6

x6

x6

y1

y1

y2y2 y3

y3y3

y3

y3

y3

y3

y3

y4

y4

y4

y4

y5

y5 y5y5 y5

y5

y6y6

y6

y6

y6y6

y6

y6y6

y6y6

y6

y6 y6

y7

y7

y7

y7

y7y7

Figure 2. An example of an arrangement corresponding to the left-hand side
of WBR for λ = 777763; hook walk; shift of labels; final arrangement.

Lemma 1. The map ϕ : Fλ → Gλ defined above is a bijection.

The lemma follows from the construction of the inverse map.

Inverse bijection ϕ−1 : Gλ → Fλ.

Start with G and shade the row and column of [λ] corresponding to the two special labels xr

and ys, where (r, s) is the given corner. Recall from the construction of ϕ that the projections
of W onto the shaded row are the squares (r, j) with label yj , and the projections of W onto
the shaded column are the squares (i, s) with label xi. Clearly, the smallest such i and j give
the special labels xp, yq (if no such i and/or j exists, take p = r and/or q = s). Suppose that
the label in square (p, q) is xk for k > p. If k ≤ r, then xk is an acceptable label for the square
(p, s) (and not for (r, q)). If k > r, then it is an acceptable label for (r, q) (and not for (p, s)).
On the other hand, if the label in (p, q) is yl for l > q, then yl is an acceptable label for (r, q)
if l ≤ s and an acceptable label for (p, s) if l > s. Therefore, the label at (p, q) determines in
which direction from (p, q) the step of the walk W is made.
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Now find the next square in that direction whose projections onto shaded row and column
are in the projections of W , and repeat the procedure. At the end we obtain the whole walk W .
Then simply undo the shifting of labels described in the construction of ϕ.

A straightforward check shows that this is indeed the initial label arrangement F . This
implies the lemma and completes the proof of (4) and of the hook length formula (HLF). �

3. Weighted branching rule for the hook lengths

3.1. Main theorem. The main result of this paper can be summarized in one theorem:

Theorem 2. Fix a partition λ. For commutative variables xi, yj, write

∏

rs
= xr ys

r−1
∏

i=1

(

1 + xi

xi+1+...+xr+ys+1+...+yλi

)

·
s−1
∏

j=1

(

1 +
yj

xr+1+...+xλ′
j
+yj+1+...+ys

)

.

Then we have the following rational function identities:

(a)
∑

(r,s)

∏

rs =
∑

(p,q)∈[λ] xpyq

(b)
∑

(r,s)
1

xr+1+...+xℓ(λ)+y1+...+ys
·
∏

rs =
∑ℓ(λ)

p=1 xp

(c)
∑

(r,s)
1

x1+...+xr+ys+1+...+yλ1
·
∏

rs =
∑λ1

q=1 yq

(d)
∑

(r,s)
1

(xr+1+...+xℓ(λ)+y1+...+ys)(x1+...+xr+ys+1+...+yλ1
) ·
∏

rs = 1

Proof. It is clear that we get part (a) from equation (4) by dividing both sides by the expression
∏

(i,j)∈[λ]rC[λ] (xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

). Identity (b) is equivalent to

(5)





ℓ(λ)
∑

p=1

xp



 ·





∏

(i,j)∈[λ]rC[λ]

(

xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

)





=
∑

(r,s)∈C[λ]

xr





∏

(i,j)∈Drs[λ]

(

xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

)





×

[

r−1
∏

i=1

(xi + . . . + xr + ys+1 + . . . + yλi
)

]

·





s
∏

j=2

(

yj + . . . + ys + xr+1 + . . . + xλ′
j

)





Let us show that by analogy with (4), this identity can be proved by using the bijection ϕ.
The left-hand side of (5) corresponds to arrangements as in the left-hand side of (4) with an
additional label xp. Similarly, the right hand side of (5) corresponds to arrangements as in the
right-hand side of (4), except the square (r, 1) does not get a label. Start the hook walk in
square (p, 1) and proceed as in the proof of (4). Now observe that the bijection ϕ gives the
bijection between these sets of label arrangements. We omit the easy details.

Identity (c) follows from (b) by conjugation, and (d) can be rewritten in the following form:

(6)





∏

(i,j)∈[λ]rC[λ]

(

xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

)





=
∑

(r,s)∈C[λ]





∏

(i,j)∈Drs[λ]

(

xi+1 + . . . + xλ′
j
+ yj+1 + . . . + yλi

)





×

[

r
∏

i=2

(xi + . . . + xr + ys+1 + . . . + yλi
)

]

·





s
∏

j=2

(

yj + . . . + ys + xr+1 + . . . + xλ′
j

)




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We prove (6) in a similar way. Start the walk in square (1, 1) and proceed as above. Observe
that in this case, we do not get a label in squares (r, 1) and (1, s). The bijection ϕ, restricted
to this set of label arrangements, proves the equality. We omit the easy details. �

3.2. The q-version. In [Ker1], Kerov proved the following identities.2

Corollary 3 (Kerov). Fix a pair of sequences of reals X1, . . . , Xd and Y0, . . . , Yd such that

Y0 < X1 < Y1 < X2 < . . . < Xd < Yd. Define

πk(q) =

k−1
∏

i=1

qYi − qXk

qXi − qXk

d
∏

i=k+1

qXk − qYi−1

qXk − qXi
, 1 ≤ k ≤ d

Z =

d
∑

i=1

qXi −

d−1
∑

i=1

qYi , S =
∑

1≤i≤j≤d

(qYi−1 − qXi)(qXj − qYj ).

Then:

(a)
∑

k

πk(q) = 1

(b)
∑

k

qY0 − qXk

qY0 − Z
πk(q) = 1

(c)
∑

k

qXk − qYd

Z − qYd
πk(q) = 1

(d)
∑

k

(qY0 − qXk)(qXk − qYd)

S
πk(q) = 1

Proof. The formulas follow by setting

xi = qXi − qYi−1 yj = qYd+1−j − qXs+1−j

and taking equations (a)–(d) from Theorem 2 for the staircase partition λ = (d, d − 1, . . . , 1).
In (a), let r = k, s = d + 1 − k, λi = d + 1 − i, λ′

j = d + 1 − j. We have

xi+1 + . . . + xr =
(

qXi+1 − qYi
)

+ . . . +
(

qXk − qYk−1
)

and

ys+1 + . . . + yλi
=
(

qYi − qXi
)

+ . . . +
(

qYk−1 − qXk−1
)

.

That means that
r−1
∏

i=1

(

1 + xi

xi+1+...+xr+ys+1+...+yλi

)

=

k−1
∏

i=1

(

1 + qXi−q
Yi−1

qXk−qXi

)

=

k−1
∏

i=1

q
Yi−1−qXk

qXi−qXk
.

Similarly,

s−1
∏

j=1

(

1 +
yj

xr+1+...+xλ′
j
+yj+1+...+ys

)

=
d−k
∏

j=1

q
Yd+1−j −qXk

q
Xd+1−j −qXk

=
d
∏

i=k+1

qXk−qYi

qXk−qXi
.

We also have

xrys

(xr+1+...+xℓ(λ)+y1+...+ys)(x1+...+xr+ys+1+...+yλ1
) =

(qXk−q
Yk−1 )(qYk−qXk)

(qYd−qXk)(qXk−qY0)
.

Together with the identity (d) in Theorem 2, this implies

1 =

d
∑

k=1

(q
Yk−1−qXk)(qXk−qYk)
(qXk−qYd)(qY0−qXk)

k−1
∏

i=1

qYi−1−qXk

qXi−qXk

d
∏

i=k+1

qXk−qYi

qXk−qXi
=

2Let us note that this is a corrected version of the theorem as the original contained a typo.
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=
d
∑

k=1

k−1
∏

i=1

qYi−qXk

qXi−qXk

d
∏

i=k+1

qXk−qYi−1

qXk−qXi
=

d
∑

k=1

πk(q),

as desired. The proof of identities (b)–(d) follows the same lines. �

4. Weighted and modified hook walks

4.1. Weighted hook walk. Fix a partition λ and positive weights x1, . . . , xλ′
1
, y1, . . . , yλ1 .

Consider the following combinatorial random process. Select the starting square (i, j) ∈ [λ]
with probability proportional to xiyj . At each step, move from square (i, j) to a random square
in Hij \{(i, j)} so that the probability of moving to the square (k, j), i < k ≤ λ′

j , is proportional
to xk, and the probability of moving to the square (i, l), j < l ≤ λi, is proportional to yl. When
we reach a corner, the process ends. We call this a weighted hook walk.

Theorem 4. The probability that the weighted hook walk stops in the corner (r, s) of λ is equal

to

xrys
∑

(p,q)∈[λ] xpyq

r−1
∏

i=1

(

1 + xi

xi+1+...+xr+ys+1+...+yλi

)

s−1
∏

j=1

(

1 +
yj

xr+1+...+xλ′
j
+yj+1+...+ys

)

Note that the sum of these products over all (r, s) ∈ C[λ] is equal to the ratio of the left-hand
side and the right-hand side of Theorem 2, part (a). Since the sum of these probabilities over all
corners is equal to 1, we conclude that Theorem 4 implies (WHL). We prove Theorem 4 in the
next section by an inductive argument. From above, this gives an alternative proof of (WHL).

4.2. Modified weighted hook walk. Take a square (i, j) in [λ], and find the corner (r1, s1)
with the smallest r1 satisfying r1 ≥ i, and the corner (r2, s2) with the smallest s2 satisfying
s2 ≥ j. The modified hook is the set {(k, j) : r1 < k ≤ λ′

j} ∪ {(i, l) : s2 < l ≤ λi}. An example
is given in Figure 3.

Figure 3. The square (5, 4) of the diagram and its modified hook of length 20
in the partition (20, 20, 20, 20, 18, 18, 18, 11, 11, 11, 6, 6, 6, 6, 6, 2).

Recall that we have positive weights x1, . . . , xλ′
1
, y1, . . . , yλ1 . Select the starting square (i, j) ∈

[λ] with probability proportional to xiyj . At each step, move from square (i, j) to a random
square in the modified hook so that the probability of moving to the square (k, j) is proportional
to xk, and the probability of moving to the square (i, l) is proportional to yl. When we reach
a corner, the process ends. We call this a modified weighted hook walk.

If λ has c corners, there are c different parts of λ, and also c different parts of λ′. Take the
ordered set partition (U1, . . . , Uc) of the set {1, 2, . . . , λ′

1} so that i and j are in the same subset
if and only λi = λj , and so that the elements of the set Uk are smaller than the elements of the
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set Ul if k < l. Then define Xk as the sum of the elements of Uk. Similarly, take the ordered
set partition (V1, . . . , Vc) of the set {1, 2, . . . , λ1} so that i and j are in the same subset if and
only λ′

i = λ′
j , and so that the elements of the set Vk are smaller than the elements of the set Vl

if k < l. Then define Yk as the sum of the elements of Uk.
In the example given in Figure 4, we have X1 = x1 + x2 + x3 + x4, X2 = x5 + x6 + x7, X3 =

x8+x9+x10, X4 = x11+x12+x13+x14+x15+, X5 = x16, Y1 = y1+y2, Y2 = y3+y4+y5+y6, Y3 =
y7 + y8 + y9 + y10 + y11, Y4 = y12 + y13 + y14 + y15 + y16 + y17 + y18, and Y5 = y19 + y20.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11y12y13 y14y15y16 y17y18 y19 y20

X1

X2

X3

X4

X5

Y1 Y2 Y3 Y4 Y5

Figure 4. The partition (20, 20, 20, 20, 18, 18, 18, 11, 11, 11, 6, 6, 6, 6, 6, 2) and
corresponding sums X1, . . . , X5, Y1, . . . , Y5.

Let us number the corners so that the top right corner is the first and the bottom left corner
is the last.

Theorem 5. The probability that a modified weighted hook walk ends in corner r is equal to

XrYs
∑

(p,q)∈[λ] xpyq

r−1
∏

i=1

(

1 + Xi

Xi+1+...+Xr+Ys+1+...+Yc+1−i

)

s−1
∏

j=1

(

1 +
Yj

Xr+1+...+Xc+1−j+Yj+1+...+Ys

)

,

where s = c + 1 − r.

Proof. Observe that the modified weighted hook walk is equivalent to the (ordinary) weighted
hook walk on the staircase shape (c, c−1, . . . , 1), where the k-th row is weighted by the sumXk,
and the l-th column is weighted by the sum Yl. The formula then follows from Theorem 4 and
the equality

∑

p+q≤c+1 XpYq =
∑

(p,q)∈[λ] xpyq. �

5. The hook walk proof

What follows is an adaptation of the Greene-Nijenhuis-Wilf proof [GNW1]. Assume that
the random process is (i1, j1) → (i2, j2) → . . . → (r, s). Then let I = {i1, i2, . . . , r} and
J = {j1, j2, . . . , s} be its vertical and horizontal projections.

Lemma 6. The probability that the vertical and horizontal projections are I and J , conditional

on starting at (i1, j1), is
∏

i∈I\{i1}
xi

∏

i∈I\{r}(xi+1 + . . . + xr + ys+1 + . . . + yλi
)
·

∏

j∈J\{j1}
yj

∏

j∈J\{s}(xr+1 + . . . + xλ′
j

+ yj+1 + . . . + ys)
.
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The lemma implies Theorem 4. Indeed, if we denote by S the starting corner and by F the
final corner of the hook walk, then

P
(

F = (r, s)
)

=
∑

(i1,j1)∈[λ]

P
(

S = (i1, j1)
)

·P
(

F = (r, s)|S = (i1, j1)
)

=

∑

i1,j1

xi1yj1
∑

(p,q)∈[λ] xpyq

[

∑

∏

i∈I\{i1} xi
∏

i∈I\{r}(xi+1+...+xr+ys+1+...+yλi
) ·

∏

j∈J\{j1} yj
∏

j∈J\{s}(xr+1+...+xλ′
j
+yj+1+...+ys)

]

,

where the last sum is over I, J satisfying i1 = min I, r = max I, j1 = min J , s = max J . Since

xi1 ·
∏

i∈I\{i1}

xi = xr ·
∏

i∈I\{r}

xi and yj1 ·
∏

j∈J\{j1}

yj = ys ·
∏

j∈J\{s}

yj ,

this is equal to

xrys
∑

(p,q)∈[λ] xpyq

·





∑ ∏

i∈I\{r}

xi

xi+1+...+xr+ys+1+...+yλi

·
∏

j∈J\{s}

yj

xr+1+...+xλ′
j
+yj+1+...+ys



 ,

where the sum is over all I, J with r = max I, s = max J . It is clear that this last product
equals

r−1
∏

i=1

(

1 + xi

xi+1+...+xr+ys+1+...+yλi

)

×

s−1
∏

j=1

(

1 +
yj

xr+1+...+xλ′
j
+yj+1+...+ys

)

.

Proof of Lemma 6. The proof is by induction on |I| + |J |. Denote the claimed probability by
∏

. If I = {r} and J = {s}, the probability is indeed 1. For |I| + |J | > 2, we have

P
(

I, J |S = (i1, j1)
)

=
xi2

xi1+1 + . . . + xλ′
j1

+ yj1+1 + . . . + yλi1

· P
(

I \ {i1}, J |S = (i2, j1)
)

+
yj2

xi1+1 + . . . + xλ′
j1

+ yj1+1 + . . . + yλi1

·P
(

I, J \ {j1}|S = (i1, j2)
)

.

By the induction hypothesis,

P
(

I \ {i1}, J |S = (i2, j1)
)

=
xi1+1 + . . . + xr + ys+1 + . . . + yλi1

xi2

∏

,

P
(

I, J \ {j1}|S = (i1, j2)
)

=
xr+1 + . . . + xλ′

j1
+ yj1+1 + . . . + ys

yj2

∏

.

Because (xi1+1 + . . . + xr + ys+1 + . . . + yλi1
) + (xr+1 + . . . + xλ′

j1
+ yj1+1 + . . . + ys) =

xi1+1 + . . .+xλ′
j1

+ yj1+1 + . . .+ yλi1
, it follows that P

(

I, J |S = (i1, j1)
)

=
∏

, which completes

the proof. �

6. Final remarks

6.1. As Knuth wrote in 1973, “Since the hook-lengths formula is such a simple result, it deserves
a simple proof ...” (see p. 63 of the first edition of [Knu], cited also in [Zei]). Unfortunately,
the desired simple proofs have been sorely lacking. It is our hope that Section 2 can be viewed
as one such proof.
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6.2. Surveying the history of the hook length formula is a difficult task, even if one is restricted
to purely combinatorial proofs. This is further complicated by the ambiguity of the notions,
since it is often unclear whether a given technique is bijective or even combinatorial. Below we
give a brief outline of some important developments, possibly omitting a number of interesting
and related papers.3

The first breakthrough in the understanding of the role of hooks was made by Hillman
and Grassl in [HG], where they proved the (special case of) Stanley hook-content formula
by an elegant bijection. It is well known that this formula implies the hook length formula
via the P -partition theory [Sta, §4] (see also [Pak]). This approach was further developed
in [BD, Gan2, KP, Kra1, Kra2, Kra3]. Let us mention also papers [Gan1, Pak], where the
connection to the Robinson-Schensted-Knuth correspondence (see e.g. [Sta, §7]) was established,
and a recent follow up [BFP] with further variations and algorithmic applications.

The next direction came in [GNW1], where an inductive proof was established based on an
elegant probabilistic argument. This in turn inspired a number of further developments, includ-
ing [GH, GNW2, Ker1, Ker2], and most recently [CLPS, CKP]. In fact, the underlying hook
length identities leading to the proof have been also studied directly, without the probabilistic
interpretation; we refer to [Ver] and later developments [Ban, GN, Ker2, Kir]. Needless to say,
our two proofs can be viewed as direct descendants of these two interrelated approaches.

As we mentioned in the introduction, an important breakthrough was made by Zeilberger,
who found a “direct bijectation” of the GNW hook walk proof [Zei]. In fact, his proof has
several similar bijective steps as our proof, but differs in both in technical details and the
general scheme, being an involved bijection of (HLF) rather than (BRHL).

Historically, the first bijective proof of the hook length formula is due to Remmel [Rem] (see
also [RW]). Essentially, he uses the standard algebraic proof of Young (of the Frobenius-Young
product formula for dim πλ) and the Frame-Robinson-Thrall argument, and replaces each step
with a bijective version (sometimes by employing new bijections and at one key step he uses
the Gessel-Viennot involution on intersecting paths [GV]). He then repeatedly applies the
celebrated Garsia-Milne involution principle to obtain an ingenious but completely intractable
bijection (a related approach was later outlined in [GV] as well).

Finally, there are two direct bijective proofs of the hook length formula: [FZ] and [NPS],
both of which are highly non-trivial, with the second using a variation on the jeu-de-taquin
algorithm (see [Sta, §7]). We refer to [Sag2] for a nice and careful presentation of the NPS
bijection, and to [Knu] for an elegant concise version.

6.3. There are several directions in which our results can be potentially extended. First, it
would be interesting to obtain the analogues of our results for the shifted Young diagrams and
Young tableaux, for which there is an analogue of the hook length formula due to Thrall [Thr]
(see also [Sag2]). We refer to [Ban, Fis, Kra1, Sri] for other proofs of the HLF in this case,
and, notably, to [Sag1] for the shifted hook walk proof. We intend to return to this problem in
the future. Let us mention that a weighted version of the branching rule for trees is completely
straightforward.

Extending to semi-standard and skew tableaux is another possibility, in which case one would
be looking for a weighted analogue of Stanley’s hook-content formula [Sta] (see also [Mac]).

In a different direction, the weighted analogue of the “complementary hook walk” in [GNW2]
was discovered recently by the second author [Kon]. The paper [GNW2] is based on the obser-
vation that the Burnside identity

∑

λ⊢n

|SYT(λ)|2 = n!

3We apologize in advance to the authors of the papers we do not mention; the literature is simply too big to
be fully surveyed here.
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is equivalent to the identity

∏

z∈[λ]

(hz + 1) =
∑

(r,s)∈C′[λ]

r−1
∏

i=1

his

s−1
∏

j=1

hrj

∏

z∈D′
rs[λ]

(hz + 1) ,

where C′[λ] is the set of squares (r, s) that can be added to the diagram of λ so that the result
is still a diagram of a partition (in other words, C′[λ] are the corners of the complementary
partition), and

D′
rs[λ] = {(i, j) ∈ [λ], such that i 6= r, j 6= s}.

In [Kon], the following complementary weighted branching rule is proved:
∏

(i,j)∈[λ]

(

xi + . . . + xλ′
j
+ yj + . . . + yλi

)

=
∑

(r,s)∈C′[λ]





∏

(i,j)∈D′
rs[λ]

(

xi + . . . + xλ′
j
+ yj + . . . + yλi

)





×

[

r−1
∏

i=1

(xi+1 + . . . + xr + ys + . . . + yλi
)

]

·





s−1
∏

j=1

(

xr + . . . + xλ′
j
+ yj+1 + . . . + ys

)





Let us note that although the (q, t)-hook walk defined in [GH] has several similarities, in full
generality it is not a special case of the weighted hook walk. While this might seem puzzling,
let us emphasize that the walks come from algebraic constructions of a completely different
nature. In many ways, it is much more puzzling that the algebraic part of [CKP] is related to
the branching rule at all.

Finally, let us mention several new extensions of the hook length formula recently introduced
by Guo-Niu Han in [Han1, Han2]. There is also a hook walk style proof of the main identity
in [CLPS], which suggests a possibility of a “weighted” generalization.

6.4. As we mentioned in the introduction, this paper extends the results in our previous pa-
per [CKP], where we gave a combinatorial proof of the following delicate result in the enumer-
ative algebraic geometry. Denote by wz = iα + jβ the weight of a square z = (i, j) ∈ λ in a
Young diagram λ. Then:

∑

z∈[λ]

wz ·
∏

u∈[λz]

(wu − wz − α)(wu − wz − β)

(wu − wz − α − β)(wu − wz)
= n (α + β) ,

where the product is over all squares in [λz], defined as the Young diagram [λ] without squares
z = (i, j) and (i+1, j+1), at which the denominator vanishes. We refer to [CKP] for an explicit
substitution which allows us to derive this formula from (WHL).

In a similar direction, we can obtain formulas corresponding to identities (b)–(d) in Theo-
rem 2. We present them here without a proof. Denote by m = λ1 and ℓ = λ′

1 the lengths of the
first row and the first column of [λ], respectively. Then wm0 = λ1α, w0ℓ = λ′

1β, and we have:

∑

z∈[λ]

wz

wz − wm0
·
∏

t∈[λz]

(wu − wz − α)(wu − wz − β)

(wu − wz − α − β)(wu − wz)
= m

(

1 +
α

β

)

,

∑

z∈[λ]

wz

wz − w0ℓ

·
∏

u∈[λz]

(wu − wz − α)(wu − wz − β)

(wu − wz − α − β)(wu − wz)
= ℓ

(

1 +
β

α

)

,

∑

z∈λ

wz

(wz − wm0)(wz − w0ℓ)
·
∏

u∈λz

(wu − wz − α)(wu − wz − β)

(wu − wz − α − β)(wu − wz)
=

1

α
+

1

β
.

It would be interesting to understand the role of these formulas in the algebraic context.
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