
THE COLLAPSING WALLS THEOREM

IGOR PAK∗ AND ROM PINCHASI†

Abstract. Let P ⊂ R3 be a pyramid with the base a convex polygon Q. We
show that when other faces are collapsed (rotated around the edges onto the plane
spanned by Q), they cover the whole Q.

1. Introduction

Let P be a convex pyramid in R3 over the base Q, which is a convex polygon in a
horizontal plane. Think of the other faces F of P as the “walls” of a wooden box, and
that each wall F is hinged to the base Q along the edge. Suppose now that the walls
are “collapsed”, i.e. rotated around the edges towards the base onto the horizontal
plane. The question is: do they cover the whole base Q?

Figure 1. An impossible configuration of four collapsing walls of a
pyramid leaving a hole in the base.

At first, this may seem obvious, but in fact the problem is already non-trivial even
in the case of four-sided pyramids, which can possibly have some obtuse dihedral
angles (see Figure 1). Formally, we have the following result:

Collapsing Walls Theorem. Let P ⊂ R3 be a pyramid over a convex polygon Q.
For a face F of P , denote by eF the edge between F and the base: eF = F ∩Q, and
let AF denotes the result of rotation of F around eF in the direction of P , onto the
plane which contains Q. Then

Q ⊆ ∪F AF ,

where the union is over all faces F of P , different from Q.

For example, suppose pyramid P in the theorem has a very large height, so that
all walls are nearly vertical. The theorem then implies that every point z ∈ Q has an
orthogonal projection into the interior of some edge e of Q. This is a classical result
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with a number of far-reaching generalizations (see [Pak, §9]). Thus, the collapsing
walls theorem can be viewed as yet another generalization of this result (cf. Section 3).

2. Proof of the theorem

Consider R3 endowed with the standard Cartesian coordinates (x1, x2, x3). Without
loss of generality assume that the plane H spanned by Q is horizontal, i.e. given by
x3 = 0, and that P is contained in the half-space x3 ≥ 0. Denote by F1, . . . , Fm the
faces of P different from Q, by Hi the planes spanned by Fi, and by ei = Fi ∩Q the
edges of Q, for all 1 ≤ i ≤ m.

Denote by Φi the rotation about ei of Hi onto H (the rotation is performed in the
direction dictated by P , so that throughout the rotation Hi intersects the interior
of P ). Similarly, let Ai = Φi(Fi) is the rotation of the face F of P onto Q, 1 ≤ i ≤ m.
We need to show that every point in Q lies in ∪m

i=1Ai. Without loss of generality we
can take this point to be the origin O.

Further, denote by Li = Hi ∩ H the line through ei. Let ri be the distance from
the origin to Li, and let αi be the dihedral angle of P at ei, i.e the angle between H
and Hi which contains P .

Suppose now F1 is a face such that

τi = ri · tan
αi

2
is minimized at τ1 .

We will show that the origin O is contained in A1. In other words, we prove that if
O /∈ A1, then τi < τ1 for some i > 1.

Let z ∈ H1 such that the rotation of z onto Q is the origin: Φ1(z) = O. It suffices
to show that z ∈ F1. Let v = (v1, v2, 0) be the unit vector that is a normal to L1 in
the horizontal plane. It is easy to see that

−→
Oz =

(
r1(1− cos α1)v1, r1(1− cos α1)v2, r1 sin α1

)
.

To prove the theorem, assume to the contrary that z /∈ F1. Then there exists a face
of P , say F2, such that H2 separates z from the origin. Denote by y the closest point
to z on L2, and by α′ the angle between the line (zy) and the horizontal plane H,
where the angle is taken with the half-plane of H which contains Q (and thus the
origin). In this notation, the above condition implies that α′ > α2.

Without loss of generality we may assume that line L2 is given by equations x2 = r2

and x3 = 0. Then

y =
(
r1(1− cos α1)v1, r2, 0

)
,

and

cos α′ = cos Ôyz =
r2 − r1(1− cos α1)v2√

r2
1 sin2 α1 + (r2 − r1(1− cos α1)v2)2

.

Note that the function x/
√

a2 + x2 is monotone increasing as a function of x, and
that v2 ≤ 1. We get

cos α′ ≥ r2 − r1(1− cos α1)√
r2
1 sin2 α1 + (r2 − r1(1− cos α1))2

.
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Applying cos α′ < cos α2, we conclude:

(1)
r2 − r1(1− cos α1)√

r2
1 sin2 α1 + (r2 − r1(1− cos α1))2

< cos α2 .

Recall the assumption that τ1 ≤ τ2. This gives r1 tan α1

2
≤ r2 tan α2

2
, or

(2)
r2

r1

≥ tan α1

2

tan α2

2

.

The rest of this section is dedicated to showing that both (1) and (2) are impossible.
This gives a contradiction with our assumptions and proves the claim. We split the
proof into two cases depending on whether the dihedral angle α2 is acute or obtuse.
In each case we repeatedly rewrite (1) and (2), eventually leading to a contradiction.

Case 1 (obtuse angles). Suppose π
2

< α2 < π. In this case cos α2 < 0, and (1) is
equivalent to

(3) 1 +
r2
1 sin2 α1

(r2 − r1(1− cos α1))2
<

1

cos2 α2

,

and

(4)
r1 sin α1

r2 − r1(1− cos α1)
> tan α2 .

This can be further rewritten as:

(5)
r2

r1

< 1− cos α1 +
sin α1

tan α2

.

Now (5) and (2) together imply

tan α1

2

tan α2

2

< 1− cos α1 +
sin α1

tan α2

,

which is impossible. Indeed, suppose for some 0 < a, b < π, we have

(6)
tan a

2

tan b
2

< 1− cos a +
sin a

tan b
.

Dividing both sides by (tan a
2
), after some easy manipulations, we conclude that (6)

is equivalent to

(7)
1

tan b
2

< sin a +
1 + cos a

tan b
,

which in turn is equivalent to

(8)

(
1

tan b
2

− 1

tan b

)
sin b < cos(a− b) .

Since the left hand side of (8) is equal to 1, we get a contradiction and complete the
proof in Case 1.
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Case 2 (right and acute angles). Suppose now that 0 < α2 ≤ π
2
. Then cos α2 ≥ 0,

and 0 < tan α2

2
≤ 1. Let us first show that the numerator of (1) is nonnegative, i.e.

that r2 ≥ r1(1− cos α1). From the contrary assumption we have r2/r1 < (1− cos α1).
Together with (2), this implies:

1− cos α1 >
r2

r1

≥ tan α1

2

tan α2

2

≥ tan
α1

2
,

which is impossible for all 0 < α1 < π.
From above, we can exclude the right angle case α2 = π

2
, for else the l.h.s. of (1)

is nonnegative, while r.h.s. is equal to zero. Thus, cos α2 > 0. Therefore, the
inequality (1) in this case can be rewritten as

(9) 1 +
r2
1 sin2 α1

(r2 − r1(1− cos α1))2
>

1

cos2 α2

,

and

(10)
r1 sin α1

r2 − r1(1− cos α1)
> tan α2 .

Note now that (10) coincides with (4). Since (6) holds for all 0 < a, b < π, we obtain
the contradiction verbatim the proof in Case 1. This completes the analysis of Case 2
and finishes the proof of the theorem. ¤

3. Final remarks

3.1. The collapsing walls theorem extends verbatim to higher dimensions. Moreover,
it also extends to every polytope P ⊂ Rd, as follows. Fix one facet Q of P and
assume all other facets F of P are rotated around the affine subspace HF ∩H onto
the hyperplane H containing Q, then they cover the whole facet Q. Here HF denotes
the hyperplane that contains the facet F . We refer to [PP], where this result is
proved in full generality, and is used to show that a smaller polyhedron can always
be sequentially cut out of a bigger polyhedron, in any dimension.

3.2. Let us note that when the walls of a pyramid are collapsed outside, rather than
onto the base, they are pairwise non-intersecting (see Figure 2). We leave this easy
exercise to the reader.

3.3. Continuing with the example of “vertical walls” as given in the introduction
right after the theorem, recall that for the center of mass z = cm(Q), there are at
least two such edges onto which orthogonal projection of z lies in the interior (see
e.g. [Pak, §9]).1 It would be interesting to see if this result extends to the setting of
the theorem (of course, the notion of the center of mass would have to be modified
appropriately). Let us note here that the center of mass result is closely related to
the four vertex theorem [Tab], and fails in higher dimension [CGG].

1One can give a construction with there is only one such edge, if the center of mass is replaced
by a general point in Q (see [CGG] and [Pak, §9]).
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Figure 2. Walls of a pyramid collapsing outside the base do not intersect.

3.4. The proof of the theorem is based on an implicit subdivision of Q given by the
smallest of the linear functions τi at every point z ∈ Q. Recall that τi is a weighted
distance to the edge ei. Thus this subdivision is in fact a weighted analogue of the
dual Voronoi subdivision in the plane (see [Aur, For]). As a consequence, computing
this subdivision can be done efficiently, both theoretically and practically.
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