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Abstract

In this paper we compute the number of reduced decompositions of certain permutations
� ∈ Sn as a product of transpositions (1; 2), (1; 3), : : :, (1; n). We present several combinatorial
correspondences between these decompositions and combinatorial objects such as Catalan paths
and k-ary trees. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

Let G be a �nite group and B its set of generators. Call a product g = b1 · : : : · bl,
where each bi ∈ B a decomposition of g ∈ G of length l. The length l(g) = lB(g) of
an element g is the minimum length of its decomposition. We say that a decomposition
of g is reduced if it has length l(g). By r(g) = rB(g) we denote the number of reduced
decompositions of g ∈ G in term of generators in B.
Let G = Sn be a symmetric group on n elements. In this paper we �nd the number

reduced decompositions of certain permutations in terms of star transpositions. Namely,
denote by B = Bn the set of star transpositions (1; i) ∈ Sn, 26i6n. It is easy to see
that B generates the whole symmetric group Sn.
Denote by L(q;p1; p2; : : : ; ) the set of permutations � ∈ Sn with cycles of length

q, p1, p2, : : :, q + p1 + p2 + : : : = n and such that the �rst element belongs to
a cycle of length q. Observe that Bn is �xed under a permutation of the last n − 1
elements. Therefore, both the length l∗ = lB and the number of reduced decompositions
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r∗ = rB are constant on the subsets L(q;p1; p2; : : :). We write L(q;pm) instead of
L(q;p;p; : : : ; p) (m times).

Theorem 1.1. Let n = km+ 1, k¿2. Then the number of reduced decompositions of
a permutation � ∈ L(1; km); � ∈ Sn, in terms of star transpositions in Bn is given by
the formula:

r∗(�) = r∗(k; m) =
km · (km+ m)!
(km+ 1)!:

:

For example, let � = (1)(2; 3)(4; 5) · · · ∈ S2m+1 Then the length of � is l∗(�) = 3 ·m,
the maximal length of all elements in S2m+1. The Theorem claims that the number of
reduced decompositions as a product of star transpositions is equal to

r∗(�) =
2m (3m)!
(2m+ 1)!

:

In particular, when m = 1 we have two decompositions:

(2; 3) = (1; 2) · (1; 3) · (1; 2) = (1; 3) · (1; 2) · (1; 3):
When m = 2 we have 24 reduced decompositions of (23)(45) which can be also
checked directly.
In this paper we give two combinatorial proofs of Theorem 1:1. We relate reduced

decompositions to generalized Dyck sequences, k-Catalan paths on a square grid (Sec-
tion 3), rooted plane trees and (k +1)-ary trees (Section 4). We also introduce certain
bracket sequences as an intermediary (Section 2). Many of these combinatorial objects
have been studied earlier, which simpli�es our task.

Remark 1.2. The analogous problem has been studied for various other generating sets.
See [10] for the case of adjacent transpositions and [2] for the case of all transpositions.
Other generating sets include cycles of bigger length (see [9,4]).
Note that Theorem 1:1 gives the number of reduced decompositions only in a special

case. Finding a general formula is an interesting open problem.

2. Reduced decompositions and bracket sequences

We think of elements of Sn as of permutations that permute elements according to
their places. For example, multiplying a star transposition (1; i) from the right to a
permutation � means to exchange elements �(1) and �(i). We also say that we touch
element �(i) and hit place i. Now we can view each decomposition as a straight line
algorithm which exchanges pairs of elements, one at a time.
Let us �rst compute the lengths of permutations.

Lemma 2.1. Let � ∈ L(q;p1; p2; : : : ; pm; 1a), p1; : : : ; pm¿2, q+p1 + : : :+pm+a = n.
Then l∗(�) = n+ m− a− 1.
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Of course, this would immediately imply that L(1; 2m) contains permutations � ∈
S2m+1 with maximum length (see above).

Proof. Indeed, break � into a product of cycles. Each cycle of length p not containing
the �rst element 1, can be decomposed into a product of p+1 star transpositions. If a
cycle of length q contains 1, q− 1 star transpositions su�ce. Therefore, l∗6(q− 1)+
(p1 + 1) + · · ·+ (pm + 1) = n+ m− a− 1. The opposite inequality follows from the
following observation. We need to touch n− a− 1 elements that are not �xed points
or 1. At any time, we say that an element is untouched if it is not 1 and we have
not touched it before. Since each time we transpose an element at the �rst place with
some other element, at a time we cannot touch more than one untouched element. In
addition to that, the �rst time we touch an element in a cycle some already touched
element which is not in that cycle, gets inside that cycle. At one point this element
must get back to the �rst place and when this happens no new elements are touched.
Therefore, we need to use at least (n + m − a − 1) transposition which proves the
claim.

Denote by R∗(�) the set of star decompositions of � ∈ Sn. Let � ∈ L(1; km) be a
permutation with m cycles of length k and a �xed point 1. Fix any ordering of cycles
in �. By a symbol with index i, 16i6m, we mean either a left bracket [i, or a right
bracket ]i, or a vertical line |i. De�ne a map � which maps reduced decompositions
of � into a sequence of symbols by the following rule:
• Each star transposition which hits the ith cycle corresponds to a symbol with index

i. The transposition that hits the ith cycle for the �rst time corresponds to the left
bracket [i, for the last time, to the right bracket ]i, and to the vertical line |i in
between.
For example, � maps the reduced decomposition

(1; 2)(1; 7)(1; 6)(1; 7)(1; 3)(1; 2)(1; 5)(1; 4)(1; 5)

of an element � = (2; 3)(4; 5)(6; 7) ∈ L(1; 23) to

[1 [3 |3 ]3 |1 ]1 [2 |2 ]2:

We call such sequences bracket sequences.

Lemma 2.2. Let � be a bracket sequence obtained as an image of �. Then � satis�es
the following conditions:
(1) � has (k + 1)m symbols; k + 1 times of each of the indices 1; : : : ; m. Among

symbols with the same index i, the left bracket [i is to the left of k − 1 vertical
lines |i which are to the left of the right bracket ]i.

(2) If a symbol with index i is in between two symbols with index j, so are all
symbols with index i, 16i; j6m.
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Proof. The �rst condition follows immediately from the proof of Lemma 2:1. To prove
the second condition, observe that the �rst time we hit a cycle, we get an element
of that cycle at the �rst place. Every next time we hit that cycle we must have an
element of that cycle in the �rst place or otherwise we would need more than (k+1)m
transpositions. Only after we hit the cycle for the last, (k+1)st time, we get an element
on the �rst place that was there before the �rst hit. Now, �nd the �rst symbol that
lies between two symbols with the same index j, di�erent from the index i of the
former symbol. From (1) it must be left bracket [i. Therefore, in the corresponding
decomposition the jth cycle is now in the ith cycle and the only way we can hit the
jth cycle again is by having it back. But before that, we must make the last hit of
the jth cycle. In terms of symbols, it means that we must also have ]i before the next
symbol with index j. This proves the second condition.

Lemma 2.3. Let �(k; m) be the set of bracket sequences described by conditions (1);
(2) in Lemma 2:2. Then the map � : R∗(�) → �(k; m), � ∈ L(1; km) is surjective.
Moreover the preimage of each sequence � ∈ �(k; m) contains exactly km reduced
decompositions:

|�−1(�)| = km:

For example, �(2; 2) contains six sequences: [1 |1 ]1 [2 |2 ]2, [1 |1 [2 |2 ]2 ]1,
[1 [2 |2 ]2 |1 ]1, [2 |2 ]2 [1 |1 ]1, [2 |2 [1 |1 ]1 ]2 and [2 [1 |1 ]1 |2 ]2. Each of
them is an image of 4 reduced decompositions.

Proof. In order to �nd an element of the preimage �−1(�) we need to assign to each
symbol in � with index i a transposition which hits the ith cycle. There are k ways to
do that since every such a transposition is determined by the transposition assigned to
the left bracket [i. Recall that � has m cycles, which implies that |�−1(�)|6km.
The opposite inequality is proved by the following argument. Consider the right-most

left bracket in �. By condition (2), this and the following k symbols must be associated
with the last cycle of � to be hit. These symbols can be replaced by the corresponding
k star transpositions in exactly k ways, since once the �rst transposition is chosen the
positions of the others are �xed. Now remove this cycle and use induction.

3. k-Catalan paths and Dyck sequences

Fix m¿1. De�ne the set of k-Catalan paths C(k; m) to be the set of paths on
a square grid from (0; 0) to (m · k; m) that stay weakly below the line y = x=k. For
example, there are 12 elements in C(2; 3).
The k-Catalan paths are well studied. It is known that

|C(k; m)| = 1
km+ 1

(
(k + 1)m

m

)
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Fig. 1. Set of plane trees P(2; 2).

(see e.g. [3]). There is a short combinatorial proof which uses the Cycle Lemma (see
[12]). When k = 1 we get the ordinary Catalan paths and Catalan numbers (see e.g.
[3,11]).
There is an easy way to code k-Catalan paths in terms of Dyck sequences. Put 0

when the path goes right and 1 when the path goes up. Formally, de�ne the set of Dyck
sequences D(k; m) to be the set of sequences (a1; : : : ; a(k+1)m) of 0 and 1 with km zeroes
and m ones and such that for every 16i6(k +1)m we have a1 + · · ·+ ai6i=(k +1).
Then |D(k; m)| = |C(k; m)|. For example the three Dyck sequences in D(2; 2) are
(0; 0; 1; 0; 0; 1), (0; 0; 0; 1; 0; 1) and (0; 0; 0; 0; 1; 1).
De�ne a map ’ : �(k; m)→ D(k; m) as follows. Take a bracket sequence and put 0

instead of each left bracket or a vertical line, put 1 instead of each right bracket.

Lemma 3.1. A map ’ de�ned above is surjective. Moreover, the preimage of each
Dyck sequence in D(k; m) contains exactly m! bracket sequences.

Note that this immediately implies Theorem 1:1. Indeed, together with Lemma 2:3 it
shows that the surjection ’◦� maps reduced decompositions onto Dyck sequences such
that a preimage of each Dyck sequence in D(k; m) contains exactly kmm! reduced de-
compositions. Together with the formula for |D(k; m)| = |C(k; m)| this proves the result.
Proof of Lemma 3.1. First we need to prove that ’ is well de�ned, i.e. ’(�) ∈ D(k; m)
for every � ∈ �(k; m). Indeed, before each right bracket in a sequence there must be a
left bracket and k−1 vertical lines. Therefore, in a 0−1 sequence ’(�) among the �rst
i elements there are at least k times as many zeroes as ones. This proves the claim.
Use induction to show that preimage of each Dyck sequence (a1; : : : ; a(k+1)m) ∈

D(k; m) contains exactly m! bracket sequences. The claim is trivial when m = 1. For a
general m, take the �rst 1 in a sequence. Suppose it is at the jth place. It corresponds
to the �rst right bracket in a bracket sequence with some index i. But that means that
the preceding k zeroes must correspond to the left bracket and vertical lines with the
same index i. Since i could be any index, 16i6m, we can just delete these k + 1
consecutive elements and get a Dyck sequence with m − 1 ones. This completes the
step of induction and proves the lemma.
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Fig. 2. Map � : �(2; 8)→ P(2; 8) and bijection  : P(2; 8)→ T (3; 8).

4. Plane and k-ary trees

De�ne P(k; m) to be a set of plane rooted trees with m white nodes, (k−1)m black
nodes and such that
• Every black node is a leaf. Every white node has k − 1 black sons.
For example, there are three di�erent plane trees in P(2; 2) (see Fig. 1). When k = 1

we get ordinary plane trees.
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It is easy to �nd a surjective map � : �(k; m) → P(k; m). Indeed, let left brackets
correspond to white nodes and vertical lines to black nodes. Whenever we have a left
bracket [i between two symbols with index j, place a node corresponding to [i to be a
son of a node corresponding to [j in a location which respects the left to right ordering.
An example is shown in Fig. 2. We omit the details.
Note that � disregards indices of the symbols. Thus the preimage of each plane tree

in P(k; m) contains exactly m! bracket sequences.
Denote by T (k; m) the set of k-ary trees with m vertices (see [3,11]). There is

a known bijection  : P(k; m) → T (k + 1; m) (see [5]) which generalizes the fa-
mous bijection between plane and binary trees (see [1,8,12]). An example is shown in
Fig. 2.

Now, it is known that |T (k; m)| = [1=(k m− m+ 1)]
(

km
m

)
(see e.g. [7,11,3]).

By the results above, the surjection  ◦ � ◦ � : R∗(�) → T (k + 1; m), � ∈ L(1; km)
contains km m! reduced decompositions in each preimage. This gives another proof of
Theorem 1:1.
We would like to remark that the direct bijection � : D(k; m) → P(k; n) is also

known (see [6]).
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