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ABSTRACT. In this work we develop further and apply the strong uniform time ap-
proach for study of the random walks on finite groups. This approach was introduced
by Aldous and Diaconis in [AD1,2] and later developed by Diaconis and Fill in [DF].

Consider a random walk on a finite group. We introduce a notion of total sepa-
ration for this walk which can be thought as a new measure of how fast the walk is
mixing. We show that the total separation is the mean of the best possible strong
uniform time. We prove various bounds on the total separation, find connections
with hitting times and establish relations between total separations under several
natural operations on walks on groups, such as rescaling of the walk, taking direct
and wreath product of groups.

In this work the emphasis is given to the study of concrete examples of walks.
The successful applications of the method include finding sharp bounds on the total
separation for the natural random walks on cube, cyclic group, dihedral group, sym-
metric group, hyperoctahedral group, Heisenberg group, and others. In several cases
we were able to obtain not only sharp bounds, but find the exact value of the total
separation.
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Introduction

In this thesis we use a strong uniform time approach to study random walks
on finite groups. We present explicit constructions of such times for the random
walks on a cycle, cube, for various walks on symmetric groups, for upper triangular
matrices, and for other nice special cases.

Before I explain what the strong uniform time approach is let me briefly recall
some historical bright-spots related to the thesis. The story began in the pioneer
works by Markov who had in mind important examples of card shuffles when intro-
ducing Markov chains. The next major step was made by Polya who studied the
random walk on Z. Although not finite, this walk is related to the random walk on
a cycle which was noted by subsequent investigators.

In the eighties the theory of random walks on finite groups obtained its indepen-
dence, its own problems and techniques. In the pioneer paper [DShl1] Diaconis and
Shahshahani introduced the technique which involves bounding of the irreducible
characters of the group. They were able to apply this technique to the problem of
shuffling a deck of cards by switching a randomly chosen pair of cards. It turns out
that this random walk can be thought as a walk on a symmetric group generated
by a single conjugacy class, so one can use the existing theory of characters of S,
to obtain the estimates on the convergence. Later on this technique was applied to
get sharp bounds for the walks on a wide variety of groups (see e.g. [DSh2], [Lulov],
[Gluck]).

Soon afterwards Aldous in [A] was able to apply the coupling arguments to the
analysis of random walks on finite groups. Among several examples, he was able to
find good bounds for random walk on the symmetric group generated by adjacent
transposition, which do not make a conjugacy class.

A few years later Aldous and Diaconis in joint work [AD1], [AD2], introduced an-
other kind of probabilistic argument they call the strong stationary time approach.
Among several examples, they were able to analyze ”top to random” shuffle which
was subsequently studied and generalized by others. Using the strong uniform time
approach Broder and Matthews were able to give a simple analysis of the ran-
dom walk on a cube and of the random walk on a symmetric group generated by
transpositions (see [Mattl], [D], §4B).

The theory of strong stationary times was later developed by Diaconis and Fill
in [DF], where they introduced an important concept of dual processes. There
they were able to analyze birth and death chains and introduced a criteria for
perfect strong stationary times (in our terminology). Also Matthews recently found
connection between strong stationary times and eigenvalues (see [Matt3]).

In recent works by Diaconis and Saloff-Coste other analytic techniques were
introduced including the comparison technique (see e.g. [DSC], [D-S-C]). See [Dc]
for a review of the recent developments.

We must add to this picture a tremendous amount of work done by a generation
of the graduate students who were able to obtain sharp bounds in various important
cases. Note the recent papers [Hild] and [Stongl] of Hilderbrand and Stong, where
they analyze a random walk on SL(n;F,) generated by transvections and a natural
random walk on the Heisenberg group mod p.

Now let me briefly describe the strong uniform time approach and why it is
useful for the study of the random walks on groups.
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Suppose we are given a group G, a set of generators S and a probability dis-
tribution P on S. Start at the identity element e € G. At each step of the walk
we pick a generator from the probability distribution P and multiply by it on the
right. Under mild conditions the above defined Markov chain is ergodic i.e. con-
verges to a uniform distribution on G. There are various ways to quantify the rate
of convergence, including the most commonly used total variation distance, these
are discussed in section 2 below. Following [AD1], [AD2] we consider separation
distance

1 M k
sp=1—|G] rgrggQ (9)

where Q¥ is the probability distribution of the state of the walk after k steps. It
turns out that the sequence sj is nonincreasing, submultiplicative and has sim-
ple relations with other mixing times (see §2.2,2.4). As k tends to infinity the
separation distance s; becomes exponentially small:

s~ Ce @k
(see §2.2,3).

Suppose we are given an algorithm, some kind of stopping rule which stops the
walk. Its stopping time 7 which can be thought as a random variable, is called
strong uniform time if the stopping state is random even conditioned on the time
we stopped (see §3.1 for the precise definition). The following bound due to Aldous
and Diaconis justifies this seemingly strange notion:

SkSP(T>k)

In [AD2] they also show the existence of a strong uniform time for which the above
inequality becomes an equality for all k. Such strong uniform times are called
perfect. An easy necessary condition (see [DF]) says that if 7 has a halting state i.e.
a state such that whenever the walk hits it, 7 stops there, then 7 is perfect.

It is surprisingly hard to find strong uniform times. These have only been found
for special classes of walks. When a hypotesized time is found, it is sometimes
difficult to show that the stopping rule defines a strong uniform time. However, it
is usually not very hard to estimate the expectation of the stopping time. In this
thesis we introduce the notion of total separation:

s=1+s1+582+...
For a strong uniform time 7 we have a bound
s < E(71)
and also
E(r)
k

As will be shown, s is interesting by itself as a new notion of mixing time particular
because of its relations to hitting times and to cover time (see §2.2, §2.4, §3.6).
The main purpose of this work is to present explicit constructions in various
particular cases which enable us to estimate and sometimes to compute exactly the
total separation. The idea is to show the power of the strong uniform time approach,

sk <
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rather than to get tight bounds in few particular cases. In many examples (see
below) we were able to analyze walks which could not be analyzed by any other
existing techniques. These examples include various random walks on symmetric
groups, hyperoctahedral groups, Heisenberg groups, and others.

The thesis is constructed as follows. We start with standard notation, definitions
and examples about finite groups. In chapter §2 we define random walks on groups,
separation distance and study various numerical and asymptotic properties of the
total separation. Notably, in §2.3 we prove that P € QF implies s € Q. We give
examples of interesting walks (§2.5), present some bounds on s in cases of rapidly
mixing random walks (§2.6) and state the Diameter Conjecture (§2.7).

The whole of chapter 3 is dedicated to the study of various stopping times, their
relations and connections to the bounds on separation distance. In §3.1 we define
stopping times and establish a language for describing them. In §3.2 — 3.4 we define
strong uniform times, study them and show the existence of perfect times. In §3.5
we introduce a new notion of time-invariant stopping times which turn out to be
important constructing bricks for strong uniform times. In §3.6 we study hitting
times in connection with strong uniform times. In particular, we find there a lower
bound on s to supplement the upper bounds that can be obtained from strong
uniform time arguments.

Chapter 4 compiles some important constructions of strong uniform times in
traditionally studied cases. In §4.1 we compute the total separation for the random
walk on a cycle (group Z,,). In §4.2 we we show that it is possible to analyze
convergence if we slow down the walk. In §4.3 — 4.5 we show that under certain
conditions one can construct a strong uniform time for some direct, semidirect and
skew product of groups once strong uniform times are known for the factors. By use
of our technique we are able to provide an analysis in many interesting examples
of walks such as a weighted walk on a cube (§4.3), a walk on the dihedral group
(84.4) and a walk on the hyperoctahedral group (§4.5).

In chapter 5 we investigate walks on a symmetric group generated by different
classes of transpositions. These classes include all transpositions (§5.2), star trans-
positions (§5.1), adjacent transpositions (§5.3), weighted transpositions (§5.4,5),
and semi-random transpositions (§5.8). We also study there the nearest neighbor
random walk on the k-subsets of an n-set (§5.7).

In chapter 6 we consider miscellaneous geometric random walks including random
walks on the upper triangular matrices (§6.3,4), random walks on the k-subspaces
of an n-dimensional space (§6.2), and the affine random walk on a Fy (§6.5). In
the first section §6.1 we discuss two different ways to generate a nonsingular matrix
over a finite field.
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NOTATION
N={1,2,...}

Z,=10,1,2,...}
[n] ={1,2,...,n}

[Z} - k-subsets of an n-set [n]

(n)g=1+q+¢+ - +¢"" neN

(n)g=(1)g (2)g--..-(n)g;nEN

(1), = Gy

bn=143+5+ -+

>3

% - partial harmonic sum

7Z - group of integers

Loy >~ Z/mZ - cyclic group with m elements

F, - finite field with ¢ elements

GL(n;Fy) - tull linear group over the field with g elements
U(n;Fy) - unipotent group over the field with ¢ elements
Sy - group of permutations of n elements

A, - alternating group of permutations of n elements

B, = S, X ZJ - group of symmetries of an n-dimensional cube

W = (G, S,P) - random walk on a group G with a set of generators S
and probability distribution P on S (see §2.1)

f(z) = O(g(x)) as x — oo means that % is bounded as © — oo

f(z)

—0asx —
g(z)

f(z) = o(g(x)) as x — oo means that

f(x) ~ g(z) as * — oo means that gg:; —lasz — 0

f(z) = C - g(x) means that there exist C' < oo, J;Ei; —Casz— o0
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1. GRrROUPS

1.1 Definitions and general properties.

We will consider only finite groups unless otherwise specified. Suppose we have
a finite group G. The identity element will be denoted by e. The degree of an
element g € G is the minimal degree m € Z such that ¢" = e. By |G| we denote
the order of G, i.e. the number of elements in G.

We use left-to-right notation for a product of elements. This means that when we
say "multiply a by b” we mean an element a-b. By ”~" we denote an isomorphism
of groups.

The direct product of groups G1,Gs is a group G = G X G2 with the set of
elements {(g1,92),91 € G1,92 € G2}, the identity element e = (e1,e2) and multi-
plication law

(91,92) - (91, 92) = (9191, 9295)

(see e.g. [VDW], §53) Denote G* = G x G x --- x G (k times).
Aut(G) is the group of automorphisms of G. We say that group Gy acts on Gs
if there is a homomorphism

f: Gy — Aut(Gs)

The semidirect product of G; acting on Gg is a group G = G X G2 with the
set of elements {(g1,92),01 € G1,92 € G}, identity element e = (e1,e2) and
multiplication law

(91,92) - (g1, 95) = (919, 92 - FH(g1) [g5))

(see e.g. [DM], §2.5) By definition, |G1 X Ga| = |G1] - |G2|. Note also that if f is a
trivial homomorphism f(g) = es, g € G, the semidirect product becomes a direct
product.

Let G C S, be a permutation group. By the wreath product of groups G and H
we mean a semidirect product G x H™, where G acts on H™ by permuting copies
of H (see e.g. [DM], §2.6).

The group G is generated by S, S C G if any element g € G can be written as
g=3581-82°...°5]

for some s1,s32,...,5 € S. The set S is called a set of generators and its elements
are called generators. We always include the identity e in the set of generators
unless explicitly stated even if we don’t list it when describing the set S. If e € §
denote by S the set of nontrivial generators of G:

S=5\{e}

Define the length l5(g) of an element g € G to be the minimal number of gener-
ators needed in order to write g as their product. The diameter dg is the length of
the furthest element:

dg = l
§ = max 5(9)
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The diameter set Dg C G is the set of all group elements g € G, such that
ls(g) = ds.

A set of generators S is called symmetric if s € S implies s™! € S. A set of
generators S is called minimal if for each s € S, S \ s is no longer a set of generators.
If S is both a minimal and symmetric set of generators, each generator s € S is an
involution s = e.

For a finite group G and its set of generators S the Cayley graph T =T(G,S)
is a graph with elements g € G as vertices and pairs (g,9 - s), g € G, s € S as
edges (see [CM], §3.1). This oriented graph becomes simple (unoriented) when S
is symmetric.

For any subset S; C G denote by (S1) the subgroup of G generated by S;.

We need to introduce a few combinatorial definitions designed specifically for
our purposes.

An alphabet is a set of generators S. Its elements we also call letters. A word is
any formal product of generators

W = 8182...5]

where s; € S, 1 <i <[. The number | = [(w) is called the length of a word w. A
language S™* is a set of all possible words which can be made out of an alphabet. The
language S* has a semigroup structure with multiplication defined as concatenation
of words. The empty word () is an identity element in S* and the only element of
zero length. The value of a word w € S* is an element g = v(w) € G obtained by
substitution of the formal product by a group product. The map v:S* — G is a
semigroup homomorphism. By S*(g), g € G we denote the set of all words w € S*
such that y(w) = g. This means that S*(g) is a preimage of g:

By Sf(g) (S7) we denote the set of all words w € S*(g) (w € S*) with length
l(w) =1

Call a subword of a word w the word obtained as a result of erasing some of the
letters of w followed by the concatenation of what is left. Suppose S; C S, w € S.
An S;-subword of a word w is the word obtained as a result of erasing all the letters
s ¢ S followed by the concatenation of what is left. Denote this word w|g,.

A sequence of subsets (Ai, As,...,A.), A; € G is a decomposition of G if any
element g € G can be decomposed i.e. written as

g=ai-az-...-ap

where a; € A;, 1 <i <r. A decomposition is called uniform if each element g € G
has the same number of ways to be decomposed. Obviously, this number is

m=[Ai|-|Az] ... [A]/]G]

A decomposition is called ezact if m = 1 i.e. each element g € G has exactly one
way to be decomposed. In this case the word

w=aas...a
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is called a normal form of a word g € G, w € S*(g). For example, the sequence
({0,2}, {0,1}) is an exact decomposition of the group Z4 of integers modulo 4.

Let Py, Py : G — Q be two functions on G. By the convolution Py *x P, we mean
a function
PPy (9) =Y Pi(h)-Pa(h"g)
heG

In probabilistic terms this corresponds to first picking an element according to
P;, then multiplying on the right by an element picked according to Ps.

By the group algebra Q[G] we mean the ring of linear combinations ay g1 + - - - +
Un Gy Q1,5 - 0n € Q, g1,...,a4 € G. The algebra Q[G] is dual to ring of Q-valued
functions on G with convolution as a multiplication.

1.2 Examples of groups.

Let the cyclic group Z,, be the group of integers module m with addition as
a group operation. Here we have e = 0 and |Z,,,| = m. The set S = {£1} is
a symmetric set of generators. The corresponding Cayley graph is a cycle. The
diameter is dg = L%J and the diameter set is Dg = {£dg} C Z,.

The dihedral group DH,, is the group of symmetries of the equilateral polygon
(see e.g. [CM], §1.5). It is not hard to see that DH,, ~ Zg X Z,, where an action of
Zs on Zy, is defined by a nontrivial involutive automorphism (i) — (—i), 1 <i < m.
We have |DH,,| = 2m.

The set S = {(1,0), (0, £1)} is a symmetric set of generators. The corresponding
Cayley graph is a 1-skeleton of an m-prism. The diameter is dgr = 1+ [2|. The
diameter set is Dg = {(1, £ |2 ])}.

The set S’ = {(1,0),(1,1)} is a minimal symmetric set of generators. The
corresponding Cayley graph is a cycle of length 2m. The diameter is dg: = m, the
diameter set is Dgr = {(0,1)}.

The n-cube the group Z%. Let S = {(0,...,1;,...,0),1 < ¢ < n}. This is
a symmetric minimal set of generators. The corresponding Cayley graph is a 1-
skeleton of the n-dimensional cube. We have dg = n and Dg = {(1,...,1)}.

Group 21 is a unique group of the order 21 that is not isomorphic to Zs;. Group
21 can be presented as a semidirect product Zsz X Z with a an action of Z3 on Z
defined by a nontrivial automorphism of order 3:

0=1(0,2,4,6,1,3,5): Z7 — Zr

In general, if p, ¢ are primes with ¢ = 1 mod (p) there is a unique non abelian
group G ~ Z,, X Z, of order pq (see e.g. [Hall]).

The symmetric group S, is the group of all permutations of an n-set [n] =
{1,2,...,n}. We use the standard notation to denote permutations: o = (3,1,2) €
S3 means that (1) = 3, 0(2) = 1 and o(3) = 2. We have e = (1,2,...,n) and
|Sn| = nl. We say that i is a fized point of a permutation o if o (i) = i.

A permutation o is a k-cycle (i1,ia,...,ig) if o(iy) = i9, o(iz) = i3, ...,
o(ig) = i1, and o(j) = j otherwise. A transposition is a 2-cycle (i,j). In other
words, transpositions are permutations with exactly n — 2 fixed points. An adja-
cent transposition is a transposition (4,7 4+ 1), 1 <4i <n — 1. The set S of adjacent
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transpositions is a symmetric minimal set of generators of S,. Define the length
(o) of a permutation to be its length in terms of this particular generating set:

l(c) =ls(o). We have
> d = (),

oESy

(see e.g. [Stanley], §1.3.10) The corresponding Cayley graph T is called the weak
Bruhat order of S,, (see [Stan], §Ex. 3.75). It is known that T" is a 1-skeleton of a
permutohedra which can be defined as a convex hull of the points (o(1),...,0(n)) €
R™ o € S, (see e.g. [EKK], §5.3, [Z], Ex. 0.10). In case n = 3, T is a 6-cycle.

Note that if the set S of generators of S, consists of all transpositions, then
ds =n —1 and Dg is the set of all n-cycles.

A permutation o € S, is called odd (even) if its length (o) is odd (even).
The Alternating group A, is the subgroup of S,, of even permutations. We have
|A,| = n!/2. The set of 3-cycles is a symmetric set of generators of A,,, n > 3 (see
[CM], §6.3).

Define an action of Z3 on Z3 by a cyclic permutation of the three nonidentical
elements (note that the product of either two of them is the third one so this action
is correctly defined). Observe that Ay ~ Z3 x Z2 (see [Serre], §9.3).

The hyperoctahedral group B, is the symmetry group of the hyperoctahedron
with vertices (0,0,...,%1,...,0) € R™ (see [CM], §7.3). In our notations, w =
(3,—1,2) means that we have a linear transformation @ : R* — R3, such that
w(x1,x2,23) = (x3, —21,22), n = 3. We have e = (1,2,...,n), |B,| =n!-2". The
subgroup of B,, with no minus signs inside the brackets is tautologically isomorphic
to Sy. Denote 0; = (1,2,...,—4,...,n). Then #; and the set of adjacent transposi-
tions in S,, make a symmetric minimal set of generators of B,,. The corresponding
Cayley graph is called the weak Bruhat order of B,. It is a 1-skeleton of an n-
dimensional convex polytope which can be defined as the convex hull of the points
(£o(1),...,£0(n)) €R", o € S,.

Note that B,, is a wreath product of S,, and Zs. In other words,

B, ~ S, x7Z}

where S,, acts on Z4 by the permutation of coordinates.

Note that By ~ DH, since both groups are defined as the symmetry group of
a square. The map ¢ : By — DH, defined by ¢(2,1) = (1,1), ¢(61) = ¢(—1,2) =
(1,0) establishes an isomorphism. Therefore the Cayley graph in this case is an
8-cycle.

For any ¢ = p®, p - prime, there is a unique field F, with ¢ elements (see e.g.
[VDW], §43; [Lang], §7.5). By FF; we denote its multiplicative group F; =T, \ {0}.
It is known (see e.g. [Lang], §7.5) that

]FZ ~ qul

The full linear group GL(n;F,) is the group of nonsingular matrices over the
finite field F; with ¢ elements. We have

IGL(;F ) = (¢" ~1) - (¢" —q) .- (@" — ") = ¢ (g = 1)"(n1),
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(see e.g. [CM], §7.4)

The special linear group SL(n;F,) is the group of matrices M € Gi(n;F,) with
determinant one:

det(M) =1
Denote PSL(n;Fy) the factor of SL(n;F,) over the scalars:

PSL(n;F,) ~ SL(n;F,) /(A - Id)

where A € F,, A" =1, and Id is an identity matrix (see e.g. [CM], §7.4).
The Borel group B(n;F,) is the group of upper triangular matrices over the finite
field F,. We have B(n;F,) C GL(n;F), |B(n;Fy)| = q(g)(q —1)".

The unipotent group U(n;F,) is the group of upper triangular matrices over the
finite field F, with ones on diagonal. We have U(n;F,) C B(n;F,), |[U(n;F,)| =
i)

The Heisenberg group mod p, p is a prime, is the group U(3;F,). Observe
that U(3,F,) ~ Z, x Zf, with the action defined by a nontrivial automorphism

(z,y) — (x,x +y) of order p. It is not hard to show that U(3;F,) is generated by
matrices

1 1 0 1 00
Rl = 0 1 0 and R2 = 0 1 1
0 0 1 0 0 1

In case p = 2 the set S = {Rjy, Rz} is a minimal symmetric set of generators.
Recall that U(3,Fy) ~ Zg x Z3 ~ Zy X Z4. Therefore U(3,Fy) ~ DH, with an
isomorphism given by a map ¢ : U(3,F2) — DHy, ¢(R;) = (1,0), ¢(R2) = (1,1).
Therefore the Cayley graph in this case is an 8-cycle.

1.3 Classes of groups.

A group G is called abelian if any two elements g1, g2 € G commute:

g192 = 9291

Both the cyclic group and the n-cube are abelian groups. Every abelian group is
a direct product of cyclic groups (see e.g. [VDW], §53). Denote Ab a family of
abelian groups.

A tower of subgroups is a sequence of the following type:

(*) G=GyDG1 DG2D...0G, DGpy1 ={e}

A tower of subgroups is called subnormal if for each i = 1,...,n, G; is a normal
subgroup of G;_ (see e.g. [VDW], §51). By the factors in a subnormal tower we
mean the factor groups

H; =G-1/G;

where 1 <3 <n+ 1.
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A group G # {e} is called simple if it has only two normal subgroups: G and
{e} (see e.g. [VDW], §51). In other words it has only the trivial subnormal tower:
G D {e}.

A subnormal tower without repetitions which cannot be refined is called a com-
position series. It is not hard to see that in a composition series all factors H;
are simple. Two composition series are called equivalent if the factors of the first
series are isomorphic to the factors of the second series, up to some permutation of
indices. The Jordan-Ho6lder Theorem states that all composition series of a finite
group are equivalent (see e.g. [VDW], §51).

There is a classification theorem for the finite simple groups. Even stating it
is a nontrivial task. It basically says that every simple groups is either Z,, p -
prime, or A, n > 5, or a group of Lie type, or one of the 26 sporadic groups (see
[Gor] for definitions and details). By a group of Lie type we mean a member of the
few known families of the finite linear algebraic groups such as PSL(n,F,) and its
analogs for the other root systems.

A group G is called solvable if it has a normal tower (x) such that all factors
H;, = G;_1/G; are abelian, i = 1,...,n+ 1 (see e.g. [Serre], §9.3).

A group G is called supersolvable if it has a tower (%) such that G; is the a
normal subgroup of G and the factors H; = G;_1/G; are cyclic, i = 1,...,n (see
e.g. [Serre], §9.3).

A group G is called nilpotent if if it has a normal tower (x) such that (G;,G) C
Gt for each i =0,1,...,n (see e.g. [Serre], §9.3).

Denote Solv, SuperSolv, Nl the families of solvable, supersolvable and nilpo-
tent groups respectively. We have

Ab C Nil € SuperSolv C Solv

with all the inclusions strict as we show later (see e.g. [Serre], §9.3).

A group G is called p-group if |G| = p*, p - prime, k& > 0. Every p-group is
nilpotent (see e.g. [Serre], §9.3, [Lang], §1.6).

The first nonabelian group is Ss. Its only nontrivial normal tower is
53 D) A3 D) {6}

This shows that Sj is solvable, even supersolvable, but not nilpotent.

The Klein 4-group K C Ay is the group of four permutations (1,2, 3,4), (2,1, 4, 3),
(3,4,1,2) and (4,3,2,1). K is the only nontrivial normal subgroup of A, K ~ Z3.
Therefore A4 has a unique nontrivial normal tower:

Ay D K D{e}

This shows that A4 is solvable but not supersolvable.

As noted before, the groups A,, n > 5 are simple. The symmetric group S,
for n > 5 contains exactly one normal subgroup A, and therefore has the unique
nontrivial normal tower:

Sp D A, D {e}
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Therefore the groups A,,, S, n > 5 are not solvable.

Group 21 is the smallest nonabelian group of the odd order. By the Feit-
Thompson Theorem every finite group of odd order is solvable (see e.g. [Gor],

§1).

Denote by U(n,k;F,) C U(n;Fy), 1
matrices (u; ;) such that w; ; = 0if 1 <
subgroups

< k < n —1 a subgroup of unipotent
j—1 < k. We have a tower of normal

Un;Fg) DU(n,1;Fy) DU, 2;Fy) D... D U(n,n—1;F,) = {e}

which shows that U(n;F,) is nilpotent.

Observe that U(3;Fy) is nilpotent but not abelian. We have |U(3;F3)| = 8, which
makes it the smallest group with such property since the only smaller nonabelian
group is S3 (see e.g. [CM], Table 1). Recall that U(3;F3) ~ By ~ DH,.

Recall that B(n;F,) D U(n;F,). Adding the above tower of normal subgroups
of U(n;F,) we get a new tower which shows that B(n,F,) is solvable. When ¢ is a
prime, B(n;F,) is also supersolvable. Since some of the factors may not be cyclic
one needs to refine this tower. We will not use this refinement. It is not hard to
show that B(n,F,) is not nilpotent.

It is known that PSL(n;F,) is simple for n > 3, and for n = 2, ¢ > 4. Therefore
neither GL(n;F,) nor SL(n;F,) is solvable.



14 IGOR PAK

2. RANDOM WALKS

2.1 Definitions.

Fix a finite group G and a set of generators S. Let P be a probability distribution
on S. A random walk W = (G, S, P) is a discrete Markov chain X; (see e.g. [Feller],
§15.1) with the set of states G which starts at Xy = e and moves with transition
probabilities

*P(g—g-s)=p(s),s€S,geC
e P(g — ¢') = 0 otherwise, g,¢' € G

Call a probability distribution P on a set of generators S uniform if p(s1) = p(s2)
for all s1,s9 € S. In this case we can think of our random walk W as the nearest
neighbor random walk on a Cayley graph I' = I'(G, S).

Two random walks Wy = (G1,S1,P1) and Wy = (Ga, Sa, P2) are called isomor-
phic (denoted as Wi = Wh) if there is a group isomorphism ¢ : G; — G5 such that
¢(S1) = Sz and ¢(P1) = Po, which means that s; € S; implies so = ¢(s1) € S
and p1(s1) = p2(s2).

Denote by QF(g) = P(X) = g), g € G the probability distribution of the state
of a walk after k steps. Obviously Q*(g) = P* P x---x P (k times). For a subset
S C G the probability distribution R(g) is called uniform on S, denoted R = Usg,
if R(g) = l—};‘ if g € S and R(g) = 0 otherwise.

Two random walks Wy = (G1,51,P1) and Wy = (Gs, Sa, P2) are called equiva-
lent (denoted as Wy ~ W) if there is a one-to-one map ¢ : G; — G2 which maps
probability distribution Q¥ into Q% for all k¥ > 0. In other words,

Q1(9) = Q5(8(9)), 9 € G1, k>0
Note that if Wy =~ Wh, G = G3, ¢(S1) = Sa, we immediately get

P1(s) = Q1(s) = Q3(¢(s)) = p2(o(s)),s € 51
i.e. in this case Wi = Whs.

Example 2.1.1 The first example to consider is the random walk on Z,,. Take
a set of generators S = {—1,0,+1} and a probability distribution p(0) = 3 and
p(—1) = p(+1) = 1. One can think of this random walk as a random walk on a
circle with probability of staying to be % and equal probability of moving in each
direction.

Example 2.1.2 Denote by W, a random walk on Z,, with the set of generators
S = {0,+a} and a probability distribution p(0) = 1 and p(+a) = 1. It is not hard
to see that W, 2 W, for all a, 1 <a <m, (a,m) = 1.

Example 2.1.3 Counsider the Heisenberg group mod 2, i.e. U(3,F3) generated
by matrices Ry and R, (see §1.2). Take a probability distribution p(e) = %, p(R1) =
p(R2) = 1. Denote by W a uniform random walk (U(3,F3),S,P), where S =
{R1, Ry2}. Since the Cayley graph I'(U(3,F2),S) is an 8-cycle, W is equivalent to

the random walk on Zg although not isomorphic to it.
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It is natural to assume that our probability distribution P is strictly positive
on S ie. forall s € S, p(s) > 0. P is called symmetric if S is symmetric and
p(s™1) = p(s) for all s € S. In the future we restrict our attention only to random
walks W = (G, S, P) where G is a finite group, S is a symmetric set of generators,
e € S, and P is symmetric and strictly positive on S. We call such random walks
directed.

A classical result of the Markov Chain Theory is the following theorem (see e.g.
[AF], §2.1).

Theorem 2.1.4 Let W = (G, S,P) be a directed random walk. Then the

probability distribution Q*(g) tends to uniform stationary distribution 7(g) = ﬁ

as k tends to infinity.

There is a way to define random walks in terms of words in the alphabet S. First
we need to explain a few useful expressions.

When saying draw a generator s € S from probability distribution P we mean
choosing a generator s with probability p(s). By applying a generator s to a word
w we mean multiplying it to the right: w - s.

Consider the following procedure

Procedure W Suppose we are given a word w; € Sf.

e Draw a generator s;11 € S from the probability distribution P
o Apply it to w: wyy1 «— wy -+ Sy1-

ot —t+1.

Now we can think of the random walk WV via the use of the Procedure W where
the state X, is given by the value of a word wy:

Xt =y(wr)
We say that a walk X; walked along the word wy, € S} if
Wy = 8182 ... 8
where generators s; € S, 1 <1i <n are given by the formula s; = X[_ll - X;.

At last, we would like to give a simple combinatorial interpretation for the value
Q*(g) in case P is uniform. Denote p = p(e), ¢ = p(s), s € S. We have ¢ =

(1—p)/I5].
Theorem 2.1.5 i
Q"9)= Y rilg)p*'d (?)
I=ls(g)

in particular
Q"(9) = ri(9)d", 1 <k <ls(g)

where 7;(g) is one of the following:
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i) the number of paths with length [ in the Cayley graph I' going from e to g
it) 1 = |S;(g)] i-e. the number of words w such that y(w) = g, l(w) = 1.

Proof Denote by j the number of times we stayed before reaching g € G along
the path . The number of ways to choose the places along { where to stay is the
binomial coefficient (l;) Therefore the probability of reaching ¢g from e along ( is

exactly
e (K
P q .
J

Summing over all j we get part ).
The proof of part 4i) is analogous. O

2.2 Separation distance.

We would like to measure how fast our walk is mixing. In order to do that we
need to define a distance on a probability space so we can bound the difference

Q% —Ug).

Definition 2.2.1 Separation distance s, (see [AD1, AD2]) is defined by the

formula 1
_ . = Nk
s =161 (7 - Q)

Although this separation distance from the uniform distribution is not a dis-
tance in a traditional sense, it fits our purposes since by the Theorem 2.1.4 we get
a uniform stationary distribution for all walks we consider. Other distances are
discussed in §2.4.

Here is another way to think of a separation distance.

Definition 2.2.2 Call an element gy k-minimal if the probability distribution
Q" on a group G has a minimum value at g. Define a minimal sequence to be any
sequence (g1, 92, - - . ) of k-minimal elements for each k > 0.

Now suppose we have a minimal sequence (g1,g2,...). By definition of the
separation distance we have

sw=1—|G|- Q"(gr)

Note that for some & there might be many k-minimal elements. Thus a minimal
sequence also is not uniquely determined, for example any g € G with Q¥ = 0 is
k-minimal.

Our goal is to give some upper bounds for the asymptotic behavior of the se-
quence S, when k tends to infinity. We say that a random walk W is degenerate if
s = 0 for some k.

Theorem 2.2.3 Let W = (G, S, P) be a directed nondegenerate random walk.
Then there exist constants C, « > 0 such that

sp~C-e @k
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as k tends to infinity.

A proof of Theorem 2.2.3 will be given in §2.3. The key result for proving this
theorem is the following proposition, which is also interesting by itself.

Proposition 2.2.4 The separation distances s, k > 0 satisfies the following
properties

(monotonicity) S$m < Sn, m<n

(submultiplicativity) Spm « Sn = Sman

A proof of the Proposition 2.2.4 in greater generality is given in [AD2] (see also
[D], §4C).

Lemma 2.2.5 Let W = (G, S, P) be a directed random walk. Then there exist
constants C, « > 0 such that
sp < C-e @k

for all £ > 0.

Note that Theorem 2.2.3 doesn’t immediately follow from the Lemma since a
priori the separation distance s; could have a different kind of asymptotic behavior,
such as decrease superexponentially.

Proof of Lemma 2.2.5 Let d = dg be a diameter of the group G. By definition
of a separation distance we have

S1=8y=---=83.1=1, sq <1
Now from monotonicity and submultiplicativity we get
Smdt+i <87, m>0, 0<i<d-—-1

Therefore

151

Sk < 84

This proves the Lemma. [
Remark 2.2.6 The Definition 2.2.1 and the Proposition 2.2.4 are due to Aldous
and Diaconis (see [AD1, AD2]). For generalizations and subsequent treatment see

[AF, D, DF]. k-minimal elements were introduced in [DF] (see also [AF], §9.2, where
they are called halting states).

Sometimes it is possible to find very tight bounds on a separation distance. We
need the following definitions.

Definition 2.2.7 The separation series and the total separation are defined by
the following formulas

o
s(x)y =1+ Z spa”
k=1
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s=s(1)=14+s+s2+...

Theorem 2.2.8 Let W = (G, S, P) be a directed random walk, dg the diameter
of G. Then

1)ds < s < o0

2)1-E5<g, < k>ds

s—dg
F—ds+1°
Proof The first inequality in part 1) follows immediately from the observation
that s =s9 =+ =544-1 = 1.
The second inequality in part 1) of the Theorem follows from Lemma 2.2.5.
Indeed, we have

-

8§1+Ce‘“+0e‘2“+~--:1+01€77<oo
7604

where the last inequality comes from a > 0.
From monotonicity (see Proposition 2.2.4) we have

s>ds+Sqg+ -+ g >ds+ (k—dg+1) s

which proves the second inequality in part 2) of the Theorem.
Analogously from monotonicity and submultiplicativity we have

k

:1—Sk

sSk‘—l—ksk—&-k‘si-I--”

Thus s > 1— f and we have proved the first inequality in part 2) of the Theorem.
O

For every € > 0 define n. = n.(W) to be the smallest number such that s, <e.
Heuristically, after ni steps the separation distance is % and after that decreasing
exponentially fast. Many authors consider ni to be a definition of the mizing time
(see e.g. [Sinclair]).

Corollary 2.2.9 Let s be the total separation of a directed random walk W =
(G,S,P). Then

<ni<2s

D=

[NCJ VA

Proof Take k1 = L%J in part 2) of the Theorem 2.2.8 for the lower bound and

ky = |2s] for the upper bound. O

Observe that by part 2) of Theorem 2.2.8 we can bound the separation distances
Sk, k > 1 in terms of the total separation s. This appears to be a very useful bound
although it is not tight at all as n tends to infinity. Here we get s3, < % instead of
the s, < Cye k.

It is easy to see that the o in the Theorem 2.2.3 is a radius of convergence of
s(z) around zero. In this thesis rather than estimating the separation distances s
for all £ we will be finding bounds for this radius p and the total separation s.
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Definition 2.2.10 Let W = (G, S, P) be a random walk. Call an element g € G
extremal if it is k-minimal for all £ > 0. A random walk W is called guileless if it
has an extremal element

Observe that if g is an extremal element we have

oo

s=Y"1-16]-Q"@)
k=1

Theorem 2.2.11 Let W, ~ W, be two equivalent random walks, s!, s? - their
total separations. Then
st =5

Proof Obvious. O

Example 2.2.12 Consider a random walk on G ~ Z, defined as follows. Let
G = {e,a}, ple) = %+ 2, pla) = %— £, 1> p > 0. After k steps we get a
probability distribution

k

Q) =5 +5p
1

k
a)=-—

Q"(a) = 5
Therefore the separation distance is decreasing exponentially:

.pk

N — N~

k
S =P

From here we get the separation series, radius of convergence and the total separa-
tion:

1
s(z) = ——
1—p-x
1

= 1) = ——
s=1s(1) -

1

p=-

p

Observe that W has an extremal element g = a. Note that if —1 < p < 0 we still
can define a random walk W. Clearly this random walk does not have an extreme
element.

Example 2.2.13 Consider a random walk on Z, with generating set {0,+1}
(see Example 2.1.1). For any k > 1 we have

QH0) = § + gers
1 1
Q*(2) = 1 okt
1
k _
Q1) =
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Therefore we get the exact value of the separation distance:
1
Sk = 2k—1

From here we can compute the separation series:

t ot 24+t
t)=14+tl+=-4+=+...)= —

s(t) +(+2+22+ ) 5§

which gives us the total separation and the radius of convergence:

s=s(1) =3, p=2

Example 2.2.14 Let G be a finite group, |G| > 4, |G| even. Denote N = |G|—1.
Fix an element a € G, a # e. Suppose a is an involution, i.e. a®> = e. Then the set
S = G\{a} is a symmetric set of generators. Consider a random walk W = (G, S, P)
with probability distribution p(s) = 1/N, s € S. We have

N -1
, gFe

Q*(9) = N7
1

Q*(e) =
Indeed,

S3(9) ={w="hiha| ho=h7' g, k1 #e,a}

for any g € G. Therefore r2(g) = |G|—2=N—-1if g # e, and r3(e) = |G| -1 = N.
This gives the above formulas. Observe that

1 NZ -1
2 _
Q = ﬁ I+ T .
where T is an identity distribution I(e) = 1, I(g) = 0, g # e, and J is a uniform
distribution J(h) = 1/|G|, h € G. From here we have

1 1
2k _
Q _Nzk'l+<1_N2k>'J
1 1
2k+1 _ 1
Q _N2k'Q+<1_N2k>"]

This proves that a is an extremal element, i.e. sp = 1 — (N +1)Q¥(a). Therefore
the separation distance is decreasing exponentially

J

1
52k = S2k+1 T Jmo k>0
Thus the separation series is equal to
2 3 4 5
T T x T 5 142
From here we get the total separation and the separation radius:
2N?
s=s(1)=——, p=N

N2 -1’



RANDOM WALKS ON GROUPS: STRONG UNIFORM TIME APPROACH 21

2.3 Properties of the separation series.

Let {fn}, m > 0 be a sequence of functions on the group G: f, : G — R.
Suppose sequence f, tends to Ug as n tends to infinity. In other words for each
g € G we have

. 1
Jim f,(g) = il

We say that {f,} is asymptotically stable if there is a number ny € N and
linear order ”<” on G (called an asymptotic order) such that f,(g91) < fn(g2) for
all g1 < g2 and n > ng. The minimal element in the asymptotic order is called
asymptotically extremal.

Random walk W = (G, S, P) is called lazy if p(e) > 1. Most of the random
walks we are going to study are lazy. There are several technical reasons to do so.

Here is one of them.

Theorem 2.3.1 Let W be a directed random walk. Then the sequences {Q?"}
and {Q?*"*1} are asymptotically stable. Moreover, if W is lazy, the sequence {Q"}
is asymptotically stable.

Proof Let N = |G|, G = {¢1 = e,92,...,9n}. Denote by A = {a;;} an
N x N - matrix such that a; ; = Ql(gi_lgj) ie. a;; = p(s)if s = gi_1 g; €8
and a; ; = 0 otherwise. Denote also by = (1,0,...,0) a column N-vector, by =
(Q%(g1), Q%(g2), .., Q%(gn)). We have b, = AF by.

Recall that P is a symmetric probability distribution and (S) = G, e € S and
p(s) > 0, s € S. Tt is not hard to argue that in an appropriate basis v1,...,vy,
v; = (vi1,...,v;,§) we have

bk:)\]f'vl+"‘+>\§€v‘UN

where 1 = Ay > A9 > -+ > Ay > —1 (about spectra of graphs including Cayley
graphs see e.g. [CDS], [Chung], §1.3).

Suppose now p(e) > 1. From here we get A = (A4, +idy) for some matrix A;
of the same type. Therefore Ay > 2(—141) =0

Consider elements g; and g;. Let r be the smallest number such that

Upi + U1+ 0+ 0L F Urj Vg1 UL
where A\p,—1 > A = A1 = - = A > A1 We have
k k _\k E
Q%(9:) —Q%(gj) = A(vri -+ Fva — vy — - —vg) F N e+ Apaca
Since A\; > Aj41 > Aip2 > ... we immediately get an asymptotic order on g; and g;
for all & > n(i,j). Taking ng to be a maximum of n(i, j) over all pairs 1 <4,j < N
we get an asymptotic order on G. This proves the second part of the Theorem.

The first part is analogous, but in this case one needs to take the matrix A2
which also has only nonnegative eigenvalues. [

For the next Theorem think of the values p; = p(g), ¢ € S as commuting
variables.
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Theorem 2.3.2 Let W = (G, S, P) be a directed random walk. Then

s(x) € Z(z; pg, g €9)

i.e. the separation series s(z) is a ratio of two integer polynomials in x and p,,
ges.

Proof Let g; and g2 be the asymptotically extremal elements for the sequences
Q% and Q%**+1, k > 0. By definition of the separation series we have

s(z ): — —|G] Zmank

gGG

Indeed, by Lemma 2.2.5 the series s(z) is convergent at 1. Therefore s(z) is also
convergent at z for all z € C, |z| < 1. This implies that s(z) is an analytic function
in some disc with center at 0 the radius of convergence p > 1.

From Theorem 2.3.1 we have

S(Z) _ iz o P |G| ZQ2k 91 - |G| ZQZk—1(§1)22k—l
k=1

k=1

where P(z) € Z[z;pg4, g € S] is an integer polynomial of x and py, g € S.

Indeed, all the values Q*(g) € Z[py,g € S] for any k > 0 and g € G. Take P(2)
to be the difference between s(z) and all the other series on the right hand side.
We get the degree of P(z) is at most ng (see above) which proves the above result.

Consider a set of formal commutative variables x; ;, 1 < 4,5 < N. For any set
I, I C [N] define a formal sum

R(Z,j,]) = Z Liiy " Liyyig - Tipj
k>0,(i1,...vi ) ET*
From the elementary combinatorial considerations (see e.g. [Stan], §4.7) we have:

1
mesn =t 3o (g ), o
lm

Lmel zu,v)u,vel

where M ,, is a matrix element in column m and row /.
Therefore the series R(i,j;I) can be presented as a ratio of two polynomials of

(zi,5) :

l+m det(zd (mu,v)uef\{l}ﬂ)el\{m}) T
det(id — (Tu,v)uwer) "

R(iajv *x1]+ Z xll

l,mel

(see e.g. [Stan], §4.7).

Let x;; = b; ; 22, where B = (a; ;) = A? and A is an N x N - matrix as in the
proof of the Theorem ?. Let g1 = g;, g2 = g;. We have

oo

S Q% (@) 2** = R(Li [N])

k=1
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) N
Q% NG2) =Y ariz R(,j;[N])
k=1 =1

This implies that each of the sums on the left hand side is a ratio of two polyno-
mials in Z[x;py, g € S]. Combining with the above observations prove the result.
O

From Theorem 2.3.2 we immediately get a Theorem 2.2.3. Indeed, take the root
of the denominator with the smallest absolute value p, which is also the radius of
convergence of s(z). Then s, ~ Cp~*. O

Example 2.3.3 Let G = Z5 as in the Example 2.2.12. Denote g1 = €, g2 = a.
We have

b
Il
7N
N[ =bo| =
I+
[ SIS NS
NN~
+
SIS
N——

Since go is an extremal element, we

$(2) = T 2 3 @M gn) = T~ 2R(1L2: [2)
k=1
We have (C1)+2(ay )
R(1,%2)) = det(id — ZA)
det(id—zA):(l—z (;-l—g)) —<z (;—g)) =(1-2)(1-=zp)
and finally
o(2) = L, 2(3+8) _(Q-e2p-2(1-p 1

1—2 (1-2)(1-2zp) 1—2)(1—zp)  1—=zp
which agrees with our computations in Example 2.2.12.

Definition 2.3.4 The random walk W = (G, S, P) is called rational if p(s) € Q
for all s € S.

Corollary 2.3.5 Let W be a rational directed random walk. Then the separa-
tion series s(x) is a ratio of two polynomials with rational coefficients.

Proof Obvious. [

Corollary 2.3.6 Let s = s(1) be the total separation of the rational directed
random walk. Then s is a rational number.

Proof By the Lemma 2.2.5 the separation series s(z) converges at 1 and therefore
defines an analytic function on a disk {|z| < 1}. By Abel’s Theorem (see e.g. [WW],
§3.71 we have

lim s(z)=s(1)=s

r—1—
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From here and the Corollary 2.3.5 we get s € Q. O

Remark 2.3.7 Asymptotic orders on groups were studied by various people
(see [D] for references). When it is preserved from the beginning it is called mono-
tonicity (see [D], §3C). For a random walk on the symmetric group generated by
all transpositions it was computed by Lulov (see [Lulov], §8.2). In this case the
asymptotic order becomes a reverse lexicographic on partitions which enumerate
conjugacy classes. In this case the hitting time and the average hitting time was
computed in [FOW].

The matrix X is usually called the transfer matriz (see e.g. [Stan], §4.7). Func-
tions R(i, j; I) are sometimes called graph functions and have numerous applications
in Combinatorics and Algebra (see e.g. [Stan, Lall]). They have a noncommutative
generalization which give analogs of the above results for a general class of Markov
chains (see [GR, PPR)).

2.4 Other mixing times.

Definition 2.4.1 Let W = (G,S,P) be a directed random walk, Q* be a
probability distribution after k > 0 steps. Define the total variation distance tvy as

tvk:%z

geG

ki L
Q"(9) e

The total variation distance is the most commonly used in the Markov chains
setting. See [D], §3B, [AF], §2.6 for other definitions, generalizations, known results
and references concerning the total variation distance.

Theorem 2.4.2 Let W = (G, S,P) be a directed random walk. Then for all
k>0

1) tv, = |G| Q%*(e) — 1

2) 1—+/1—s9p <tv, <sp, k>n

The second part of Theorem 2.4.2 is due to Aldous and Diaconis (see [AD2]).
Proof of the Theorem in a more general setting can be found in [AD2], [D], §4C,
[AF], 84.3. As a consequence of Theorem 2.4.2 we get bounds on the total variation
distance from our bounds on separation distance.

N=

Definition 2.4.3 The total variation series tv(x) and the average separation
series as(x) can be defined as follows:

_ Z |G|Q2k 1) xk
k=1

as() = 5221%(1@ 9)| «*

€G k=1

Denote vt = vt(1), as = as(1).
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Definition 2.4.4 Call the hitting time (ht) the maximum over all g € G of the
mean time for a walk to hit g i.e. to get to g for the first time. The average hitting
time (aht) is the mean time for a walk to hit a randomly chosen state. The cover
time (ct) is the mean time to hit all the elements.

See [AF], §4, 6 for the definitions, generalizations, numerous results and examples
of computation of the above "times”. Later on, in §3.6 we will find some inequalities
between them and the total separation.

Theorem 2.4.5 Let W be a rational directed random walk. Then the numbers
as = as(1), tv = tv(1l), ht, aht and ct are all rational.

Proof The proofs of all five results are almost exactly the same as the for the
total separation (see §2.3).

There exist an analog of Proposition 2.2.4 and Lemma 2.2.5 (see §2.2) for the
total variation distance (see e.g. [D], §3B and references there). This gives us
convergence as z — 1— and finiteness of tv(1). Analogously for as(z) we get con-
vergence at 1 since by definition the separation distance gives always the minimum
of the difference (1 — |G| Q*(g)) among all g € G and the total variation gives the
maximum (see a short proof of the latter result in [ASE], p. 139). Presenting both
series vt(z) and as(z) in terms of R we get the result.

In case of ht, aht and cv we do not have a convergence problem. Let R(3, j; I)(x)
denotes a series in x introduced in the proof of the Theorem 2.3.2. Observe that
R(1,4; [N]\ {i})(x) is the generating function by the number for steps of the prob-
ability of the walk hitting ¢ for the first time. By definition of expectation, we
have

ht = max R'(1,4; [N]\ {i})(1)

i€[n]

aht = T(1;| S RN (D)

€[N

This proves the result in case of ht and aht.

As for the cover time, the expansion in terms of R is somewhat tricky. Define
ct(z) the generating function for probability of covering all the group elements after
k steps. We have

ct(z)= > R1,1+0(1);{1}) - R1+0o(1),1+0(2);{l,1+a(1)})-...
cESN-1

‘R(1+0(N—-2),140(N-=1;[N]\{1+0o(N-1)})

Indeed, we start at e. First we wait till we hit the second element, then the third,
etc, until we hit each of the elements. Summing over all the permutations of
{2,..., N} we get the above formula.

Now since cv = cv’(1) we get cv € Q O

Example 2.4.6 Suppose G = Z4 and W is a random walk as in the Example
2.1.1. Let us compute ht, aht and ct.



26 IGOR PAK

Denote F4, E5 the mean time to hit 1 and 2 respectively. The expected number
of steps needed for a walk to hit either 1 or —1 is 2. From there it takes an expected
2 steps to move to either 0 or 2 with equal probability. This gives us

1
Ey=2+2+ 3 By

Ey=2(242)=8

Analogously, it takes on average 2 steps for a walk to move to either 1 or —1
with equal probability; and from —1 it takes Es steps to get to 1. Therefore

1
E1:2+§E2:6

Therefore 1
ht =8, aht=1(0+6+8+6)=5

For the cover time, it takes on average 2 steps to cover two elements, 4 more
steps to cover the third element (by the symmetry) and E; steps to get to that last
element. This gives us

ct=24+4+6=12

2.5 Examples of random walks on groups.

Example 2.5.1 Let G = Z,,, S = {0,£1}, p(0) = %, p(xl) = %. Call the

walk W = (G, S, P) the standard random walk on the cyclic group Z,,. In §4.1 we
show that the total separation s ~ %m2.

This is probably the oldest and most thoroughly studied random walk on a finite
group. See [DF] for the modern treatment of this walk and bounds on separation

distance.

Example 2.5.2 Let G = Z%, S = {e,s; = (0,...,1;...,0),1 < i < n},
p(e) = 1, p(s;) = 5. Call the walk W = (G, S, P) the standard random walk on
the n-cube Z%. In §4.3 we show that the total separation s ~ nln(n).

This is another ”0ld” example of a random walk. Detailed analysis of this walk
can be found in [DGM].

Example 2.5.3 Let G = S,,. Take all the transpositions (7, j) to be elements
of a set of generators .S with uniform probability distribution P defined as follows:

1

I
p(e)*f p(l’j)in(n—l)

2 K

Call the walk W = (G, S, P) the random walk on .S,, generated by all transpositions.
In §5.2 we show that the total separation s = O(nlog(n)).

This example was introduced and studied by Diaconis and Shahshahani in [DSh1],

where they used a technique of bounding the total variation distance by considering

the characters of the symmetric group. A simplified version of the proof can be
found in [D], §3D.
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Example 2.5.4 Let G = S,,. Take S to be a set of Coxeter generators i.e.
transpositions (i,i + 1) (see §1.2). Let P be a uniform probability distribution:

~—

p(e) =5, p(i,i+1) =

DO =

2(n—1)

forall 1 <i<n-—1. Call the walk W = (G, S, P) the random walk on S,, generated
by adjacent transpositions. It is known (see [A, DSC]) that the total separation
s =0(n>log(n)). In §5.3 we show that s = O(n?) by a probabilistic argument.

This random walk was introduced and analyzed by Aldous in [A1] using a cou-
pling argument. Later in [DSC] Diaconis and Saloff-Coste used a comparison tech-
nique to get similar bounds.

Example 2.5.5 Let G = S,,. Take S to be a set of star transpositions i.e.
S ={e,(1,i);i =2,...,n}. Consider a uniform probability distribution P defined

as
1

p(l,i) = =1

for all 2 < i < n. Call the walk W = (G, S, P) the random walk on S,, generated
by star transpositions. In §5.1 we show that the total separation s = O(nlog(n)).

This walk was studied by Flatto, Odlyzko and Wales in [FOW]. Comparison
arguments in [DSC] give another proof of the result.

p(e) =

Example 2.5.6 Let G = B,,. Take S to be a set of star transpositions i.e.
S ={e,01,0;,(1,4);i = 2,...,n}. Consider a uniform probability distribution P

defined as
1 1 1

p(e) = 5. p(1) =p(8) = . p(Li) = gy

for all 2 < i < n. Call the walk W = (G, S, P) the random walk on B,, generated
by star transpositions. In §4.5 we show that the total separation s = O(nlog(n)).

Example 2.5.7 Let G = B,,. Take S to be a set of the adjacent transpositions
ie. S = {e0,,0;(i,i+1);4 = 1,...,n — 1}. Consider a uniform probability
distribution P defined as

1 1 1

p(e) = 5 P(0n) = p(0;) = 4n’ p(Li) = m

forall 1 <i < n—1. Call the walk W = (G, S, P) the random walk on B,, generated
by adjacent transpositions. In §4.5 we show that the total separation s = O(n?).

Example 2.5.8 Let G = U(n,F,). Forany 1 <i < j <mn, a € F, define an
upper triangular matrix R(%,j;a) with ones on the diagonal, a in place (4,7) and
zeros elsewhere. Let

S={R(i,j5;a), 1<i<j<n,aclF;}
be a symmetric set of generators. Define a probability distribution P as
1

iia _ a
p(e)*ga p(R(lajv )) q(g)7 7&0
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Consider a random walk W = (G, S,P). We shall call this random walk the stan-
dard random walk on the upper triangular matrices. In §6.3 we prove that the total
separation s = O(nlog(n)).

Example 2.5.9 Let G =U(n,F,), S ={e, R(4,j; £1), 1 <i < j < n}. Define
the probability distribution P as

1

— —  _1<i<j<
2nn—1)  —' /="

ble) = 5. PR(,ji%1)) =

Consider a lazy random walk W = (G, S, P). In §6.3 we obtain the following bound
on the total separation: s = O(n?log(n))
2.6 General bounds on the separation distance.

Let G be a finite group, S - its symmetric set of generators and d = dg its
diameter. For any k& we have

_k
_1—Sk

s<k-(14+sp+st+...)

Denote g a k-minimal element, my, = Q*(gx). In other words,

ok
mk—gggQ (9)

If £ > dg we have

1
0<mg < —
G|

and
s,=1—]G|-Q, 0<s<1

Substituting here the value of s, we get the following result:

Theorem 2.6.1 For any directed random walk W and k > dg we have

s<k
~ G Q% (gk)

where gy, is a k-minimal element.

In particular, when k = dg we get

s 95
~ |Gl Q4 (gas)

Note that Q(gx) > 1o implies s, < (1 — ¢)l7/kl. This is called Doeblins
condition. Later on we are going to generalize this result for various stopping times

on groups (see §3.5).
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Example 2.6.2 Let G ~ Zy, S = G = {e,a}, p(a) = p/2, p(e) = 1 — p/2,
p < 1. We have Q = p/2, ds = 1. The theorem therefore gives us an upper bound

s < % which is tight since in Example 2.2.12 we showed that s = %.

Example 2.6.3 let G = Z4 and a walk as in Example 2.1.1. We have dg = 2,
Ds = {2}, Q = Q*(2) = 1/8. Therefore the total separation is bounded by

v

s < =4

4

o=

Recall that s = 3 is the right value of the total separation (see Example 2.2.12).

Example 2.6.4 Let G be a finite group, N = |G| — 1, and W = (G, S,P) a
random walk as in Example 2.2.14. We have ds = 2, Dg = {a}, Q = Q*(a) = &3.
Therefore the total separation is bounded by

2 2 N2
s < =

TN+ N

which is a tight upper bound (see Example 2.2.14).
Example 2.6.5 Let G = U(3;F,), p is a prime, the group of upper triangu-

lar matrices over the finite field with p elements. Consider the following set of
generators S:

a 0
1 0 Ry(b) =
0 1

OO =
o = O
_= o O

where a,b € F,,. Note that Ri(e) = Rao(e) and R;(a) R;(b) = Ri(a+b),i=1,2.
We claim that dg = 4 and Dg contains the matrix
1 0 1
T=10 1 0
0 0 1
Indeed, T cannot be obtained as a product of any three matrices R € S. Therefore

ds > 3. On the other hand we claim that the product Rs(a) Ri(b) Ra(c) R1(d)
contains each matrix at least p — 1 times. Solve the equations

1 b+d bec 1 z =z
Ry(a) Ri(b) Ra(c)Ri(d)=[0 1 a+c|=10 1y
0 0 1 0 0 1

We get 2p — 1 solutions if z = 0 and p — 1 solutions otherwise. Analogously, for
the product Rj(a) Ra(b) R1(c) Ra(d) we get 2p — 1 solutions if z = xy and p — 1
solutions otherwise. These are the only ways one could get a matrix 7' since any
repetition is a sequence of indices of R’s means that the product can be written as
a product of only three such matrices.
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Define a probability distribution P as follows:
1
p(e) = —, P(Ri(a)) = p(R(b) = 55 @070

Consider a random walk W = (G, S,P). Each walk step can be described as
follows:

e Flip a fair coin. Choose a random number a € F,.
e If heads, apply generator R;(a)
o If tails, apply generator Ry (a)

Lemma 2.6.6 For any U € U(3,TF,)

This implies that T is a 4-minimal element. From here and Theorem 2.6.1 we
immediately get a bound on the total separation for the random walk W:

In particular, we get s < 40 when p > 5. If p = 2 we get s < 64 while the right
value of the total separation in this case is s = 11 (see §4.1).

Proof of Lemma 2.6.6 We know that the matrix T occurs exactly 2 (p— 1) times
as a product of four matrices R;(a), i = 1,2, a € F,. There are (2p)* possible

products which gives us a value Q*(T) = g;i.

Observe now that 2 (p — 1) times is the minimal number each matrix U occurs
in such a product. This proves the inequality. [

Example 2.6.7 Let G = S,,. Consider the set S of all permutations without
fixed points. Define a uniform random walk W = (G, S,P) with p(e) = 0, p(s) =
ﬁ, s € S. By use of the inclusion-exclusion principle one can show that

- |22

(see e.g. [Stan], §2.2.1). Also dg = 2 for all n > 4, so one can expect random walk
W to be rapidly mixing. Here is a result we can use to prove rapid mixing.

Lemma 2.6.8 Let 0 =(2,3,...,n,1) € S, - n-cycle, n > 4. Then

1) o is a 2-minimal element for a random walk W

2)@2(0)2%(1—ﬁ),n25.
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From Lemma 2.6.8 and Theorem 2.6.1 we get a bound on the total separation
for this random walk on S,,, n > 5

2 2

< =245
1 1 —

Lemma 2.6.8 is proved in [P1] by a careful analysis of certain rook placements.

When dealing with separation distance it is often hard to even locate the k-
minimal element g and also hard to compute the value Q*(g;,). Without a lower
bound on Q = Q95(g;,) Theorem 2.6.1 is useless. In some cases, however, the
following conjecture helps to determine the dg-minimal elements.

Conjecture 2.6.9 Let W = (G, S, P) be a directed random walk and p(e) > 1.
Then the diameter set Dg contains a dg-minimal element gq, .

We do not attempt to prove this conjecture, although we have every reason to
believe that it is true. Assuming that it is true, we can get some exponential bounds
on the total separation (see two examples below)

Example 2.6.10 Let G = Zz,,. Let W = (G, S,P) be standard random
walk on Zs,, defined as in Example 2.5.1. We have dg¢ = m, Dg = {m}, Q =
Q™(m) = 2% = 2'72™. Therefore assuming that Conjecture 2.6.9 holds, the
total separation is bounded as

m

§ S 2m21—2'rn =4

m—1

Recall (see Example 2.5.1) that the real bound is asymptotically much smaller:

s =0(m?)

Example 2.6.11 Let G =Z7, Let W = (G, S, P) be standard random walk on
7% defined as in Example 2.5.2. Thendg =n, Dg = {(1,...,1)}, @ = Q"(1,...,1).

Observe that the number of minimal paths of length n going from e = (0,...,0)
tog = (1,...,1) in a Cayley graph T is exactly r,, = n!. Indeed, we need to take
one step in direction of each coordinate which makes the number of steps equal to
the number of coordinates permutations or n!. From part i) of Theorem 2.1.5 we
get

n!
=Q"(1,...,1)= ——
It gives us a bound for the total variation distance
n n71,+1
5 < =
— 2npl2—mpon n!

Recall the Stirling formula

nl~V27mn (E>n

e
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Assuming that Conjecture 2.6.9 holds, we have
s<Cvne"

which is a bad bound compared to the right bound

s ~2nlog(n)

2.7 The Diameter Conjecture.

There seems to be a very strong connection between the diameter dg and the
total separation. We would like to propose the following conjecture.

Diameter Conjecture 2.7.1
There exist universal constants C,e > 0 such that for any finite group G and a
directed random walk W = (G, S, P) we have

dE
s<(C-=2
p

where p = minge g p(s).

We actually believe that the constant € is rather small, i.e. ¢ < 8. There are few
partial results known (see [DSC], [Chung]). The real power of the above conjecture
can be seen in case of a simple group G when it can be combined with the following
conjecture of Babai (see [Babai]).

Conjecture 2.7.2 (Babai)
There exist universal constants C,e > 0 such that for any nonabelian simple
group G and its set of generators S we have:

ds < C (log(|GI))*

Unfortunately this conjecture is open even for G = A,,, as n — oo (see [Babail).
Recall that there exist a classification of the simple groups. This gives us a hope
that the Conjecture 2.7.2 will be proven eventually.

There is an extensive literature on the bounds for the diameter dg of a permu-
tation groups G C S, (see references in [Babai, DM]). We would like to recall the
following result.

Theorem 2.7.3 There exist universal constants C,C’, C, k > 0 such that for
any permutation group G C S,, and its set of generators S

1) ds < Cn?, if S consists of cycles of length < k.

2)ds < Cn?F if S consists of elements of degree < k.

3)ds < C'eV™ in(n)(1+o() "if no assumptions on S is made.
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The first part of this Theorem is due to Driscoll and Furst, the second part is due
to McKenzie and the last part - to Babai and Seress (see [Babai] for the references).

For an abstract group G denote n(G) the minimal n for which G is a subgroup
of S,,. Of course, n < |G|, but in our examples (see below) we will show that n(G)
is much smaller. Assuming Diameter Conjecture, the Theorem 2.7.3 basically gives
us polynomial bounds in most of the interesting cases.

Example 2.7.4 As in Example 2.2.12; consider a group G ~ Zy with S = G =
{e,a}, p(a) = §, p(e) = 1 =&, p < 1. For this random walk we get s = % (see
Example 2.2.12). This proves that we cannot get rid of p in the statement of the

Diameter Conjecture.

Example 2.7.5 Let G = Z,,, W = (G, S,P) be a standard random walk on
Zy (see Example 2.5.1. We have dg = L’—;L p = 1/4. The Diameter Conjecture
gives us a polynomial bound

s<Cm¢

while the right bound is
s =0(m?)

Consider the first k primes p1,pa, ..., pr and take m = py-....-pg, n = p1+- - -+pg.
A permutation o € S,, with cycles of lengths p1, pa, ... , px generates a cyclic group
Z,,. By use of the standard asymptotic technique and the Prime Number Theorem
(see [Odl], Ex 5.1) one can show that the bound in part &) of the Theorem 2.7.3 is
tight (see [Babai, Babai-Seress]).

Example 2.7.6 Let G = Z*, W = (G, S,P) as in Example 2.5.2. We have
n(G) < 2m. Indeed, ZJ' is isomorphic to a subgroup H C Si,, generated by
transpositions (24,2¢+1),4=1,...,m. In our example p = ﬁ, ds = m and the
Diameter Conjecture gives us again a polynomial bound

s < Cm®

when the right bound is
s~ Cmlog(m))

Note that in general,
n(G1 X Gg) < n(Gl) + n(Gg)

and if G1, G4 are generated by cycles of length < k, so is G; x G5. We will come
back to this example in §4.3.

Example 2.7.7 Let G be the symmetric group S,,. We consider many different
sets of generators (see examples 2.5.3 — 5). Suppose S, is generated by a set S of
all transpositions. |S| = O(n?). The Diameter Conjecture gives us a polynomial
bound

s<Cn”
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On the other hand, since A,, is simple and normal in .S,, one can use Conjecture
2.7.2 to get a polynomial bound. Indeed, we have a normal tower S,, D A,, D {e}.
By Stirling’s formula log(|A,|) = O(nlog(n)). Since the factor S, /A, ~ Zs, we
get a polynomial bound for the total separation.

Observe that we can use the Diameter Conjecture combined with Conjecture
2.7.2 for any set of generators. In case |S| = O(1) there is a conjecture of Persi
Diaconis (see [DP]) which can be formulated in term of the total separation as
follows.

Conjecture 2.7.8 (Diaconis)

Fix k > 1. Suppose for all n > ng there is a set of k generators S™ = {s7,...,s}}
of the symmetric group S,. Define W,, = (S,,S™,P), where p(s}) = 1/k. Then
there is a constant C' > 0 such that

s < Cn®log(n)
for all n > ng, where s is a total separation for a random walk W,,.

In [DSC] Diaconis and Saloff-Coste show that this is the right bound in case of
a generating set consisting of just four generators: an identity, a transposition, an
n-cycle and its inverse.

Example 2.7.9 Let G = B,. It is easy to see that n(B,) C Sa,. Indeed,
simply take all the permutations o € Sy, such that o(j) = j(mod n), 1 < j < 2n.
In general, for any wreath product G x H™ we can use analogous argument to prove
that

n(G x H) <n-n(H)

Let Wy, W, be the random walks on B,, generated by the star transpositions
and by the adjacent transpositions. Since all the generators are transpositions, we
can use part 1) of the Theorem 2.7.3 and the Diameter Conjecture. This gives us
a polynomial bound

s<Cn®

Example 2.7.10 Let G = GL(n;F,), n > 3. There are great many different
sets of generators of this group, some of them consisting of as little as two elements
(see [CM], §7.2). One can consider a uniform random walk generated by a set of

O(1) elements as either g or n tends to infinity.

|GL(nsFyq)|
[PSL(nFq)l
problem of estimating the diameter on GL(n;F,) to the analogous problem for

PSL(n;F,). By Conjecture 2.7.2 we get:

Since PSL(n;F,) is a simple group and < ¢? one can reduce the

ds < Clog®(|[PSL(n,F,)|) = Cn*“log(q)

for any set S of generators of a group PSL(n;F,). Now we can apply the Diameter
Conjecture to get a bound on the total separation s.

Among very few known results regarding random walks on linear groups note a
result by Hilderbrand (see [Hild]). He studied a uniform random walk on SL(n,F,)
with transvections R(4,j;a), 1 lei,j <mn, i # j, a € F, as a generating set. It turns
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out that we need O(n) steps for this walk to get in random (see [Hild], [Gluck]).
One can also apply a Diameter Conjecture in this case since by result of Jason
Fulman the diameter in this case is at most (3n — 3) (see [Ful]).

In this work we do not further consider random walks on GL(n;F,).

Example 2.7.11 Let G = U(n;F,), p-prime, S = {e, R(i,i + 1;£1),1 < i <
n — 1}. Define the probability distribution P as

1

p(e) = p(R(i,i + 1;£1)) = 2n—1)

1<i<n-1

Ellenberg in [El]] finds the sharps bounds on the diameter dg:
ds = O(np+n?log(p))

as n + p — 0o. One can use the Diameter Conjecture in order to get a polynomial
bound for a uniform random walk W = (G, S,P) on U(n,F)).

The random walk W = (G, S,P) was studied by Diaconis and Saloff-Coste in
[D-S-C] and later by Stong in [Stongl]. Stong shows that

s = O(p®n® log(p))

as n + p tends to infinity. We do not further consider this random walk in this
work. Note, however, that the sharp bounds can be obtained by comparison this
walk and the standard random walk on the upper triangular matrices.
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3. STOPPING TIMES

3.1 Randomized stopping times.

Consider a random walk W = (G, S,P). Define X to be the set of all possible
walk paths
X ={X = (Xo, X1, Xo,...)}

Definition 3.1.1 A stopping time 7 is a function
T: X = NU{oo}

which satisfies the following condition

e 7(X) does not depend on X (x)41, Xr(x)42, - -

Here is one way to think about stopping times. Consider an algorithm which
observes movements of a walk and according to some stopping rule stops the walk
at one point. This stopping rule could be a complicated function of the states the
walk passed, but it can’t possibly depend on the states walk is going to pass after
stopping since they haven’t been observed yet.

Sometimes it is also useful to have the stopping rule depend not only on the
states passed but also on some random events. Here is how it can be done.

Definition 3.1.2 A randomized stopping time T is a function 7(X) = P where
X € X, P = Px is a function Px : NU {00} — R, Px(i) = px, satisfying the
following conditions:

D)px1+px2+--=1,px:;>0,ic NU{oo}, X € X

In other words, for each walk path X € X we now have a probability distribution
Px which says that after ¢ steps we should stop with probability px ;. When a
probability distribution Px is concentrated at one point i = 7(X), i.e. px,; =1
and px,; = 0if 7 # j, we get a usual stopping time.

As before it is easier to think of a randomized stopping times in terms of an algo-
rithm which observes movements of a walk and stops according to some randomized
stopping rule. The stopping rule for a random walk W = (G, S, P) is designed as
follows.

Algorithm G Suppose the walk X; walked along the word w,, € Sgt. Flip an
unfair coin with probability of heads P = P(w).

e if heads, stop.

o if tails, walk one step (use Procedure W);

e Return to the beginning of the Algorithm.

Obviously the probability of heads P8 = P(w) depends only on the states passed
and the previous coin tossings. Therefore Algorithm G always defines a randomized
stopping time.
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Vice versa, each randomized stopping time has this algorithmic interpretation.
To see that observe that probability of heads P(w) in the Algorithm G is equal
to the probability of stopping after the random walk X; walked along the word w
condition on not stopping prior to that. We have

m(wz) _ - Px,i
—Px1—Px2 "~ DPX,i-1
By the argument above probabilities 3 define a randomized stopping time. Check-
ing that it is the stopping time we started with is trivial.

Call a stopping state o(X) = X;(x) € G the state where the algorithm stops.
We can think of 7(X) and p(X) as random variables defined on some probability
space €2 which includes set of walk path X and independent of X" set of coin flipping
outcomes.

We can think of the probabilities 3(w) as the values of a function B : S* — [0, 1].
We call P a stopping probability function. Denote Q(w) = 1 —P(w) the probability
of tails in Algorithm G.

Note that now we can define a randomized stopping time for random walks which
start at a some state gy € G, not necessarily at 0. Simply use Algorithm G with
the same stopping probability function 3.

Unless it leads to confusion, just for convenience we drop the "randomized” part
in the "randomized stopping time” and ”randomized stopping rule”.

In the future we will always describe stopping times in term of certain algorithms
which represent the stopping rules. We want to be able to construct new stopping
rules out of those already known. In order to do that with each algorithm A we
associate a variable A which takes value 1 if the algorithm stops the walk at this
time or before, and 0 otherwise. In other words our stopping time can be presented
as an algorithm:

Algorithm A
e Walk till A =1.

e Stop.
We call a variable A a stopping call.
Now we can write
T=17+1
This means that the new rule is defined as follows
e walk one more step than in the rule 7
In terms of the algorithm this rule can be formalized as follows.

Algorithm A’
e Walk till A = 1.

e Walk one more step. Stop.

We can also define 11 + 72, min(ry, 72), maz(m1,72) by the following rules:
e Walk till A; = 1. Then walk till A = 1. Stop.

e Walk till either A; =1 or Ay = 1. Stop.

e Walk till both A; =1 and Ay = 1. Stop.
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3.2 Strong uniform times.
Consider a random walk W = (G, S, P) and a stopping time 7.

Definition 3.2.1 Stopping time 7 is called uniform if for all g € G

where p is the stopping state.

In other words we want our stopping state ¢ to be uniformly distributed on a
group G. In order to able to compute the separation distance of a walk we actually
need to impose a stronger condition.

Definition 3.2.2 A stopping time 7 is called strong uniform if for all g € G and

1

P(Q=9|T=k)=@

Note that if 7 is strong uniform, so is 7 4+ 1. Not all uniform times are strong
uniform. Here is an example.

Example 3.2.3 Consider a standard random walk on Z, (see Example 2.1.1).
Start at e = 0. Recall that at each time we either stay with probability % or move
to the nearest number with equal probability. Define the stopping time 7 by the
following algorithm.

Algorithm 3.2.4

Choose a random state and walk till we get there. Stop.

By definition it is a uniform stopping time. On the other hand is not a strong
uniform time. Indeed, if we know the walk stopped after one step, it couldn’t
possibly be the 2, while both 1 and 3 can occur.

Example 3.2.5 Now we present the correct construction of the strong uniform
time 7 on Z4.
Algorithm 3.2.6
e Walk till you hit either 1 or 3.
e Do one more step and stop.
Here is how this stopping rule can be translated from ”English” into our lan-
guage:
o If the walk is at state X = g after k steps let
P=1if X1 =+1
P = 0 otherwise.

Let us prove that this stopping time is indeed strong uniform. Suppose we
stopped after 7 = k steps. By symmetry

1
P(Xpoy = 1|t = k) = P(Xj1 = 37 = k) = 5
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Now for all i =0, ...,3 we can compute the probabilities of stopping at i € Z,. We
have

1 1 1
P(X;=iltr=k) = §P(Xk,1 =ilr=k)+ ZP(X;C,l =itllr=k) = T
i=0,...,3. Therefore 7 is indeed strong uniform.

The following result is the main reason for study of the strong uniform times. It
is proved in Proposition 3.3.2 and Remark 3.3.3 below.

Theorem 3.2.7 (Aldous, Diaconis)
Let W = (G, S, P) be a random walk on a finite group G. Then
1) for any strong uniform time 7 and any k > 0 we have

s < P(T > k‘)
2) there exist a strong uniform time 7 such that for any k > 0 we have
Sk = P(Ff > k)

Definition 3.2.8 A stopping time 7 is called perfect if it satisfies the equation
in the second part of Theorem 3.2.7.

From Theorem 3.2.7 we immediately get

Corollary 3.2.9 Under the conditions of Theorem 3.2.7:

1) For any randomized strong uniform time 7 we have
s < E(7)
2) There exist a perfect time 7. For this stopping time we have
s = E(T)
where s = s(1) is a total separation (see §2.2).
Proof Indeed, by definition of the total separation we have
s=so+s1+s2+---=PT>0)+PT>1)+PT>2)+...
=1-P=1)+2-PT=2)+3-P(7=3)+---=E(T)

This finishes the proof of the second part of the Corollary. The proof of the first
part is almost identical. [

Remark 3.2.10 Strong uniform times were introduced by Aldous and Diaconis
in [AD1, AD2]. The results in this section can be also found in [D, AF].

Theorem 3.2.11 Let 7, 75 be randomized stopping times defined by their
stopping probability functions 1, Po. If either 71 or 75 is strong uniform, then
71 + 79 is also strong uniform.

Proof Clear I
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3.3 Properties of strong uniform times.

Proposition 3.3.1 For any strong uniform time 7, g € G and k > 0 we have

QH(g) = ﬁpw < k)4 P(Xp = gor > k)

Proof By definition we have

k
Q¥(9) = P(Xp=g) =Y P(Xp=g,7=i) +P(X; =g,7(X) > k)

i=1
For each of the terms in the last sum we have
P(Xy=g,7=1)= Z P(Xi=g|r=1i) P(r=1i) P(Xy = g|Xi=¢')
g'€G

= ‘—élp(T =1)

Therefore the sum on the right hand side in the proposition is equal to

zk: L pr=iy= L pP(r<k)

This finishes the proof of the proposition. [

Remark 3.3.2 Note that in the proof of the proposition we used the condition
P(g:gh’:l):ﬁonlyforlglgk:.

From Proposition 3.3.1 we immediately get the first part of Theorem 3.2.7. In-
deed,
1
61 (16 - Q@) = 1= Plr 0= (Gl PO = 0.7 > )
< P(t>k)

Since separation is the maximum over all g € G we get

st =161 max (7 - Q@) < Plr> b

which proves first part of Theorem 3.2.7.

In order to prove the second part of Theorem 3.2.7 observe that the equality
holds if and only if for any k& > 0 there exist an element g such that P(X; =
gk, 7™ > k) = 0. In other words, if the walks gets to the state g after k steps, it stops
there.

We can (in theory) determine these elements gy. Since we do maximization over
all group elements g € G, we get

Q*(gr) < Q"(9)
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for any g € G. Thus g, is actually a k-minimal element (see §2.1) and we obtained
the following result.

Theorem 3.3.3
1) Let (41,92, - -.) be a minimal sequence for a random walk W = (G, S, P). A
strong uniform time 7 is perfect if and only if the stopping property holds:

e whenever we have X, = g, k > 0 we also have 7 = k.

2) If we have the stopping property for some strong uniform time 7 and a se-
quence (g1, go, - . . ) this implies that that 7 is perfect and the sequence is minimal.

Example 3.3.4 Recall our example of a random walk on Z,. As we computed
in Example 2.2.13 for each £ > 1 there is exactly one k-minimal element g, = 2.
Since we already have a construction of a strong uniform time 7 for this random
walk (see Example 3.2.5), we can check whether this is a perfect time.

Since we start at 0, clearly the only way we could possibly get to 2 is by moving
there from either 1 or 3. This means that once we get to 2 we always stop there
(of course, we can also stop in other states). Therefore by the theorem above the
sequence (2,2,2,...) is indeed a minimal sequence and the strong uniform time 7
is perfect.

From here and Theorem 3.2.7 we have

Sk:P(T>k):P(X1:XQZ"':Xk_lz()):
where k& > 0. This agrees with our computations in Example 2.2.13.

Before we finish this section, we would like to give one more definition. As in the
example above, in practice it sometimes happens that there is an element g which
is k-minimal for all k& > 0.

Definition 3.3.5 We say that a strong uniform time 7 respects an element
g € G if it always stops once it gets there.

By Theorem 3.3.3 7 is perfect and g is extremal.

If it exists, an extremal element g is usually easy to find. It must always belong
to the diameter set Dg. Indeed, since g is k-minimal for all £ € N, it must be
also dg — 1-minimal, where dg is a diameter (see §1.1). But Q%~1(g) > 0 for all
g € G\ Dg and Q%~1(g) =0 for all g € Dg. Therefore we just proved

Proposition 3.3.6 Let g be an extremal element of G. Then
g€ Ds
Unfortunately finding a suspect doesn’t always help. Virtually all the random
walks we are going to study are guileless although proving it is very difficult some-

times. In some cases the only existing proof is given by the construction of the
perfect time which respects some specific extremal element.
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3.4 Making a perfect time.

Now we present a construction of a stopping probability function 8 which defines
a perfect time for any directed random walk W = (G, S, P).

Definition 3.4.1 For any g € G, w € S;(g) let

_ Q"(Gr) — Q**(Gk—1)
Q*(g) — Q¥ 1(gr—1)

where g; is an [-minimal element, [ > 1.

Pw) = Bl9)

Theorem 3.4.2 The stopping probability function 3 defines a perfect time 7.

Proof First observe that whenever ¢ = g we have f = 1. Therefore by the
above theorem all we need to prove is that 7y is strong uniform. This is proved by
induction on k. Suppose for each g € G, | < k we have

1
Plo=glr=0 =1

P(r <k) =G| Q" (Gk-1)
Then from Proposition 3.3.1 (see also Remark 3.3.2) for any g € G we get
P(Xy = glr 2 k) = Q"(9) — Q"(Jk—1)
Therefore
P(o=g,7=k) = P(Xy = glr > k) - B(9) = Q") — Q" (Gr-1)

From here we immediately get
Ple=glr=k) =

P(r < k) =G| Q"(gr)

and we proved the step of induction. The base of induction is trivial, finishing the
proof. [

From Theorem 3.4.2 we immediately get the second part of the Theorem 3.2.7.
Note that 7 is just one of many possible perfect times. They all however give the
same bound on separation distance.

Here is how the construction of 7 can be generalized. Suppose we have any
randomized stopping time 79. Denote gg its stopping state, Ay its stopping call,
and Ag the associated algorithm. Consider the following algorithm:

Algorithm G’ Suppose the walk X; walked along the word w,, € S3t after i uses
of the Algorithm Ag. Flip an unfair coin with probability of heads P = P(w, ).
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e if heads, stop.
o if tails, walk until A =1 (use Algorithm Ag);
e Return to the beginning of the Algorithm.

If 79 is simply ”walk one step”, we get the usual notion of the stopping probability
function and Algorithm G. We show that it is possible to define probabilities P (w)
such that Algorithm G’ defines a strong uniform time.

Denote by Q¥(g) the probability of a walk being at state g € G after use of
Algorithm Ag exactly i times which took overall k steps. Since k may vary Q¥(g)
is no longer a probability distribution on G. Denote by pr = pi(70) the probability
of the Algorithm A stopping after k steps. Let E(7p) be the expected number of
step of the topping time 79. In other words, E(7) is the mean of the probability
distribution py.

Call an element gy ; (k,i)-minimal if the function Q¥(g) minimizes at g:

k(G ) = min QF
Qi (9r.i) = min Q;(9)
Definition 3.4.3 For any g € G, w € S}(g) let

P(w, i) = B(g, k1) = Qi (Gr.i) = D

QF(g) — Ak,
where
k=1
Api=> QL (@) pr-j
j=1

and Gy, is an (m,!)-minimal element, m >1 > 1.

Theorem 3.4.4 The stopping probability function P defines a strong uniform
time 7.

Example 3.4.5 Consider a "walk one step” stopping time 7y (see above). In-
duction gives

Api =0, Q¥ Hgr-1)

where dy, ; is the Kronecker delta. Therefore in this case 8 becomes the the stopping
probability function defined in Definition 3.4.1.

Example 3.4.6 Let 79 be any strong uniform time for the random walk W.
Then for all g € G, k >0

1
Q]f(g) = P(oo =glro=k) = al

G|

where g is a stopping state of 7y (see §3.1). Therefore for all g € G, k > 1 we get
PB(g,k,1) =1, i.e. the stopping time 7 stops as soon as 7y stops. In other words, T
is our old strong uniform time 7q:
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Proof of Theorem 3.4.4 The proof is very much similar to the proof of Theorem
3.4.2. We use induction by i and then for each k take the summation over all ¢,
1<i<k O

Sometimes in an attempt to find a strong uniform time one finds a good stopping
time 7 which is not strong unifrm, but very close in some sense. Here we show that
this stoping time can still be used to get bounds on separation.

Theorem 3.4.7 Let W be a directed random walk, 0 < € < 1. Suppose we are
given a randomized stopping time 7y such that for every g € G, k > 0

P(oo=g,70 =k) > ﬁP(TQ =k)

Then the total separation s for the random walk W is bounded as

1
s < = E(7)
€

As a corollary from the Theorem 3.4.7 we get Theorem 2.6.1. Indeed, simply
take 19 to be ”Walk k steps. Stop”.

Proof For each g € G, ¢ < k from the definition of the stopping probability
function B we have:

B(g, k,i) >

Since B defines a strong uniform time 7, we have:

a | =

5 < B(r) = - B(m)

which proves the result. [

3.5 Time-invariant stopping times.

Definition 3.5.1 Stopping time 7 is called time-invariantif for allg € G, k,1 > 0

where o is the stopping state of 7 and both conditional distributions are defined.
The probability distribution P on G defined as

p-(9) = Ple=glr =k)
is called 7-conditional probability distribution
For example, strong uniform time is a time-invariant stopping time with uniform
probability distribution. ”"Walk & steps” stopping time and hitting times (see §3.6

below) are another extereme examples. Note also that every uniform time-invariant
stopping time is strong uniform.
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Theorem 3.5.2 Let W be a directed random walk, 0 < € < 1. Suppose we are
given a time-invariant stopping time 7y such that for all g € G

p-(9) > ﬁ

Then the total separation s for the random walk W is bounded as

1
S S — E(To)
€

Proof This is a trivial corollary from Theorem 3.4.7. O

Theorem 3.5.3 Let W be a directed random walk, 79 be a time-invariant
stopping time with 7-conditional probability distribution P,,. Suppose random
walk Wy = (G, G, P,) is also directed. Then the total separation s of the walk W
is bounded by

S S E(’T()) . S/

where s’ is the total separation of the random walk Wj.

Note that a priori W, does not have to be directed. For example, if 7 is defined
as follows:

e Walk untill return to e. Stop.

then P, is supported on {e} and W, simply stays at e forever.

Proof of the Theorem Consider a strong uniform time 7 defined by its stopping
probability function P = B(g, k,4) in the Definition 3.4.3. Let 7’ be a perfect time
for the walk W, defined by its stopping probability function By = Po(g,?) (see

Definition 3.4.1).
Since 1 is time-invariant, we have

Qi (9) = R'(g9)- P(r = k)
where R(g) is the probability of the walk W, being at g after i steps. Also one
can take gy ; = h;, where h; is an ¢-minimal element of the walk Wy. By definition
of Ay ; for all k> i we get

Ay =R (gi—1) - P(T = k)

and we finally have

‘p(gv ka Z) = S130(97 Z)
By Wald’s identity (see e.g. [Feller], §18.2, vol 2; [Shiryaev], §7.2) we have
s<E(r)=E(rn) - E(r') = E(10) - §

which proves the result [l.
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Let W = (G, S,P) be a directed random walk, 71, 75 - two time-invariant stop-
ping times defined by their stopping probability functions 1, PBs.

Theorem 3.5.4 The stopping time 7 = 7+ is time-invariant with 7-conditional
probability distribution
P. =P, xP,

Proof Clear. [

Example 3.5.5 Let G = Z4, S = {0,+1}, p(0) = 3, p(+1) = ;. Define 71, 7
by the following rules:

e walk till you hit either 1 or —1. Stop.

e walk one step. Stop.

Both 71, 7 are obviously time-invariant stopping times. The stopping time
T = 11 + T2 was introduced in Example 3.2.4. In Example 3.3.4 we showed that 7
is strong uniform. We can use Theorem 3.5.4 to give an independent proof of this
result.

We have p., (£1) = %, p~(0) = p-,(2) = 0. Also P,, = P. Therefore P, =
P, «P,, = Uz, and 7 is indeed strong uniform.

Corollary 3.5.6 Let G = Z,, p-prime. Suppose a strong uniform time 7 can
be written as a sum of two time-invariant times 7 = 77 + 7». Then one of them is
also strong uniform.

Proof By Theorem 3.5.4 we have Ug = P, *P.,,. The polynomial 142+ - -2~}
is irreducible in C(z)/(2?). Therefore either P, = Ug or P, = Ug. Which implies
that one of the time-invariant stopping times is strong uniform. [

We finish the section by introducing the notion of the strongly independent
stopping times. Although their definition is somewhat hard to understand, they
are used crucially in the following sections.

Definition 3.5.7 Stopping times 7, 75 are called strongly independent if they
are time-invariant and there exist two generating subsets Sy, Sy C S such that

1) S =51USs, S1NSe = {0}, ({(S1),{S2)) is an exact decomposition (see §1.1).

2) s182 = sg 51 for each s € Sy, 59 € So.

3) Pi1(w) =0 (Pa(w) = 0) for every for every w = wiwsy ... w; € S* and w; € Sy
(U)l € Sl)

4) Pi(w) = Pi(wls,) (Pa(w) = Pa(wls,)) for every w = wiwy ... wy € S* and
w; € Sl (wl € 52).

5) P, = U(Sl>, P, = U<S2>.

Observe that condition 5) means that the stopping times 71, 7o are time-invariant

with 7-conditional probability distribution uniform on a subgroup generated by Sy,
So.

The canonical example for the strongly independent stopping times is the case
when we have a direct product of of two groups G = G x G5 and strong uniform
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times for random walks on each of the factors. Namely, suppose we are given random
walks Wy = (G1, 51,P1) and Wy = (Ga, Sa, P2). Let 71, 74 be the strong uniform
times for each of the walks. Define a random walk W by choosing in random a
factor G1 or G5 and making a step of the walk W; or W, on that subgroup. Note
that the first condition then simply indicates that this random walk is generated
by a union of two generating sets.

Consider the following stopping times 71, 72. Let 71 (72) observe movements
of the walk only on G; (G2) and ignore any steps made on the other factor Go
(G1). We want 71 (72) to stop only when they would have stopped if it was just a
walk on G; (G2). This is basically a restatement of the condition 4) in this case.
The condition 3) basically means that stopping times are allowed to stop only in
their turn, i.e. when the step is made on a corresponding factor. The condition 5)
together with time-inariance means that 7, 7o are strong uniform.

The main idea behind stating this general definition rather than stating the
example above is to take only those properties of the stopping times 7y, taus that
are necessary for proving the Theorem below. In §4.2 we consider other examples
of the strongly independent stopping times.

Example 3.5.8 Let G = Z4, S = {e1,e2, %1}, ple12) = p(xl) = i, where
e1 = e = 0 are formally different identity elements. This means that when applying
Procedure W (see §2.1) we get different words wyy1 = wy - €1 or w1 = wy - ea, but
the walk actually stays in both cases. Observe that the random walk W = (G, S, P)
is equivalent to the random walk introduced in Example 2.1.1.

Define 71, 75 by the following rules:

o walk till either e; or 1 is used. Stop.
e walk till either es or —1 is used. Stop.
We claim the 7 and 7 are strongly independent time-invariant stopping times.

Indeed, take S; = {e1,1}, S1 = {ea,—1}. The only property to check is 5) which
follows immediately from the definition of P.

Theorem 3.5.9 Suppose 71, T2 are strongly independent time-invariant stopping
times. Then 7 = max(m, 72) is a strong uniform time.

Proof Compute the conditional probability of stopping at a given state. Let o,
01 and g2 be the stopping states of the stopping times 7, 73 and 7o respectively.

First recall that by 1) we have an exact decomposition. Denote p = ¢ P(s)-
Let g € G, g = g1 go be the decomposition of g, g1 € (S1), g2 € (S2). By B(w),
w € S* we denote the stopping probability function for the associated with the
stopping time 7 = max (11, 72) (see §3.1). By A1, Ay we denote stopping calls of
T1, T2.

Recall the interpretation of the random walk in terms of words in the language
S* (see §2.1). We have:

Plo=g,7=k) = > p(s1) ... p(sk) - Pw)
w=s1...5,€S}(9)

Since 7 = max(7y, 72) we can use properties 3), 4) to break the summation into
two depending which stopping time finishes first. Also break the sum on the right
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hand side into summation over pairs of subwords in the language (S1)* and (S2)*.
We separate the last s from the rest and take a summation over all [ which denotes
the length of the first subword (cf. Theorem 2.1.5).

N

-1
k-1 -
LT i FED SR CO R R
1—57,1...3”

Siq 5180 €51
y(wi)=g1, A1(w1)=1

l

I
o

x 2 P(si) -~ P81 1) - Dsk) - Balwasi) +
Wa=8j1 85, ;1 SkES2
Sj1seerSip_y_q1 €52
Y(w2) sk =g2, A2(w2)=0
+(1-7) ST Plsa) oo plsi) Plsk) - Pulwrse) x
W1=8;y ..-8i;, SKES1
Sips-- 81, €51

Y(w1)-sk=g1, A1(w1)=0

Wo=8j; Sj
Sj1serSig_y_q1 €S2
Y(w2)=g2, Az(w2)=1

Now use the property 5) of 71, 72 being uniform on (S7), (S2) and time-invariant:

=Y A P(r<l) Plrn=k-1)
‘l;( ) (o s P

P(T1:l+1) P(ngk—l—l))

B 17 R T

Now observe that the last equation does not depend on g = g1 - go. Therefore
for all g, ¢’ € G we have

Plo=g,T7=k)=Plo=¢,7=k)
Thus 7 is strong uniform. It finishes the proof of the theorem. [

We use the notion of strongly independent stopping times and Theorem 3.5.9 in
84.3 when discussing random walks on a direct products of groups.

Example 3.5.10 Let W = (G, S,P), 11, 72 be as in previous example. The
stopping time 7 can be defined by the following rule:

e walk till either e; or 1 and either e; or —1 is used. Stop.
By Theorem 3.5.9 7 is a strong uniform time. It is also a perfect time since once
we get to 2 we stop (cf. Examples 3.3.4, 3.5.5).
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3.6 Hitting times.

Recall the definitions in 2.2b. By a g-hitting time ht, we mean the expected time
to get to g € G for the first time. Let ht. = 0. The hitting time ht and the average
hitting time aht are defined as follows:

ht = max ht,
geG
ht— th
aht = —
Gl =2 I

The cover time ct is define as an expected time to hit all the elements.

Theorem 3.6.1 Let W = (G, S,P) be a directed random walk, s the total
separation of W. Then

1) s+ aht > ht
2) s+ aht = ht if W has an extremal element g € G and ht = ht;

Proof Let T be a perfect time for the random walk W. Suppose ht = ht,. Let
T4 be the stopping time defined as follows:

e walk till you hit g. Stop.
Observe that 7, is time-invariant. Define 7 = 7 4 7,. Since this stops only at g
it is also time-invariant and
E(r) = E(rg)

Since F(1) = E(T) + aht = s + aht we have
s+ aht = E(1) > E(1,) = ht

which proves the first part of the Theorem.

To prove the second part, simply observe that 7 always stops at § whenever it
gets there. Indeed, the perfect time 7 respects g by Theorem 3.3.3 and since g is
an extremal element for W. Also 7, always stops at g by definition. Therefore the
stopping times 7 and 74 are identical:

T="1,
and s + aht = E(1) = E(1y) = ht. O

Example 3.6.2 For the random walk W on Z4 (see Examples 2.2.13, 2.4.6) we
have computed
ht=8, aht=5

Observe that element 2 is an extremal element. Also ht = hty. Therefore by
Theorem 3.6.1 we have
s=ht—aht=3

which agrees with our previous computations.
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Theorem 3.6.3 Let W = (G, S,P) be a directed random walk, s the total
separation of W. Then
s-|G| > ht

5-|Gl-hig > ct

Proof Let T be a perfect time for the random walk W. Let A be its stopping
call. Suppose ht = hty. Consider the following stopping time 7;:

e walk till A = 1. If the walk is not at g, start all over. Otherwise stop.

Clearly the expected time E(7) > ht. On the other hand, by Wald’s identity
(see e.g. [Feller], §18.2, vol 2; [Shiryaev], §7.2) we have:

E(n)=E[)-|G]=s-|G]|

This proves the first part.

The proof of the second part is analogous. Consider a stopping time 75:
e walk till A = 1. If the walk hit all the elements, stop. Otherwise start all over.

Obviously E(72) > ct. On the other hand, the expected number of steps to hit
all the elements if we were picking elements of G in random is equal to |G| - bq|.
Thus by the Wald identity we have:

ct < E(Tg) < E(F) . ‘G| . hlGl =s- |G‘ . h|G\
which proves the second part of the Theorem. [.

Example 3.6.4 Let W be as in the previous example. We have |G| = 4,
b =1+ % + % + i = 2%. Therefore Theorem 3.6.3 gives

which agrees with our previously computed values s = 3, ht = 8 and ct = 12.

We can think of theorems 3.6.1, 3.6.3 as lower bounds on the total separation in
terms of hitting and cover times. Let us generalize the first part of the Theorem
3.6.3 in the following way.

Theorem 3.6.5 Let W = (G,S,P) be a directed random walk, s the total
separation of WW. Suppose B C G is a subset of GG, htp is an expected time for a
random walk WV to hit any element in B. Then

|B|

> = ht
I

Proof Let T be a perfect time for the random walk W, A is its stopping call.
Consider the following stopping time 7y:

e walk till A = 1. If the walk is not at B, start all over. Otherwise stop.
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By analogy with the proof of the Theorem 3.6.3 we have
G| G|
|B| |B|

On the other hand, E(71) > htp. This proves the result. O

Example 3.6.6 Let G = U(3;F3) (see Example 2.6.5), S = {e, Ry, R}, p(e) =
2. P(R1) = p(R2) = 1. Consider a random walk W(G, S, P).

Denote by B the set of upper triangular matrices M € G with 1 in the upper
right corner. The expected time to hit B is the expected time before we apply Ry
and then the expected time before we apply Rs. Therefore

|B| 4
>4 ==-.8=4
s_|G|(+) 88

which we already know since dg = 4.

Example 3.6.7 Let G = Z,,, W be a standard random walk on Z,,. Suppose
m =4k +2. Define B={k+1,...,3k+1}. It is known that

htg = ht{l:l:k} =2(k+ 1)2
(see e.g. [Feller], vol 1, §14.3). From here we have

s> 2k+1
T 4k+2

1
9 12 o 2
(k+1) >16m

Example 3.6.7 Let G = Z3, n even. Let W be a standard random walk on Z%
(see Example 2.5.2). We can think about this walk as the nearest neighbor walk on
a cube. Denote d(z,y) be a Hamming distance between two points (the number of
different coordinates). Let B be a Hamming ball around (1,...,1) of radius n/2.
The hitting time htp is known :

htp = % (nln(n) + O(1))

(see e.g. [Matt2]). From Theorem 6.3.5 we immediately get

B 1
s> |G:~ht3 ~ ann(n)

In §4.3 we show that this lower bound is of the right order.
Remark 3.6.8 In [A2] Aldous proved the lower bound for the cover time:
ct = C-|G|-log(|G])

for the cover time of random walks. When the walk is rapidly mixing, i.e. the total
separation s is relatively small compared to |G| Theorem 3.6.3 gives good bounds
on the cover time. For example, if G = Z% and W is the standard random walk on
7% we have s ~ nln(n) (see §4.2) which gives us

Cin2" < ct < Cyn? log(n) 2"

The right bound in this case is due to Matthews: ct ~ n 2" (see [Matt2]).
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4. BASIC CONSTRUCTIONS

4.1 Cyclic groups.

Here we are present a construction of a strong uniform time for a random walk
on a Z,. As in §2, we take a set of generators S = {—1,0,41} and a probability

distribution P(0) = 3 and P(—1) = P(+1) = 1.

First, generalize the construction given in Example 3.2.5 for the case n = 4. Let
n = 2™

Algorithm 4.1.1

o Walk till you hit either 22 or 3. 2m~2,

o Walk till you hit either 23, 3.2m=3, 5.2m=3 or 7.2m3,
e ...

e Walk till you hit either 1, 3, 5, ..., 2™ — 1.

e Do one more step. Stop.
Theorem 4.1.2 The Algorithm 4.1.1 defines a perfect time 7.

First Proof First, observe that 7 is a usual (not a randomized) stopping time.
Denote &, the set of walk paths on Z,. Let I(I,m,n), 1 <1 < m be the set of
sequences (i) = (i1,42,...,%), i1,.-.,%—1 € Zp such that

iy € {£2™7?},
iy € {ip £2m73),

Zl c {Zlf]_ i 277L—l—1}

Define 7;,,(X), X € X, to be the minimal k such that X D (i), i.e. a sequence
(X1,Xs,..., X)) contains a subsequence (i1,%2,...,%) € I(l,m,n). By symmetry
(iy —dpt1), v =1,...,0 — 1 can occur in (i1,12,...,4;) with equal probability and
these are independent events. Therefore for any (i) € I(l,m,n)

P(X C (i)|mm(X) = k) = m _ %

When n = 2™ the set of sequences I(m —1,m,n) is in a one-to-one correspondence
with its last element i,,—1 = 1 (mod2). From here we get

1
2m71

P(Xk = 2] — 1|7—m—1,m = k) =

forall1<j<2m™ ' k>0.
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Observe that if n = 2™, 7 = 7,, ;1 + 1. Therefore for all 1 < j <2m~1 k>0

we have ) )
. p
Ple=2j-1lr=k) =375 =5;
‘ p(l) +p(-1) 1
Ple=2jlr=k=—"""3— =5

and we have proved that 7 is strong uniform.

We claim that n/2 = 2™~ is an extremal element (see §3.3). Simply observe
that in order for the walk to reach 2™~! it must first pass iy = +2™ "2, then
i = £3-2Mm73, .. 4,_1 = 2™ 1 £ 1. This means that according to the algorithm
whenever the walk reaches n/2 it stops there. Since 7 is strong uniform, we have
proved both that n/2 is an extremal element and that 7 is perfect. O

Second Proof

Define stopping times 7;, 1 <i < m — 1 by the following rule:
e walk till you hit £2™~1~% Stop.

For the stopping time 7y:

e walk one step. Stop.

Obviously, these stopping times are time-invariant and thus sois 7 =73 +--- +
Tm—1 + 7. Compute P.. Fix a, a™ = 1. We have

(a

gm—2 _gm—2
a

Yoooni(a+a™H-2+a+at)
—a " a-1)(14a+ +a"H=04a+ ---+a"h)
Therefore by Theorem 3.5.4 we get

P,=P,*---xP *P,, =Ug

Tm—1

and we proved that 7 is strong uniform. [

Corollary 4.1.3 Let s be the total separation for the standard random walk W
on Zp, W = (Z,,{0,£1},P), n = 2™. Then
1 1

_ .24 =
8—6n+3

Example 4.1.4 When n = 2,4,8 we get s = 1,3, 11 (cf. Examples 2.2.12, 2.2.13,
2.6.5).

Proof Denote E, the expected time for the walk W to hit +2, 2 < 3. Finding
E, is equivalent to solving the famous bankruptcy problem (see e.g. [Feller], vol 1,
§14.3) which gives us

E, =227
In the notation of the second proof, E(7;) = Fom-i—1, 1 <i < m — 1. Since 7 is
a perfect time, we have
s=E(T)=FEpn-2+FEgm-s+-++E +1=2 (4" 44" +...41) +1
gm=1 1 1 1

Sl N S S
i1 1T T3
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This proves the Corollary. O

Now suppose n is not a power of 2. It is not hard to see that the element

a= L%J is an extremal element, so theoretically we should be able to compute the

total separation by use of probabilities Q*(a):
s=1+ (1-Q"a)
k=1

Unfortunately computing Q*(a) is not an easy task so we use another approach.

Theorem 4.1.5 Let s be the total separation for the standard random walk W
on Zn, W= (Z,,{0,£1},P). Then

[SCRN V)

s < n? +

SIS

Proof Observe that the stopping times 7;,,, in the proof of the Theorem 4.1.2
are defined for any n. Let m be an integer such that 2™~ ! < n < 2™. Denote
To = Tm—1,m, Q0 - the stopping state of 79. For any g € G, k > 0 we have

1
P(oo = glro =k) = om
Thus 79 is time-invariant and
n 1
P> — —
"= o [z
From Theorem 3.4.7 we get
2m 2m 22m 19 4np? 42
< —F = — <
o= n (7o) n 6 3

which finishes the proof. O

Remark 4.1.6 The Theorem 4.1.2, Corollary 4.1.3 and the Theorem 4.1.5 with
a slightly different proofs were obtained by Diaconis and Fill in [DF].

Theorem 4.1.7 Let s be the total separation for the standard random walk W
on Z,. Then

»
|

, N —even

, m—odd

w
|

D= =

Proof Let E; be the expected time to hit 4, 0 < i < n — 1. It is known that
E; =2i(n—1) (see e.g. [Feller], vol 1, §14.3). Therefore

n—1
1 1 1
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Let m = L%J Then
ht = htp, =2m (n—m)

Recall that m is also an extremal element of W (see e.g. [D], §3D, Exercise 10).
By part 2) of Theorem 3.6.1 we get

s = ht — aht = PJ {EW —én2+

1
2] 12 3

Considering separately two cases when n is even and odd, we get the result. [

4.2 Change of p(e).

Consider a random walk W = (G,S,P) with p(e) = p, 0 < p < 1. There
is a natural way to rescale the probabilities of generators in order to change the
probability of identity p(e). Indeed, for any p’, 0 < p’ < 1 define a random walk
W' = (G, S,P’) as follows:

We say that the random walk W' is the rescaled random walk W.
We claim that when p < p’ there is an easy bound on the separation distance s,
for the walk W’ in terms of the separation distance s for W.

Theorem 4.2.1 Let s, s’ be the total separations for the random walks W =
(G,S,P), W = (G, S,P’) defined as above. If p < p’, then

1—p
1-p

s < .5

~

Moreover, if W has an extremal element ¢, then Y’ has an extremal element g and

s — 1-p s
1—-p
Corollary 4.2.2 Under the conditions of Theorem 4.2.1, if p’ = %, then

s'<2s

Proof Clear.O]

Corollary 4.2.3 Let W = (G, G, P) be a uniform random walk with a gener-
ating set G. If p(e) > ﬁ, then
1
L~

ST 1op()
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Proof Clear. I

Proof of the Theorem We are going to prove Theorem 4.2.1 by constructing a
strong uniform time for the random walk W'.

Let 7 be a perfect time for the random walk V. This exists by Theorem 3.2.7.
Suppose our stopping time 7 is defined in terms of Algorithm G (see §3.1) with
stopping probability function 9B. Define a new stopping time by the following
algorithm.

Let S1 = SUe; be a new set of generators with two formally different identity
generators e, e;. This means that no matter which of these two generators is chosen
in Procedure W (see §2.1), the walks stays although we get two different words in
(S1)*. Since p’ > p we can consider the following probability distribution P; :

1—p
/
pi(er) =p —p-
1(er) )
1-9p
pi(e) = -
1—p .
= es
pi(s) = p(s) ¢

Observe that the random walk Wy = (G, S1,P1) is equivalent to W’'. Therefore
rather than looking at W we are going to study Wj.

For a word w € S7 define w|g € S* to be its S-subword, i.e a subword obtained
from w after erasing all the letters e;.
Define a new stopping probability function J3; as follows

0, w, = e

spl("‘j) = {SB(W|S); w,, € S

We claim that the Algorithm G with stopping probability function 31 defines a
strong uniform time 7. Indeed, by definition of §3; and Theorem 2.1.5 applied to
the identity element ey, we have:

Plor=gln=k= > pils1) ... pilsi) - Fr(w)

k E—1\ 1 1
— el k=l — Ppi1lé1 ! Gl Te
= (pr(ex)) " (1 = pa ))( ! >|G| G|

where 91 = X, is a stopping state. We have a binomial coefficient (k ;1) in the
second equality since whenever s, = e1, P1(w) = P1(s1...8x) = 0. The fourth
equality follows from 7 being a strong uniform time.
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This proves that 71 is a strong uniform time. Now we need to compute the

expected stopping time of 7.
Denote p; = p1(e1) = %. Observe that expected number of times the element
e1 occurs between two elements s;,s;+1 € S in a word w € ST is equal to

/

_ . _p-p
1-p1 1-p

Eg=pi(1—p1)+2pi(1—p1)+3pf (1 —p1)+--

Use Wald’s identity to get the expected stopping time of 71 (see e.g. [Feller], §18.2,
vol 2; [Shiryaev], §7.2)
E(Tl) = (1 + Eo) E(T)

Since 7 is a strong uniform time and 7 is a perfect time, by the Theorem 3.2.7 we
have 1 1
— P — P
17p/E(T):17p/S
This finishes proof of the first part of Theorem 4.2.1.

s <E(n)=

Suppose now that the random walk W has an extremal element §. By Theorem
3.3.3 the perfect time 7 must respect g. We show that 71 also respects g. Indeed,
by definition of the stopping probability function JB;, the first time we get to the
state g we have P;(w) = P(w’) = 1. This means that 7 respects which implies
that it is also perfect. Therefore

I—p
s'=FE(n) = l—p’.S

which finishes the proof of the second part of the Theorem 4.2.1 O

It is possible to define a stopping time 7’ for the random walk W’ without
consideration of a new letter e;. This idea, however, is very useful and will be
applied later in several other examples.

Example 4.2.4 As in Example 2.2.12, consider the group G ~ Zy with S =
G = {e,a}. Define two probability distributions P and P’ as follows:

,ple)=1-%,p<1

_P
2

p/
e)=1 §»ﬂ<p

ke

Since both walks have an extremal element at 1, the theorem above gives us
s — 1 - (1 — %)
1—(1—%)

which agrees with our previous computations.

B

’B\\@
AR
3
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4.3 Direct product construction.

Suppose we are given two finite groups G; and G5 and two random walks Wy =
(G1,51,P1), and Wy = (G3, Sa, P3). There is a natural way to construct a random
walk W = (G, S,P) on a direct product of the two groups:

G =G x Gy
5251X{€2}U{€1}X52€G

1 V
p(s',e2) = 3 pi(s’), s €5
1 V
p(er,s”) = 3 pa(s”), s € 5y
1
plesez) = 5 (p1(e1) + pa(e2))

We call this random walk W a direct product of the random walks W; and Ws:
W= Wl X WQ
Rather than taking weights (%, %) for the two random walks W; and W, one can
consider a (p, 1—p)-weighted direct product VW defined analogously Wy x (p1—p) W2 =
(G,S,Pp1-p)), where

P(p,1—p)(5/,62) = ppl(sl)v s'es

"

p(p,l—p)(elas ) = (1 _p) pZ(S”)v s € SQ
P(p,1-p)(€1,€2) =ppi(er) + (1 — p) pa(e2))

In order to get a uniform random walk out two uniform random walks one
should take p = % (see definition of a uniform random walk in §2.1). It is
also convenient to consider a (p1,ps,...,p,)-weighted direct product of n random
walks Wy, Wh, ..., W,, where p; + p2 + --- + p, = 1. They can be defined
analogously. By a n-th power of a walk W we mean a (L,...,1)-weighted direct
product W* =W X --- x W (n times).

For simplicity we consider the usual directed products of random walks as well
as their powers.

Example 4.3.1 Consider a standard random walk on a cyclic group Z4 >~ Zo X Zo
(see Example 2.2.13). Tt is easy to check that this walk is a product of two random
walks on Zs.

Example 4.3.2 Consider a standard random walk on an n-cube Z3 (see Example

2.5.2) with a set of generators S = {e, (0,0,...,1,...,0)}, |S| = n and probability
distribution P defined as follows:

One can show that this random walk is a n-th power of a random walk on Z.
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We can think of W as two separate random walks on G; and G5 with steps
randomly taken either in one group or the other.

Now suppose we are given strong uniform times 7, 7 with stopping probability
functions P, Po defined for the random walks Wy and Wy respectively. We will
present a strong uniform time 7 for the direct product W = Wy X, 1_p,) Wa. Here
is an informal way to do it.

Algorithm 4.3.3
e walk till both rules stop the corresponding random walks on G; and Gs. Stop.

Formally, define the time-invariant stopping times 77, 74 by the stopping proba-
bility function 3, P as follows:

07 Wy, € SQa 0; Wp, € Sl7

P1(wls,), wn € 5 "‘Bz(w)z{%(m), wn € S,

where by w|s,, i = 1,2 we denote an S;-subword of w (see §1.1).

P = {

Definition 4.3.4 Let 7 = maxz(1],73)

Theorem 4.3.5 The stopping time 7 defined above is a strong uniform time.
Moreover, if stopping times 71, 7o are perfect and respect extremal elements g; €
G1, g2 € G, then 7 is perfect and respects an extremal element (g1, 92) € G1 X Gs.

Proof Observe that (G1,G2) = ({S1), (S2)) is an exact decomposition. By defi-
nition, the stopping times 71, 74 are strongly independent with conditional proba-
bility distribution Ug, and Ug, (see §3.5). By the Theorem 3.5.9, 7 = max (], 73)
is strong uniform which proves the first part of the Theorem.

By Theorem 3.3.3 to prove the second part of the Theorem all we need to prove
is that the stopping time 7 respects the extremal element (g1, g2). In the language
of the stopping probability function 8 of a strong uniform time 7 this means that
P(w) =1 for all w € S*(g1,92). On the other hand, by definition of the max(r{, 73)
we know that for any w as above P (wls,) = 1, Aj(w|s,) = 1, PH{w|s,) = 1,
As(w|s,) = 1. Therefore by definition of the stopping probability function 3 we
have PB(w) = 1 and we proved the second part of the Theorem. O

Theorem 4.3.5 has an obvious generalization for (pi,...,p,)-weighted direct
products of the walks. Now we would like to use our result to give a bound for the
total separation of the direct products of the random walks.

Theorem 4.3.6 Let W be a (p1,...,p,)-weighted direct product of n random
walks Wy, ..., W, where p; +---+p, = 1. Denote s, sy, ..., s, total separation
distances for these walks. Then

S S
SS*l—F"'—an
b1 Dn

Proof Observe that W can be obtained by a sequence of weighted products:

W = < .. <<W1 ><( P1 P2 )WQ) X( P1+p2 P3 )W3) X (1=pp,pn) Wn)

p1+p2’pP1+P2 p1+p2+p3’P1+p2+P3
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Therefore it is enough to prove the result for weighted direct products of just two
random walks.

Consider two random walks Wy, Wy and their (p, 1 — p)-weighted direct product
W. Let 11, 7o be the perfect times for the random walks W, Ws.

Compute E; = E(7] the expected number of steps of W before A; = 1. Observe
that the random walk wy|g, is just a rescaled random walk W (see §4.2). By the
Theorem 4.2.1 we get a bound on FEj:

1 —P1(€1) S1

Br< B T pten +(=p) = »

Analogously for the similarly defined Fo we get Ey < 15_217.

If we start our walk wi|s, on Gy only after we have A; = 1. We get an easy
bound:
E(T) S E1 =+ E2

Therefore
2

1-p

SSE(7)§E1+E2Sﬂ+
p
This finishes the proof. O

Example 4.3.6 As in the Example 4.3.1, consider a random walk on Z, which
is also a direct product of two random walk on Z,. Since the total separation is
equal to 1 for the random walk on Zs, we can use the Theorem above to bound the
total separation for the random walk on Zg4:

1 1
5§I+I:4
2 2

Recall that s = 3 (see Example 2.2.13).

Note also that the perfect time defined in Example 3.2.5 is different from the
one defined by Definition 4.3.4 in this case. Indeed, the latter perfect time with
probability % stops at 0 after two walk steps of staying at 0. On the other hand,
the first perfect time never stops 0 if the walk never left it.

Example 4.3.7 Consider a random walk W on an n-cube Z3 defined in Example
2.5.2. This random walk can be presented as an n-th power of a random walk on
Zs. Let us construct a perfect time for WW. We can think of our walk as of the
nearest neighbor random walk on a Cayley graph I' which is a 1-skeleton of an
n-dimensional cube. Indeed, define the walk as follows:

Start at e = (0,0,...,0). Each walk step

e choose a random coordinate ;

e flip a fair coin;

e if heads, move in the i-th direction, if tails stay.

Now define a stopping time 7 as follows
e ecach time we choose a direction ¢, mark it;

e stop when all directions are marked.



RANDOM WALKS ON GROUPS: STRONG UNIFORM TIME APPROACH 61

This construction is due to Andre Broder (see [D], §4.B). One can show that
this stopping time is exactly the same as the one defined by Definition 4.3.4. This
stopping time is perfect simply because it respects the extremal element (1,...,1)
(cf. Example 3.3.4).

Let us compute the expected stopping time for this walk. By construction, it is
equal to the expected time to mark all the coordinates. Therefore

S:E(T):%+

|3

+~~~+%:n~bn:0(nlog(n))

Indeed, the expected time to mark the first coordinate is exactly T; the expected
time to mark the second coordinate after the first one is marked, is exactly 7; etc.
This proves the result.

Observe that this is a version of the classical coupon collector’s problem (see e.g.
[Feller], §1.2). There is an Euler formula for the asymptotic behavior of b,,:

1

1
[’)nZIH(n)+7+2n+O<n2>

where v ~ 0.5772156649 is the Euler-Mascheroni constant (see e.g. [BE], §1.1;
[WW], §12.1). We have

1 1
s:n-f)n:nln(n)—i—'yn—i——i—O()
2 n

It is not hard to show bounds for the remainder
1 1

oo () <0
2 n

1
nln(n) +yn < s <nln(n) +yn+ 3

Compare the right bound with the bound we get from the Theorem 4.3.6:

Therefore

2

s<n-—=mn

3\»—!‘ —

Observe that from the Algorithm one can actually compute the whole separation
series.

Theorem 4.3.8 For he random walk W = (Z%, S, P) the total separation series
is given by the following formula:

- D) nil_ M () n
sl@) = kz::l ﬁ_‘_(_l) T= 1-— "T_lx_l — sz+-~-—|—(—1)

Proof By the Theorem 3.2.7 we have s,, = P(r > m) where 7 is the perfect
time defined above. It means that s,, is the probability of not marking all the
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coordinates. By the inclusion-exclusion principle (see e.g. [Stan], §2.1; [GJ] §2.2.29)
this probability is equal to probability of marking exactly n — 1 coordinates, minus
the probability of marking exactly n — 2 coordinates, plus etc. This gives us

=) ) -6 (57)

Summing over all m: s(z) =1+ s1 + s2 +... we get the formula above. O

Corollary 4.3.9 The total separation s and the radius p of the random walk
W are given by the formulas:

n

S:n'hna p:n—l

Proof Clear. [

Example 4.3.10 Let G = Z% and S = {e,s; = (0,...,1;,...,0)} as above.
Consider a lazy directed random walk W = (Z%,S,P), where p(e) = 3, p(s;) =
P >0, p1++p, = % Then W is (2p1,...,2p,)-weighted product of n copies of
a standard random walk on Zy. Let 7 be a perfect time defined again by marking
the coordinates (or, equivalently, as max(7,...,7,) where 7; is a ”stop after one
step” stopping time on i-th copy of Zs). By analogy with the symmetric case we
have:

Theorem 4.3.11 Let s(x) be the separation series of the random walk W.
Then
1
s(x) = Z p—
1 - 2 1 1 “e
J={j1,j2,.-- }C[n],J#[n],0 (pjl +Dpj, + )x

Proof Analogous to the proof of the Theorem 4.3.8. [

Corollary 4.3.12 The total separation s = s(1) and the radius p of the random
walk W are given by the formulas:

1
<7 =
5_2pbn7 P

where p = min;e[,) pi-

Proof Clear. [

Remark 4.3.13 A particular case of the above defined walk VW with probabilities
p; as in Zipf’s law, was considered in [Dc].

Example 4.3.14 Let S’ be another generating set of an n-cube S’ = {e, s1,..., 8, },

where
S1 = (117~"a1m70m+17'~-70n)

So = (017127---alm+170m+27--~70n)

Sp = (11,...,1m,1,0m,...,0n,1,1n)
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and m and n are relatively prime.

Consider a random walk W' = (Z3, S, P’) p/(e) = 3. This walk is due to Persi
Diaconis (see [DP]).

Observe that the walk W’ is equivalent to the walk WV from the previous example.
Therefore the total separation s’ =s=n-§,.

We will define now another type of random walk on G = G X G3. Suppose G5 is
abelian. Consider a random walk W = (G, S, P). Denote by S; = SN ({62} X Gg),
S1 =5\ Ss, S1 = Si]|g, - the projection of the set S; on the first coordinate. Now
suppose Sy generates Gy. Then S| generates Gy as well.

Let p = > ,cq P(s), P1 = Plpsl, P, = %. We can consider random walks

Wi = (G1, 51, P1), Wa = (G, 52, P).

Theorem 4.3.15 Suppose G5 is abelian. The total separation of the random
walk W = (G1 X Gs, S, P) is bounded by

S§ﬂ+ 52
p 1-p

where s, so are the total separations of the walks Wy, Ws.

Proof Denote by 71, 7o perfect times for the random walks Wy, Ws. Define time-
invariant stopping times 71, 74 as above. These are stopping for the random walk
W.

Since G5 is abelian, we have s1 - so = so - 51 for all s € S1, s € S3. Therefore
71 and 74 are strongly independent and the stopping time 7 = max (71, 74) is strong
uniform. Therefore s < FE(7).

The rest of the proof (computation of the E(7)) is similar to the computation
in the proof of the Theorem 4.3.6. [

Theorem 4.3.15 gives an upper bound for the total separation s. We will show
now that under certain conditions this upper bound is tight.

We say that an element g € G is S-independent if for every word
w=sish...5) € (@)
a corresponding element

Y(g,w) = (5152 .- 51)|c,

does not depend on w.
If every element of G; is S-independent, this simply means that ¢ : G; — Gs is
a group homomorphism.

Theorem 4.3.16 Under the conditions of Theorem 4.3.15, let g1, go be the
extremal elements of the walks Wy, Wh. Then (91,92 + ¥(g1)) is an extremal
element of the walk W and the strong uniform time 7 defined in the proof of the
Theorem 4.3.5 is perfect.
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Proof The proof is analogous to the proof of the second part of the Theorem 4.3.5.
Basically whenever the walk gets to (91,2 + ¥(g1)) it means that the associated
walk Wy gets to g1 and the walk Wy gets to ga. Therefore we must always stop
there. O

Example 4.3.17 Let G = Z,, X Z,,. Fix 0 < a < n. Consider the generating set
S =1{(0,0), (0,£1), (1,a), (*1,@2)}

and probability distribution P:
1 9 1
p(oao) = 57 p(oa il) = p(lva') = p(—l,a ) = g

Take p = % Then Wy 2 W, is a random walk on Z,, and we get
< 2 [n? n 1 2, n 4
s<—|—+=)==n -
- % 6 3 3 3

4.4 Semidirect product construction.

Let G1, G2 be two finite groups, G = G1 Xy G, where f : Gi — Aut(G2). By
g3' we denote an element f(g; ')[g2]. Then multiplication in G is given by

(a1,a2) x (b1,b2) = (a1 b1, a2 b3")

Denote G} = {(g1,€2),91 € G1}, G4 = {(e1,92),92 € Ga} (see §4.3). Given a
set of generators S of the group G denote S = SN GY, So = S NG, Denote
Si = 51|G1’ Séle'

We say that a random walk W = (G, S,P) is Gy-symmetric if for all s € S,
g € G1 we have s9 € S and p(s?) = p(s).

Recall that two random walks Wy = (G1,51,P1) and Wy = (Ga, S2,P2) are
called equivalent Wy ~ Ws) if there is a one-to-one map ¢ : G; — G2 which maps
probability distribution Q¥ into Q% for all k > 0.

Theorem 4.4.1 Let W = (G, S,P) be a Gi-symmetric directed random walk
such that S = S; U S;. Then W is equivalent to the weighted direct product of
random walks

W= Wi X(p1-p) Wa

Pl
where Wi = (G1, 51, P1), Wa = (G2, 55, P2), p = > cq, P(s), P1 = :1, P, =
P\sé
1-p°

Proof Consider an obvious map ¢ : G — G; X G which maps (g1,92) € G
into (g1,92) € G1 x Ga. We claim that this map establishes the equivalence of
the random walk W and a weighted direct product of the walks on G1, Go with
conditional probability distributions Py, Ps.
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By analogy with Example 2.1.3 let us look at the Caley graphs I" and I" of groups
G and G; x Gy. If suffice to show that the probability P(g — h) of the walk W
going from g to h, g,h € G is equal to the probability P(¢(g) — ¢(h)) of the walk
Wi X (p,1-p) W2 going from ¢(g) to ¢(h).

There are two kinds of edges in I" depending on whether a generator s is in S;
or in Sy. If s = (a1,e3) € S we get an (oriented) edge

(91,92) — (h1,h2) = (91, 92) ‘G (a1,e2)

where the subscript G under multiplication indicates that the product is considered
in group G. Since (g1, 92) ¢ (a1,€2) = (g1a1, g2) it implies that ¢(h) = ¢(s) ¢, xa»
@(g) i.e. we get an edge in IV which corresponds to a generator ¢(s) € S7. It implies
that both probabilities of going along the edge in I' and along the corresponding
edge in I are equal to p(s) = p - p1(p(s)).

Consider now edges associated with generators s = (e, as) € Sa:

(91,92) = (h1,h2) = (91,92) ¢ (e1,a2)

We have (hi,h2) = (g1,92) ‘¢ (e1,a2) = (g1,92a3"). Since W is G1-symmetric,
there exist a generator s’ = (e1,a3") € S2. Thus I contains an edge

(91,92) — (h1,h2) = (91,92) Gy xa. (e1,a3")

and again by Gi-symmetry the probabilities of going along the edges in T and T

are equal to p(s) = p - p2(¢(s")).
This proves the equivalence of the random walk WV and a weighted direct product
of the walks on GG1, G5 with conditional probability distributions Py, Po. O

Example 4.4.2 Let G = DH,, be a dihedral group. Recall that DH,, ~
Zo X Zp, (see §1.2). Consider a symmetric set of generators

S = {e = (070)7 (170)7 (071)7 (07 _1)}

and a probability distribution

p(e) = % p(1,0) = p(0,%1) = %

Observe that the random walk W = (G, S, P) is Zs-symmetric and S = S; U S5.
Using Theorem 4.4.1 we get

W = Wi X(1/3,2/3) W2

where W is a random walk on Zy, W is a random walk on Z,,. This is easy to
see also just by looking at the Cayley graph I' = T'(G, S) which is an m-prism in
both cases (see §1.2).

Observe that both walks Wi, Wy have extreme elements. If m is even, by
theorems 4.3.5, 4.1.7 and 2.2.11 we get the total separation s for the walk W

S1 S92 3 1 9 1 1 9 1
s +% + (6m +3 4m+ 5
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where s1, so are total separations for the random walks Wi, W5 respectively.
Analogously for m odd we get

B 3 (1 5, 1\ 1 , 1
s—3+2<6n +6)—4m +34

Let G’ = G; x G3. Define an obvious map ¢ : G — G'. Let S’ = ¢(9),
P’ = ¢(P). By W’ denote a random walk (G', S’, P’).

Theorem 4.4.3 Let W = (G, S, P) be G1-symmetric directed random walk on
G = G1 X G3. Then W is equivalent to a random walk W’ on a direct product
G1 X GQ.

Proof The proof is analogous to the proof of the Theorem 4.4.1. [

Example 4.4.4 Let G = DH,,, S = {e = (0,0), (1,+£a), (0,£1)}, where a €
Zy,. Consider the following probability distribution P on S: p(e) = %, p(0,£1) =
%, p(l,+a) = 1—12

Denote by W = (G, S,P). The random walk W is Zs-symmetric and therefore
is equivalent to the associated random walk W' on Zy X (1/32/3) Zm. Take S; =
{(0,0), (1,+£a)}, So = {(0,0), (0,£1)}. Since G is abelian we can use the Theorem
4.3.5 to get a bound for the total separation.

Example 4.4.5 Let G = Z, x Z2, p - prime, where (z,y)* = (z,y + z ),
x,Y, 2 € Zy. Define a generating set

S ={(0,0,0),(£1,0,0),(0,£1,a),0 <a <p-—1}

and a probability distribution p(0,0,0) = %, p(£1,0,0) = %7 p(0,+1,a) = é.
Define a random walk W = (G, S, P). Observe that W is G;-invariant. Therefore
W ~ W1 X WQ where W1 = (Zp,Sl,Pl), W1 = (Z?NSQ,PQ) Sl = {O,il}, SQ =
{(0,0), (£1,a)}, p1(0) = p2(0) = 3, p1(£1) = , P2(+1,0) = ¢
The total separations s1, so for the walks Wy, Wy are given by the Theorem

4.1.7 (see §4.1). If p > 2 we get
P
S = S = - _
1 2 6]9 6

Therefore the total separation s for the walk W, p > 2 is bounded as
2 2

< 2 = — 2 —

5 < 2(s1 + 52) 3P 3

If p=2 we get s1 =s3 =1 and
$<2(s1+s2)=4

Note that since G ~ U(3,F,) we can interpret the above result as finding the
total separation for the random walk generated by matrices

1 +1 « 10 0
0 1 0 , 0 1 =1
0 0 1 00 1

”

where by ” *”7 we mean any element a € Z,.
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4.5 Wreath product construction.

Let G C S, be a permutation group with elements represented as permutations,
H - any finite group. Denote by R the wreath product of the groups G and H. In
other words, R = G X H" a semidirect product, where G acts on H" by permuting
copies of H (see §1.1).

Suppose we are given two directed random walks Wg = (G, S¢, Pg) and Wy =
(H,Sp,Py). There are at least two natural ways to construct a random walk on
R. In this section we are going to study both of them and give some bounds on
their total separation. Let sg and sy denote the total separation for the walks Wg
and Wy.

Denote by (o3 hy,...,hy,), 0 € G the elements of the group R. By definition, an
identity element of R can be written as

er = (eg;€m,...,em)

where e = (1,2,...,n) € G is an identity element of G, ey € H is an identity
element of H. The multiplication in the group R is given by

(J;hl,...,hn)-(U';h'l,...,h%):(aa’;hlh;(l),...,hnh’ )

o(n)
Define two sets S; D Sy of generators of R as follows:
St ={(s;em,...,en),(eq;em,---,em, s em,...,ex), s € Sqg,s € Sy}
So ={(s;en,...,en),(eq; s’ em,en,...,en), s € Sg,s" € Sy}

where s’ in the fist case can be everywhere and in the second place only on the first
place.

We assume that G is transitive i.e. the orbit of 1 consist of all the elements
1,...,n. In this case it is easy to see that Sy generates the whole group R.

For any p, 0 < p < 1 define probability distributions Py, Py as follows:

1-p
= ——pu(s)

pl(s;eHa"'aeH) :ppG(s)v pl(eG;eHa"'vsl,'“;eH)
pQ(S;eHa"'aeH) :ppG(S)7 p2(eG§5/76H7~-~73H) = (1 _p)pH(Sl)
where s € 51, s’ € Ss.

Definition 4.5.1 The random walks W; = (R, S1,P1) and Wy = (R, S2, P»)
are called p-weighted semidirect products of type I and of type II respectively:

W1 = WG D(ZIj WH, W2 = WG D(él WH
By analogy with direct product, we drop the part ”p-weighted” when p = % and
write simply Wg x! Wy or Wg xI Wy

Theorem 4.5.2 Random walk W is equivalent to the (p, 1 —p)-weighted direct
product of the walks W¢ and Wi;:

W1 >~ WG X(p,l—p) WIT;
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Proof Observe that the W is G-symmetric. By Theorem 4.4.1 we have the
result. [J

Theorem 4.5.3 Let s be the total separation for the walk Wy = (R, S1,P1).

Then )
S n-s
s<8 o8

Tp 1-p

Proof By Theorem 4.5.2 and Theorem 4.3.6, we have

2
S S S n-s
5§G+n-1f1:G+ H
D =P D 1-p

n

which proves the result. [

Example 4.5.4 Let R = Z,, x Z5 be a wreath product of G = Z,, and H = Zs.
Consider a semidirect product Wy = Wg x! Wy where Wg, Wy are the standard
random walks on Z,, and Zs respectively.

By Theorem 4.5.2 we have W, ~ Wg x W}, The random walk on Z, was
studied in §4.1. The random walk W}, on the n-cube Z3 was studied in Example
4.3.7. Combining the results we get

<2 12+1+1()+ i
S =n = n mn(n n =
=7\6" 73 T

)
n? +2nln(n) +2yn+ =

<
o 3

W =

Note that we can get an easy lower bound s > % n?. Indeed, the reduced random
walk on G = Z,, is a rescaled random walk W¢g. We have

Example 4.5.5 Let R = Z,, x Z, be a wreath product of G = Z,, and H = Z,,.
Consider a semidirect product W; = Wg x! Wg. From Theorem 4.1.7 we get an
easy upper bound for the total separation:

1 1 1 1 1 2
5 <2 (6n2+3+6n2m2+3n2> =§n2m2+n2+§

Example 4.5.6 Let R = B, = S,, x Z§ be the hyperoctahedral group, W; =
We I Wy, where Wy is a standard random walks on Z,, and W is a random walk
on S, generated by all transpositions: Wg = (S, S, P), where S = {e, (1,7),1 <

It is known (see e.g. [Bou], §8.13.3) that the hyperoctahedral group is a Weyl
group of the symplectic group Sp(2n). It can be defined as a group of symmetries
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of the corresponding root system {+e;,+e; £+ e;}. We can think of W as of the
random walk generated by all the reflections over the roots.
From the Example 4.3.7 we have sy = nb,. In §5.2 we prove that s¢ < 2nh,,.
From here we get
s<22nb,+nbh,) =6nh,

and finally
s<6nln(n)+6yn+3

Example 4.5.7 Let R = B,, = S, X Z} be the hyperoctahedral group (see §1.2).
Consider Wi = Wg x! Wy, where Wy is a standard random walks on Zs, and
We is a random walk on S,, generated by ”star transpositions”: Wg = (S, S, P),
where S = {e, (1,i),1 <i <n}, p(e) = p(l,i) = .

From the Example 4.3.7 we have sy = nb,. In §5.1 we will show that sg <
2nb,. We have

s<2(2nb,+nbh,) =6nh,

and finally
s<6nln(n) +6vn+3

Example 4.5.8 Let R = B,, = S,, x Zy be the hyperoctahedral group, W; =
We xI Wy, where Wy is the standard random walk on Zs, and We is a random
walk on S, generated by Coxeter transpositions (see §1.2) : Wg = (Sy, S, P), where
S={e, (i,i+1),1 <i<n}, ple) = %, p(i,i+1) = ﬁ

As before, sy = nb,. In §5.3 we prove that sg < %n‘l. From here we get

1
s<2 <2n4+nf)n) :n4+2nhn

Remark 4.5.9 Wreath products of the second type defined above are considered
in joint work with Astashkevich (see [AP]).
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5. RANDOM WALKS ON THE SYMMETRIC GROUP

5.1 The case of the star transpositions.

Let G = S, be the symmetric group, S = {s1 = ¢,s0 = (1,2),...,8, = (1,n)} -
the set of star transpositions, P - uniform probability distribution:

p(s1) =p(s2) = =p(sn) :%

Consider a directed random walk W = (G, S, P). In order to compute the total
separation s of this random walk we present an explicit construction of a strong
uniform time for this walk.

The idea is to mark some elements while walking. The convention is that once
an elements is marked, it stays marked forever.

Algorithm 5.1.1 Mark the element n.

e Choose a random 7, 1 < i < n.

o If the element o (1) is unmarked and (%) is marked, mark o(1);
e If the element o(1) is unmarked and ¢ = 1, mark o(1);

o 0+ (1,i) o

e If all the elements are marked, stop. Else, return to the beginning.

It might be not obvious that the above algorithm defines a strong uniform time.
The idea of a proof is the following. We prove by induction that if we have k marked
elements, they are in random order with respect to each other, even conditioned on
knowing which elements are marked, which places they occupy, and the time of the
observation. So basically when we get £k = n we get a random permutation. Here
is how this argument can be made precise.

We start with a formal definition of a stopping time 7. Let I C [n]. By o(I)
denote the subset {o(i)|i € I}.

Algorithm 5.1.2Set I =J={n}, k=1,0=¢;
e Do while & < n:
e Choose a random i € [n];
e If1¢ T andieclU{l}, Do:
o [ —TU{l}, J—JU{o()}, k—k+1;
e 0—(1,0)0, I —o(I);
e End do; Stop.

Note that we multiplied a transposition from the right. The reason for that is
quite simple: we would like to think that when we apply (4, j) we exchange elements
in places ¢ and j. In the algorithm above the set J played role of the set of marked
elements, I the set of their positions.

Theorem 5.1.3 The stopping time 7 defined by Algorithm 5.1.2 is strong
uniform.
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Proof Let k, I,J C [n], |I| = |J| = k be as in the algorithm. If the walk
is at a permutation o € S, we have J = o(I). Let m; : I — J be a one-to-
one correspondence mi (i) = o(i), ¢ € 1. By II(I,J) denote the set of all such
correspondences. We claim that

e At each time, conditional on k, I, J, the correspondence 7, : I — J is uniform.

The claim is proved by induction. At the beginning of the algorithm we have
k=1,1=J = {n} so the claim is obvious. Assume it is true for K = m. The
claim remains true until a new element is marked i.e. until

o 1¢TandieIU{l}

where 4 is as in the Algorithm. In other words, the claim remains true until
we choose to exchange the unmarked element o (1) in the first place with either
of the elements j € J or let it stay. By definition, each of these possibilities has
probability 1. Therefore the new correspondence 41 : I U {1} — JU{o(1)} is
uniform, which proves the claim.

Now observe that when the algorithm stops, we have k = n, I = J = [n]. The
claim implies that the stopping time 7 defined by the algorithm is strong uniform.
O

Example 5.1.4 Let n = 3, G = S3, e = (1,2,3). Consider in detail how
the Algorithm works. First, it marks the last element 3: (1,2,3,,). Then it keeps
exchanging 1 and 2 untill it finally chooses to either stay and mark the first element
or to mark the first element and exchange it with 3. When it does, we get some
element a (which is either 1 or 2 depending on the parity of the time), and a pair of
two other elements in random order: (x,,,a,*,,). Now the algorithm either stays
or exchanges two marked elements until it exchanges a with an element in the first
place : (a,*pm,*m). Observe that two marked element are still in random order
with respect to each other. The algorithm stops after the next step. At this step
we either let a stay at the first place with probability % or exchange it with one
of the marked elements with equal probability. But then no matter what a is, we
would still get every permutation with equal probability. This illustrates the proof
of Theorem 5.1.3.

Now compute the total separation. It takes on average % steps before we mark
the second element, % steps before we move the only unmarked element in the first
place, and one more step before we mark the last element. Therefore the total
separation is s < E(7) = 5%.

Theorem 5.1.5 Let s be the total separation of the random walk WW. We have
s<2nb,—n—2

Proof First of all observe that 7 = 75 + 73 + - - - + 7., where the stopping times
71, 2 < 1 <n are defined as follows:

e walk till we mark the I-th element

By the Theorem 5.1.3 we have

s<E(r)=FE(m)+ -+ E(m,)
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Compute E(71). Break 74 into a sum of two stopping times:
o (77): walk till 1 ¢ I.

o (17): walk till ¢ € TU {1}.

By construction, when k& > 2 we have

n n
E(ry) = E(rg) + E(7)) = m_kol T

Observe that at the beginning 1 ¢ I = {n} and
B(r) = B(r}) = 5

We conclude

n n n n n
E(T)—<n_2+n_3+-~+1>+<+ +'--+E)<2nhn—n—2

This proves the result. [

Theorem 5.1.6 Let s be the total separation of the random walk W. Then for
n>3

1
szgnbn

Proof To get a lower bound on total separation, let us use Theorem 3.6.5. Take
B be a set of all permutations o € S,, with no fixed points (see Example 2.6.7).
The hitting time htp is greater or equal to the expected time before we apply all
the generators (1,7), 2 < i < n. By the coupon collector’s problem this gives us

htp > — = (n—1)b,_y =nb, -1

From Theorem 3.6.5 and Example 2.6.7 for n > 4 we have

B -1 1
szuht3>n (nh,—1)>=-nh,
en! 3

which proves the result. [

Remark 5.1.7 In [FOW] the authors analyze this random walk using Fourier
transform technique. They give asymptotic formalas for the expected hitting times
of each element depending on the conjugacy class to which it belongs. Although
the formula s = O(nlog(n)) is not stated explicitly it follows easily from their
analysis. Note that if the hitting time and average hitting time are known, one
can use Theorem 3.6.1 to get a bound on the total separation. Unfortunately the
asymptotic estimates for the hitting time and average hitting time given in [FOW]
are too weak to give a reasonable bound.

Note also that in this case the diameter set Dg is the set of all involutions
with zero or one fixed points at 1 depending on parity (see [P2]). However the
hitting time maximizes on elements from the other conjugacy classes. Therefore
it is impossible to use the second part of Theorem 3.6.1 to obtain an exact value
of the total separation since by the Proposition 3.3.6 all extremal elements must
belong to the diameter set.
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5.2 The case of all transpositions.

Let G = S,, be the symmetric group, S = {e, (i,5),1 < i < j < n} - the set of
all transpositions, P - uniform probability distribution:

1 1
p(e) = 5 p(i.j) = =1

Consider a directed random walk W = (G, S,P). We would like to present an
explicit construction of a strong uniform time for this walk and then compute the
total separation.

We can think of our random walk in the following way:

e Choose a random i € [n]. Choose a random j € [n] \ {¢}. Flip a fair coin.
e If heads, o < (i,7) 0. Return to the beginning.

As in §5.1 we can mark the elements that are in random relative order. Here is
how it can be done.

Algorithm 5.2.1 Mark the element n.

e Choose a random i, ¢ € [n]; choose a random j, j € [n] \ {i};

e Flip a fair coin. Let m be the number of marked elements.

e If heads, the element o (i) is unmarked and o(j) is marked, mark o(i);

e If heads, the element o(j) is unmarked and o(4) is marked, mark o(3);

e If heads, o « (i,5) - o

o If tails, the element o(¢) is unmarked and o(j) is marked, mark o(¢) with
probability -1

o If tails, the element o(j) is unmarked and o(4) is marked, mark o(j) with
probability -

e If all the elements are marked, stop. Else, return to the beginning.

Note that as in the Algorithm 5.1.1 whenever we exchange a marked and an
unmarked element, we always mark the latter. The main difference between Algo-
rithm 5.2.1 and Algorithm 5.1.1 is that when we stay and choose a marked and an
unmarked element we mark the latter not always, but with a probability %, where
m is the number of marked elements.

Consider informally what happens when n = 3. We start at (1,2,3). First, we
mark 3. Then we keep walking until either pair (1,3) or pair (2,3) is chosen. Say,
it’s (2,3) and we get (1, %, %) Or in other words we get either (1,2,3) or (1,3,2)
with equal probability. The number of marked elements m = 2 now. When we
choose (2,3) then, nothing new hapens. Suppose we choose either (1,2) or (1, 3),
which could happen with equal probability. We have four equally likely posibilities:

o We choose either (1,2) or (1, 3), stay and do not mark 1.

o We choose either r (1,3), stay and mark 1.

(1,2) o
o We choose either (1,2), exchange them and mark 1.
(1,3)

o We choose either , exchange them and mark 1.

)
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Indeed, each of the last two possibilities occurs with probability %. The prob-

ability of choosing (1,2) (or (1,3)), staying and marking 1 is equal to 1 - 1 = 4

Therefore conditioned we choose 1, all four possibilities are equally likely. ‘ .

Note that we mark a new element 1 in only he last three cases which correspond
to either staying or exchanging 1 and 2 or exchanging 1 and 3. This gives us a
uniform permutation of S3 condition all three elements are marked now.

Again one can prove that the above algorithm defines a strong uniform time. By
analogy with the arguments in §5.1 we claim that during the course of the algorithm
all arrangements of marked elements are equally likely. Here is how it can be done
formally. Let I C [n]. Let o(I) denote the subset {o(i)|i € I}.

Algorithm 5.2.2 Set I =J={n},m=1,0=e¢;
e Do while m < n:
e Choose a random i € [n]; choose a random j € [n] \ {¢}; Flip a fair coin.
o Ifheads,i¢ Tandjel: I —ITU{i}, J—JU{c(@)}, m—m+1;
e Ifheads,j¢ Tandiel: T—ITU{j}, J—JU{c(j)}, m—m+1;
e If tails, i ¢ I and j € I Do with probability :
o [ —ITU{i}, J—JU{o(@)}, m—m+1;
e If tails, j ¢ I and i € I Do with probability -
o [ —ITU{j},J—=JU{o(i)}, m—m+1;
e If heads, o — (i,5) 0, I — o(I);
e FEnd do; Stop.

Theorem 5.2.3 The stopping time 7 defined by Algorithm 5.2.2 is strong
uniform.

Proof The proof is analogous to the proof of Theorem 5.1.3. Let k be the number
of marked elements, I,J C [n], |I| = |J| = k be as in the algorithm. If the walk
is at a permutation o € S, we have J = o(I). Denote by 7, : I — J the one-
to-one correspondence 7 (i) = (i), i € I. By II(Z,.J) denote the set of all such
correspondences. We claim that

e At each time, conditional on k, I, J, the correspondence 7y : I — J is uniform.
The claim is proved by induction. At the beginning of the algorithm we have
k=1,1=J = {n} so the claim is obvious. Assume it is true for k¥ = m. The

claim remains true until a new element is marked i.e. until either of the following
conditions holds:

e we exchange a marked element and an unmarked element
e we stay and mark an unmarked element

Let us compute the probabilities of each of these possibilities. The probability
of exchanging an unmarked element o (i) and a marked element o(j) is equal to

m. By the algorithm, the probability of staying and marking an unmarked
element o(4) is equal to % . m(:i = m(nl_m). Therefore the new correspondence

Tm1 2 L U{i} = JU{o(i)} is uniform, which proves the claim.
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Now observe that when the algorithm stops, we have k = n, I = J = [n]. The
claim implies that the stopping time 7 defined by the algorithm is strong uniform.
O

Theorem 5.2.4 Let s be the total separation of the random walk W. We have

s<2nb,

Proof In the notation of the proof of Theorem 5.1.5 we have
s<E(T)=E(m)+ -+ E(th-1)

By construction

1 —1
n (n—1) + m n(n—1)
We conclude
n—1 n
(n— 1) (n—1) 1
= <2
Z m+1 m) n+1 mz::lm -m = b

This finishes the proof. [J

Theorem 5.2.5 Let s be the total separation of the random walk W. Then for
n>3

1
szgnhn

Proof As in the proof of the Theorem 5.1.6, take B to be a set of permutations
with no fixed points. The hitting time htg is greater or equal to the expected time
to apply at least once a transposition (i, j) for every 4, 1 < i < n. The latter time
can be thought as a version of the coupon collectors problem when each time we
are given two different coupons. Later on we shall prove that the the expected time

in this version is
n by, 1

EFE=—""—>-(n-1)b,
%+ﬁ>2(n )b
Therefore for n > 4
|B| nl—11 1
——ht ——— = (n—1)b, > =nbh,
=z g ite > o 3 (= Dbe > gnb

which proves the result. [

Remark 5.2.6 This walk was introduced and analyzed by Diaconis and Shahsha-
hani in [DSh1]. Our strong uniform time is not perfect, altough the bounds we get
bound total separation by up to a constant factor. The stopping time arguments
were used by Broder and Matthews (see [Mattl], [D], §4B). Note that in contrast
with our construction, both approaches are asymmetric (they distinguish between
left and right elements in a permutation). In [Mattl] Matthews combined his and
Broder’s stopping times to get an asymptotically tight upper bound.
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5.3 The case of adjacent transpositions.

Let G = S,, be the symmetric group, S = {sg = e,8; = (4,1 +1),1 < i < n} -
the set of adjacent transpositions, P - uniform probability distribution:

p(e) = plii+1) = -

n
We present a construction of a strong uniform time 7 for the random walk
W = (G, S,P). Here is the idea of 7. We will be coloring elements from [n] in four
colors: white, red, blue and green such that at the beginning all the elements are
white, at the end all the elements are blue, and in the middle there are white, blue,
green elements and at most one red element. Each time we choose the leftmost
white element and color it red. There are only white and blue elements at that
point. This red element will be moving as a slow random walk on a line according
to some explicit rule. While moving, it will bump into white element which will turn
green afterwards. Once there are no white elements left, we color the red element
blue and all the green elements white again. We stop when all the elements are

blue.

Algorithm 5.3.1 Color all elements white.
e While there are still white elements, Do:
e Pick the leftmost white element. Color it red.
e While there are still white elements, Do:
e Suppose a red element is at place j.

e Choose a random i, 0 < ¢ < n. Flip a coin with probability of heads

1
1+ #green elements

e If heads, ¢ = 0, and the element o(j + 1) is white, Do:
e color o(j) green and o(j + 1) red.
e Ifi=j and o(i + 1) is white, color it green.
e If i > 0, exchange o (i) and o (i + 1).
e End Do.
e Color red element blue. Color green elements white.
e End Do. Stop.

The reason why this algorithm defines a strong uniform time is the following.
We use induction to prove that at each time the red element could be either of the
white elements it came across with equal probability (those that didn’t become red
became green). When it turns blue it means that this is a random element among
those that are not blue. This means that the first element a; which becomes
blue is a random element a; € [n], the second blue element is a random element
az € [n]\ {a1}, etc. Note that the positions of the blue elements conceivably
depend on time, but since they do not depend on the elements themselves, 7 is
strong uniform.
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Here is a formal definition of 7 and proof that it is strong uniform. We use
numbers 0,1,2,3 to indicate colors white, red, blue and green respectively. The
color of the element in place i is indicated by the number ¢;. Let k indicate the
number of blue elements. Let m indicate the number of green elements. Let j
indicate the position of a red element.

Algorithm 5.3.2Set c =¢,c;=---=¢, =0, k=0.
e Do while k£ < n:
e j«—min{i € [n],¢; =0}, ¢; — 1, m 0
e Dowhilem<n—Fk—1:
e Choose a random 4, 0 <7 < n;
o Ifi =0, ¢j4+1 = 0 Do with probability ﬁﬂ:
e ci—3, cipi—Lj—j+1,m—m+1;
o Ifi=35,¢c41=0Do: cji1 <3, me—m+1,
e Ifi>0Do: 0« (i,i+1)0, ¢; < ciy1;
e Ifi>0,i=j—1Do: j—j—1;
o Ifi=j7Do: j—j+1,;
e End Do.
o ¢cj— 2, k—k+1;
e For i =1 ton Do:
e If¢;=3,¢ <0
e FEnd Do. Stop.

Example 5.3.3 Let n = 4. We present an example of the working of the algo-
rithm. Colors of the elements are denoted by indices to the permutation elements.
Chosen transpositions are shown above the arrows along with the coin outcome (if
appropriate).

(2 3) (1 2)

(1,2,3,4) <22, (1,02, 30, 4w) ~— (1, Bus 200, ) s (3, 1y 2u, 4y
@b 3 1 2 dw) 2 (3,20 1, du) 2 (39,2 dus 1) 22 (34,49, 20, 15)
OO (3 42 ) S (3, 40 2, 1) P (314w T, 25) 2 (40,30, 10, 2)

e, heads colorin (2 3) e,
— (4g739a17“72b) —g> (4T73w71b72b) (47"31b33’w321)) (4T71b73u172b)
1,2 colorin colorin
2, (147,30, 20) 22 (14, 35,4,,25) T (14,3, 45,2,) LU (1, 34,45, 25) O

Example 5.3.4 Let n =3, G = 53, e = (1,2,3). Consider how Algorithm 5.3.1
works in this case. At the beginning we have (1,,2,,3,). We keep exchanging
white elements 2 and 3 until the walk either stays or exchanges the red element in
the first place (1) and an element in the second place. We get (x4, *,,a,), where
a is either 2 or 3 depending on the parity of the number of steps made. Note that
now the red element is either of the two non-white elements with equal probability.
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We keep walking until we change colors next time. Observe that the white el-
ement cannot be to the left of the red element at that time since the only way it
could get there is by exchanging with the red element which would lead to recol-
oring earlier. Now, a change of colors can happen in either of the two positions:
(g, *r, Q) and (%5, @y, *g). In each of the positions the probability of recoloring is
%: we either exchange the red and the green element which happens with probabil-
ity %, or we can stay and have a coin show heads, which happens with probability
. % = %. Therefore, when recoloring in this case, we either stay with conditional
probability % or exchange white ang green elements with conditional probability %

In case of the first position (x4, *,, a,,), when recoloring, we always get (x4, by, *.)
where /. is either *, with probability % or a,, with probability % Therefore now
the probability of the red element to be 1, 2 or 3 is equal to % Analogously in the
case of the second position (%, @, *4), when recoloring, we always get (by, *.., %4).
Again, the probability of the red element to be 1, 2 or 3 is equal to %

Note that since there are no white element left the algorithm changes color of the
red element into blue and colors all the green element back to white again. Then we
color the leftmost white element red. We get either (¢,,dy,, *}) or (¢,, %}, d,,), where
¢, d are any elements which could depend on a blue element *; in a complicated
way. The element x; is still uniform in [3] in each of the two possibilities.

We keep walking by exchanging the blue element with either red or white el-
ements until finally we reach the position when we have red and white next to
each other (actually white will be always to the right of the red) and either stay
or exchange them. It could happen in either of the two positions: (¢, dy,,*}) or
(*}, ¢r, dy). In both cases The element *} is uniform in [3] and after we recolor the
other two elements into red and green (eg, ./, %;) or (x;,eq, %) we get a new red
element *; which is either ¢ or d with equal probability, and e is the remaining
element. This means that we have a random permutation ¢ € S3. The algorithm
now simply recolors all the elements blue and stops.

We showed that Algorithm 5.3.1 indeed defines a strong uniform time 7 for
the random walk V. Observe that even in such a small case as this, the exact
computation of the F(7) is somewhat cumbersome. Note also that in for n = 3 the
random walk WV is equivalent to a random walk on Zg which was studied in §4.1.

W=

Theorem 5.3.5 The stopping time 7 defined by the Algorithm above is strong
uniform.

Proof Suppose we know the whole sequence of ”colors” ¢; of element in place 1,
1 <4 < n at any time prior to the stopping of the algorithm. We will show that even
conditioned to that information, the stopping state is still a random permutation.

First, observe that once an element became blue it stays blue till the end. This
means that if we know the whole sequence of colors, we can reconstruct where the
element which became blue first, which became blue second, etc. Analogously with
green elements. Once they become green, they stay green until we get a new blue
element.

Let b be the number of blue elements, j be the position of the unique red element.
Denote by (i) = (i1,42,...,4) the places of first blue element, the second blue
element, etc. Let I = {i1,...,ip}. By J denote the set of places of green and red
elements. Obviously, j € J if the walk is at permutation o € S,,. Also J C [n]\ 1.
Denote m = |J|. Note that m in the algorithm is equal to the number of green
elements i.e. is less than |J| by one.
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Let w : I — [n] be an injective map w(i.) = o(i.), 1 < ¢ < b. By II(I) denote
the set of all such correspondences. We claim that

e At each time, conditional on b, (i), 7, J, the map 7 : I — J is uniform.

Suppose now we know a set 3(J) = {o(j.), j. € J}. We claim that

e At each time, conditional on b, (3), j, J, @ : I — [n], £(J), the element o ()
is uniform in 3(J).

We prove both claims by induction. At the beginning we have b = 0, j = 1,
J = {1}, so the base of induction is obvious.

Suppose both claims are true up to a certain time. The first claim will remain
true until we color a new blue element. But this could happen only with the
red element when all the other elements are either blue or green. By the second
claim, o(j) is uniform in X(J) = [n] \ {7(i.),1 < ¢ < b}. Therefore a new map
7' TU{j} — [n], 7'(j) = o(y) is uniform in II(I U {j}), i.e. the first claim remains
true. Note that when the number of blue elements b increases, all the green elements
become white, so the second claim holds automatically.

Now prove the second claim. Suppose it is true up to a certain time. It will
remain true until we get a new green element. This could happen in either of two
possibilities:

e The red element o(j) is exchanged with a white element o(j + 1) and the
white element gets the green color.

e The red element o(j) gets the green color, the white element o(j + 1) gets the
red color, and the walk stays.

Suppose we have a white element in place j 4 1, i.e. immediately to the right of
the red element. By the algorithm, the probability of the first event is P, = % and
the probability of the second event is P, = ﬁ Therefore conditional on getting

m

a new green element, the probability of the new red element to be in o(J) is ;5.

Also the probability of the new red element to be o(j + 1) conditional on getting a

new green element is equal to ﬁ From here and inductive assumption we get

e the new red element is uniform in 3(J U {j + 1})

which finishes proof of the second claim.

Now observe that the algorithm stops only when all the elements are blue. The
first claim then implies that the stopping time 7 defined by the algorithm is strong
uniform. This finishes the proof. O

Theorem 5.3.6 Let s be the total separation of the random walk WW. Then

n3§s§ nt

1 1
16 2

Proof First, the upper bound is proved. By the Theorem 5.3.5 we have s < E(7).
Now we need to estimate F(7). Observe that the expected time for he life of a red
element is bounded by the hitting time of the first element in the last place. We
know that this hitting time is given by

E = gn(n—l—l)
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Indeed, we can think of the movements of the first element as of a random walk on
line with probability of moving % in each direction. We stop once we hit either n
or —n — 1. It gives the formula above.

Now, we need to wait till all the elements are blue. Note that the last element
gets blue right away since there are no white element left. This means that

Ehhqn—DE:gM—Unm+D<%n4

which proves the upper bound.

As for the lower bound, let n = 27, B = {0 € S,,0%(1) > r}. In other
words, B is a set of permutations with element 1 placed in the second half. By the
argument above we have

htp = g r(r+1)
We conclude
|B| 1n

> Bl =20
TEs e 33"

Identically the same argument works for n =2r+4+1. O

1
1) > —n?
T+ )_16n

Remark 5.3.7 In the proof of Theorem 5.3.5 we implicitly use an algorithm
for generating permutations which is due to Persi Diaconis (see [Dm]). The idea of
Diaconis’ algorithm is based on the following identity:

ﬁ ﬁ (iilwiil(i,wl)):; Y o

k=n—1...1i=1...k

Similar identities were obtained earlier by Jucys and Nazarov (see [Jucys], [Naz])
and in a less explicit context for any root system by Demazure (see [Deml)).

Use of comparison technique or coupling arguments allows to reduce the upper
bound to for the total separation to O(n?log(n)) (see [DSC], [A1]). We believe
that this kind of bound should be possible to obtain by refining our construction.

5.4 The case of the k-cycles.

Fix n,k € N, 1 < k <n. Let G = 5,, S be the set of all k-cycles, k - even.
Obviously, |S| = (k —1)! (}). Consider the uniform random walk W = (S, S, P)
where P is given by

1 .
ﬂk_nm@’ses

Observe that when &k = 2 we get the random walk on S, generated by all
transpositions (see 5.2).

p(s) =

Theorem 5.4.1 Let s be the total separation of the random walk V. Then

bn
hn - hnfk

52>

Wl N
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Proof Let B be the set of permutations with no fixed points. Then by Theorem
3.6.5, since n > 2 we have
|B|

1
> = htp > s> - ht
B R

We say that the walk touches i € [n] at step j if the k-subset I chosen at step j
contains i. Let E be the expected time before we touch all the elements. Obviously
htp < F since in order to hit the element with no fixed points we need to touch all
the elements.

As in §5.2 we can think of F as the expected time to collect all the n coupons
if at each time we are given k different coupons. This problem imbeds in the
usual coupon collector’s problem. Indeed, consider an expected time Ej to collect
[ different coupons in the usual coupon collector’s problem. We have

n n n

n n—1+.”+n—l—1:

n (hn - hn—l)

Therefore the expected time E’ to get all the coupons if given k different coupons
at once is bounded as
El > ETL _ hn

7E7k_hn_bn—l

Note also that since p(e) = 4+ we have E = 2 E’. Combining the results we have

b

= hn - hn—l

> -htp>-E>

[SVRN )
Wl

Wl =

which finishes the proof. [

Remark 5.4.2 This walk was studied by Lulov and Roichman (see [Lulov],
[Roi]), who found a similar lower bound for the total variation distance. Unfortu-
nately the upper bound given in [Roi] is quite far apart from the above lower bound
when k = o(n). Recently Lulov and the author (see [LP]) proved that when k > %
the lower bound meets the upper bound up to a constant factor. Note also that the
diameter of S;, in terms of k-cycles can be asymptotically smaller than the mixing
time (see [Vishne] for examples and references).

It is possible to define a strong uniform time for this walk. Unfortunately our
construction is too cumbersome and inexplicit, so in view of the above mentioned
results we decided not to present it here.

5.5 The case of weighted transpositions.

Let G = Sp, S =1{e,(4,7),1 <i<j <n be the set of all transpositions and P
be a strictly positive probability distribution:

p(@) =35 p(Za]) = Pij

_1
where p; j >0, 301 i<, Pij = 3

Let W = (G, S, P) be a lazy directed random walk. It is possible to modify the
strong uniform time defined in §5.2 to work in this case. The idea is again to make
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a use of Lemma 5.1.4. This is achieved by changing the marking rules so that the
probability of marking an unmarked i is always the same no matter what j was
chosen (see §5.2).

Let i ¢ I, I.C [n] Denote p; 1 = minjer pij, Pig = Zjejpm-. Denote also
Pji =Dij, 1 <i<j<n.

Algorithm 5.5.1 Set I=J={n},m=1,0=c¢;
e Do while m < n:
e Sample (i,7) from probability distribution 2 p; ;; Flip a fair coin.
e Ifheads, i ¢ I and j € I Do with probability 2-L:
o [ —1TU{i}, J—JU{o(i)}, m—m+1;
e If heads, j ¢ I and i € I: Do with probability %:
o I —1U{j},J —=JU{o(j)}, m—m+1;
e Iftails, i ¢ I and j € I Do with probability 2-L:
° I<—IU{i}, JFJU{U(i)}vam—Fl;
o If tails, j ¢ I and ¢ € T Do with probability %:
o I —TU{j}, J—JU{o()}, m—m+1;
e If heads, o — (i,5) 0, I — o(I);
e End do; Stop.

Theorem 5.5.2 Algorithm 5.5.1 defines a strong uniform time 7 for the random
walk W.

Proof The proof is identical to the proof of Theorem 5.2.3. We prove by induction
the same claim as in the proof of the Theorem 5.2.3. The base of induction is
obvious. Observe that conditional on having sampled s = (i,7), i ¢ I, j € I the
probability of marking 7 is z:—j Therefore conditional on having having sampled
an unmarked element i the pfobability of marking i is p; 7, i.e. independent of j.
Check that this probability is also equal to the probability of staying and marking.
Indeed, the latter probability is equal to g’j times the probability of chosing i and
a marked element j € I, i.e. equal to g’j . (Zjelpm-) = p;,;. This proves the
induction step and concludes the proof. [

Theorem 5.5.3 The total separation s of the random walk WV is bounded by

n—1 nb,
np*’ 6

et =1

where p = min; ; p; j, p* = ming P ({5}, 1 <1< j < n.

Proof For the upper bound, compare the probability of marking for each i ¢ I
in the Algorithm 5.2.2 and in the Algorithm 5.5.1. Clearly, the second probability
is at least pn(n — 1) times the first probability. Therefore by the Theorem 5.5.2
the expected time of 7 is at most 2nb,. Since s is strong uniform, we
immediately get the upper bound.

S
pn(n—1)
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The lower bound consists of two different bounds. The second comes again from
comparing the stopping time 7 and the stopping time defined by the Algorithm
5.2.2. Indeed, we use a known fact (see [MO]) that the expected time to touch all
elements ¢ € [n] minimizes when the probability distribution 2 p; ; is uniform.

For the first lower bound, take B be a set of permutations with ¢ not a fixed
point, i.e. B = {0 € Sy,,0(i) # i}, where i is such that p* = p; |5\ (s} Then the
hitting time htp is simply p%. We conclude

| B| n—1

1
s> pty = -
|G| n p*

This finishes the proof. [

Example 5.5.4 Let p; ; = %, 1 <i < j <n, where
2= Y
—~ j—i
1<i<j<n
Since p = n{ 7 we have

270 =i+ + by~ nln(n)

th —1 2
s< ————=2h,Z27" ~2nln“(n
<=2 (n)

which seems to be the right upper bound as n tends to infinity.

Remark 5.5.5 Weighted transpositions with any pattern can be analyzed via
the path comparisons of Diaconis and Saloff-Coste (see [DSC]). Recently Handjani
and Jungreis (see [HJ]) have shown that the second eigevalue for many underlying
graphs (including the complete graph and trees) occurs at the n-dimensional rep-
resentation. This means it is easy to bound the total variation distance tvy (see
§2.4) using the coupon collector’s problem and the usual upper bound lemma.

5.6 The case of the weighted star transpositions.

It is not hard to modify the strong uniform time in the case of star transpositions
as well. Let G = S,, S = {s1 = e,s0 = (1,2),...,s, = (1,n)}, p(si) = pi,
p1 >pi > 0,4 € [n], p1 + -+ p, = 1. Denote p; = min;er p;, I C [n].

Algorithm 5.6.1 Set I =J ={n}, k=10 =¢;
e Do while k < n:
e Choose a random i € [n];
e If1¢1,ielIU{l}, Do with probability EL:
o [ —TU{1}, J—JU{o()}, k—k+1;
e 0—(1,i)0, I —o(I);
e FEnd do; Stop.
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Theorem 5.6.2 The algorithm 5.6.1 defines a strong uniform time 7 for the
random walk W = (S,, S, P).

Proof Analogous to the proof of the Theorems 5.1.3, 5.5.2. Each time whenever
1 ¢ I, we mark o(1) and exchange it with an element o(3), ¢ € I with probability p;.
Since p; > pr, we let the element o (1) stay and mark it with probability p1%: =pr.
These arguments combined with the arguments in the proof of Theorem 5.1.3 prove
the result. O

Theorem 5.6.3 The total separation s of the random walk W is bounded by

nbn 2bn
3 £n

}<s<

1
max{];; 5

3
3

where p = p,) = min;ey) pi-

Proof The proof of the lower bound is exactly the same as in proof of the Theorem
5.5.3. The proof of the upper bound is different because we can not mark a new
element when there is a marked element in the first place. First we need to wait
till there is an unmarked element there. However in contrast with the symmetric
situation we can get a marked element in the first place without marking a new
element.

Now suppose we have a set I of marked elements, |I| = k. The expected time to
mark a new element Fj satisfies the following inequality:

1 1

Ey < k—p+m+((/€+l)p+(l—(k+1)p—(n—k—l)p) - By)

Indeed, the expected time till the element in the first place is unmarked is at
most kip with the equality achieved when there is an ¢ € I with p; = p. Then,
the expected time before we get the marked element in the first place is at most
m (it is 0 when &k = n — 1). When we get the marked element on the first
place we can either mark a new element or not. The probabilities of these events
are at most (k+ 1)p and (1 — (k+1)p — (n — k — 1) p) respectively. In the latter
case we need to start all over again. This gives the formula above.

From here we have

1 1
Ek(l_(l_np))ﬁg‘Fm‘F

1 1 1 E+1
B, < —
k_an(k+1+n—k—1)+ n

Summing over k we get

(k+1)p

1 1 2)(n —1
s<E(r)=E1+ - +E,1<— (2h,—1—— +ﬁlijﬁL4l
’I’LpQ n 2n

Since p < % we have
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This gives us
_ 2,
=0

which completes the proof of the Theorem. [

S

Example 5.6.4 Sometimes it is possible to improve the lower bound if more is
assumed about the probability distribution P. Let p(s;) = p; = 2=, where

Y

n

7 =G =3+

i=1

~

(cf. [Dc], §5). We have p = % The upper bound in Theorem 5.6.3 gives us
2bn 2 2r—1
< —2p, r
S< o bn G (r)n
Suppose now n = 2m. Let B be the set of permutations with no fixed points at
places m 4+ 1,...,n. The coupon collector’s arguments (see Example 4.3.7) give us
PP <1 (o KA <1 () LU < CO L TV
1-27 52" 2r
and by the Theorem 3.6.5 we have
|B| Cn(T) " B s2)
> htg > ————1—2
Ec/ A W%

When r = 1 we have (,(1) = b, and we get the lower and upper bounds

%nhn(hn—l)gsgmhi

which asymptotically gives us

Oy -nln*(n) < s < Cy-nln®(n)

When r = 2 we have (,(2) < %2 = O(1). As n tends to infinity our bounds give
us

O(n*In(n)) < s < O(n®In(n))

5.7 The case of the k-subsets of an n-set.

Let G be a finite group, H C G a subgroup. Denote by C' the set of right cosets
G/H, ie. every ¢ € C has a form ¢ = g H for some g € G. There is an obvious
action of Gon C: g: g1 H — (9g1) H, 9,91 € G.

Let W = (G, S,P) be a directed random walk. One can define a Markov chain
on C as follows:

Start at ¢, = e H and move with transition probabilities
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o Plc1 = ¢2) = coserme, P(S)s c1,c2 €C

One can show that this Markov chain (denote it W/H = (G/H, S,P)) has most
of the properties the random walks have. In particular, it has a uniform stationary
distribution and there is a similar notion of separation distance and total separation.
We refer to papers [AD2, DF], and book [AF], §9 for the definitions and details
about the strong stationary time approach in case of the general Markov chains.
Some of the results we use that cannot be found in the references above can be easily
deduced from our approach in this slightly more general but still very symmetric
case.

To finish with the introduction, note that once we analyzed a random walk W,
we also have some knowledge of the Markov chain W/H. In particular, if s; (s},)
is the separation distance of W (W' after k steps, then s) < sj. Analogously the
strong uniform time for the random walk W can be projected to a strong uniform
time for the Markov chain W/H. Sometimes, however, one can improve these
bounds by modifying the construction of the projected strong uniform time. here
we present one of the examples when it can be done.

Let G =S, H= Sp;xS,—x, H C G. We think of H as of a group of permutations
that preserves the first k elements. Clearly C = G/H is a set Z] of all k-subsets

of [n]. Also |C| = Z = (1), ce = [K].

Define a Markov chain M with the following transition probabilities:

1
— I =1
2) 1 2
P(h—D)=4 _ Y  rnpi—k_1
2k(n— k)’ L L

0, otherwise

One can think of M as of a nearest neighbor random walk on a 1-skeleton of the
hypersimplex (see e.g. [P]). We will show that M is exactly W/H where W is a
rescaled random walk on S, generated by all transpositions.

Algorithm 5.7.1 Start at I = [k] C [n]. Mark the elements in [n] \ [k]. Set
m = 0.
e Choose a random ¢ € I, j € [n]\ I. Flip a fair coin.

e If heads and the element 7 is unmarked, mark it.

m+1

o If tails and the element i is unmarked, mark it with probability 7.

o If we mark i, m «— m + 1.
o Ifheads, I — I\ {i}U{j}.

e If all the elements are marked, stop. Else, return to the beginning.

One can prove that 7 is strong uniform by the following argument.Let J C [n]
be the set of marked elements. We claim that at each time our k-subset I contains
a random subset of |.J| —n + k marked elements even conditioned on knowing what
are the elements .J. The proof is similar to the analogous result for the random walk
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on S, generated by all transpositions. Before we define 7 formally, let us show how
the proof works in a small case. By m we denote the number of marked elements
in our k-set I, i.e. m=|[JNI|.

Example 5.7.2 Let n =4, k = 2. Just for convenience we write the elements
that are not in our 2-subset after the bar |. We start at (1,2]3,,,4,,). After the
first step we take either 1 or 2 and either exchange it with a random marked element
3 or 4 or leave it where it is. We always mark the element when we exchange it,
and if we stay, mark it with probability % This means that after the first step we
get to the position (a,#m, | *m,*m), where a is some element in [2] and the other
element in I is randomly chosen among the 3 remaining elements in [4] \ {a}.

Now we keep walking by taking the marked element and either leaving it in
a 2-subset I or exchanging it with an element in [4] \ I, until we finally choose
the remaining unmarked element a, which must be still in our 2-subset I. We
always mark it then. The second element x,,, in I is a marked element which is still
randomly chosen among the 3 remaining elements in [4] \ {a}. Let us compute the
probabilities of each of the 2-subsets. Let for instance a = 1. Before we mark the
last element we had (1,2]3,4), (1,3]2,4), (1,4]2,3) with equal probability. Now
we take 1 and either leave it in a 2-set I or exchange it with a random element in
the complement [4] \ I. We get each of the (1,213,4), (1,3]2,4), (1,4]|2,3) with
probability % . % = %. Also the probabilities of getting any of the three remaining
2-subsets (2,31]1,4), (3,4|1,2) and (2,4 1,3) is equal to 2 - i . % = %. This proves
that 7 is indeed strong uniform in this case.

We now compute the expected number of steps for Algorithm 5.7.1 to work in
this case. We need 1 step before we mark the first element, and the average of 2
steps before we take the unmarked element. We stop then. Thus we have the total
separation is s < E(1) =1+ 2 = 3.

Note that we can think of the Markov chain in this case as a nearest neigh-
bor random walk on the octahedron. The furthest vertex of the octahedron from
(1,2]3,4) is (3,4 1,2) which is an extremal element. One can see that our stopping
time 7 respects (3,41, 2) which implies that 7 is perfect and s = E(7) = 3.

Algorithm 5.7.3 Set I = [k], J = [n] \ [k], m = 0.
e Do while m < k:
e Choose a random i € I, j € [n]\ I; Flip a fair coin.
e Ifheads,i¢ JDo: J— JU{i}; m —m+1.
e If tails, i ¢ J Do with probability Z+tL: J «— JU{i}; m — m+1.
e If heads, I — (I'\ {i}) U {j}.
e End do; Stop.

Theorem 5.7.4 The above algorithm defines a perfect time 7.

Proof The proof is similar to the proof of Theorem 5.2.3.

Let m +n — k be the number of marked elements, J the set of marked elements,
|J| = n—k+m. Suppose our chain is at k-subset I. Observe that by the algorithm,
all unmarked elements must be in I, i.e. I\ J C [k]. This means that the m-subset
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R = JNI uniquely determines the set I. Let II(J,m) denote the set of all m-subsets
R of a set J. We claim that

e At each time, conditional on m, J, the subset R = J NI C J is uniform in
II(J, m).

The claim is proved by induction. At the beginning of the algorithm we have
m =0, I = [k], J = [n]\ [k] so the claim is obvious. Assume it is true for
m = m’. The claim remains true until a new element is marked i.e. until either of
the following conditions holds:

e we exchange a marked element j and an unmarked element ¢
e we stay and mark an unmarked element %

Let us compute probabilities of each of these possibilities. The probability that
the marked element j is exchanged with the unmarked element 7 is P, = m
The probability that the unmarked element ¢ is marked and the chain stays is P, =

’Z/fkl 5 k’z;f H =3 lzn(/ntlk). Therefore the probability that the unmarked element %
is marked and remains in I conditioned that i is marked is Q = #ﬁ,“

We need to show that the probability @ is equal to P(i € R’) where R’ €
II(J U {i},m' +1). This would imply that " = RU{i}, |R'| = m’ + 1 is uniform
in II(J U {i},m' + 1) and prove induction step. We have

. (nikfm/) m +1
AN m _ —
P(’LER)—(nfTij—,‘Fn{+1)_n_k+m,+1_Q

This proves the claim.

Now observe that when the algorithm stops, we have m = k, J = [n]. The claim
implies that the stopping time 7 defined by the algorithm is strong uniform.

Let us show that 7 is perfect. Consider the element I= {k4+1,k+2,...,2k} € C,
T C [n]\ [k]. Observe that in order for the chain to hit I we need to touch all the
elements in [k] and therefore when we reach T they are all marked. By construction
of 7 this means that when we hit I we stop there. Therefore T is an extremal
element and by the Theorem 3.3.3 the strong uniform time 7 is perfect. [J

From here we obtain the following result.

Theorem 5.7.5 Let s be the total separation for the Markov chain M, k < n—k.
Then

2k (n—k)

§=—=

n+1 (bn + bk - hn—k)

Proof By Theorem 5.7.4 we have s = E(7). By construction, E(7) = E(m) +
-+ + E(1), where the stopping time 7;, 1 < i < k is the stopping time when we
mark the (n — k + i)-th element. From the algorithm we have:

1 2k(n—k)
hoitl p kot i (k—i+1)(n—k +1)
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Thus we get

k
s=E(r)=E(n)+---+E(n) =) 2k (n — k)

:2k(n—k)z(k_1 L ):Qk(n_k)(f)n-i—bk—f)n—k)

n+1 p i+1+n—k+z’

This proves the result. [
Corollary 5.7.6 Under the conditions above

kb <s<4kby

Proof Clear. O

Remark 5.7.7 This Markov chain was introduced and analyzed by Diaconis
and Shahshahani in [DSh2] (see also [D], §3F'). They use there a Fourier transform
technique and representation theoretic properties of Gelfand pairs. Their upper
bound is slightly off when k& = o(n). This bound was subsequently improved by
Greenhalgh in [Gr].

One can also generalize the observation made in Example 5.7.2 and show that
the markoc chan M is equivalent to the nearest neighbor random walk on a hyper-
simpler H* € R", 1 < k <n/2 (see e.g. [EKK], §5.3), which can be defined by the
following equations and inequalities:

5.8 The case of the semi-random transpositions.

Let G = S, be the symmetric group. Let P;, P»,... be an fixed infinite sequence
of probability distributions on [n]. Consider the following stochastic process M:

e At step k sample an element j € [n] from the distribution Pj.
e Choose a random 7, 1 <7 < n.

e Apply the permutation (7, 7). Return to the beginning.

By abuse of speech we call this stochastic process a random walk generated by
semi-random transpositions. It is actually a random walk only if P;, ¢ > 1 are
identical and independent of each other. Observe that if P;, ¢ > 1 are independent
and uniform, we get a rescaled random walk generated by all transpositions. Also,
when P; is concentrated at 1 for all i > 1 we get the random walk generated by
star transpositions.

We claim that it is possible to modify the construction of Algorithm 5.1.2 such
that even in this generality it still defines a strong uniform time. In other words, we
present a stopping rule that stops at a random permutation conditional the time
of stopping.
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Algorithm 5.8.1 Set I=J={n},k=1,m=1,0=c¢;
e Do while m < n:
e Choose a random i € [n];
e Sample an element j € [n] from a probability distribution Pj;
e Ifjé¢lTandie IU{j}, I—TU{j},J—JU{o(j)}, k—k+1;
oc— L)oo, I —o(l),m—m+1;
e End do; Stop.

Theorem 5.8.2 The stopping time 7 defined by the algorithm is strong uniform.

Proof The proof is identical to the proof of Theorem 5.2.3. Observe that in the
proof of the claim in Theorem 5.2.3 we do not use any assumption on where the un-
marked elements j come from. We were using only the fact that for each unmarked
element j the probability of staying and marking it is equal to the probability of
exchanging it with any marked element ¢ and is equal to % This is obviously true
in the present algorithm. [

Example 5.8.3 Consider a sequence of probability distributions Pi, Ps, ...
where Py, k € N is concentrated at a point & mod n. In notations of the Algorithm
5.8.1, each time we are forced to choose j = k mod n. This process M was defined
in [AD1] and posed as an open problem.

Theorem 5.8.4 Let s be the total separation of the stochastic process M.
Then for any choice of P;,
s < 3n?

Proof We use a generalization of Theorem 3.2.7: s < E(7) (see [AD2], [DF]).
Now we need to compute the expected number of steps for the work of Algorithm
5.8.1 in this case.

Suppose we have m marked elements in [n]. Let E,, be the expected number of
steps before we mark a new element. Let 7, be the expected time before the we get
an unmarked element j € [n] in the worst case. Since the probability of marking is
mtl we immediately get

n )

n—m-—1

m+1
-1+
n n

and thus

Emgirm—l—l
m—+1

We now prove that r,, < 3m. Indeed, suppose the current time is k£ and d is
the smallest number such that the element at place (k + d) mod n is unmarked.
The probability that after d steps it is still unmarked is the probability that during

. . d .
these d steps it was not touched i.e. equal to (1 — %) . Since d <m < n—1 we get
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Therefore
E,<1+3n

m
<3
m+1 "
and finally
s<Ei+-+FE,1<3n(n-1)

which proves the result. [

Remark 5.8.5 Note that in case of the all transpositions the Algorithm 5.2.2
works faster than the Algorithm 5.8.1 above since in this case we are able to use
all the symmetries of the walk. Namely, we mark a new element not only when j
is unmarked and ¢ is marked, but also when ¢ is unmarked and j is marked.

We believe that for each n there is a constant ¢(n) such that the expected time
for the work of the Algorithm 5.8.1 is less than ¢(n).
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6. GEOMETRIC RANDOM WALKS

6.1 Full linear group.

In this section we present three different algorithm for generating random ele-
ments of the full linear group G = GL(n;F,). By M(n;F,) denote the set of all

matrices over Fy, |M(n;F,)| = .

Trial and Error Algorithm 6.1.1
e Choose a random matrix M € M(n;F,); d «— det(M).
o If d # 0, output M. Else, return to the beginning.

Theorem 6.1.2 Let ¢(n;q) be the expected number of steps for the work of
the algorithm. Then ¢(n;q) < 2 if ¢ > 3, and ¢(n;2) < 4.

Proof The probability p(n; q) of choosing a nonsingular matrix is equal to

(n1q) = |GL(n,Fy)| ¢"—1 ¢" —¢ " =gt
p\n;q) = an - qn qn qn

1 1 1
_<1><12>'..<1’)
q q qr
s 1 1 1 1 1
>H<1—i>:1——2+5+7—...
Py q a9 ¢ ¢ g

The last product can be expanded as a sum using Euler’s pentagonal theorem

0 1 ) > (_1)m
1 _— = ——————
I l % Z m(3m=1)/2

m=0

Therefore the desired probability can be bounded as

1 1 1 1 1 1
p(n;q)>17577+f7 ST =+t=+ -

@ P ¢® q ¢
1 1 1 1 1 1 1 1 1
[ e (i
¢ @ ¢ ¢*1-; ¢ ¢ q5< q—1>
From here we get
11
pnig) >1—-——
q
Finally,
(n;2) < ! < ! 4
c(n; =
p(na2) 17%*%
1 1
c(n;q) < < =-<2
(i) p(n.g) 1—4—4

for ¢ > 3. This finishes the Proof. O
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Recall that by (o), o € S, we denote the length of the permutation o (see
§1.2). One can also describe [(o) as follows:

(o) = {(,j),1<i<j<n,o(i)>o())}

where each pair (¢, ) in the set on the right hand side is called an inversion. Let
L. be the probability distribution on S,:

where z > 0 and

n .

R |

oinSy i=1

Denote by (o - Id) a matrix obtained from an identity matrix Id by permuting
rows according to o.

Bruhat Decomposition Algorithm 6.1.3 Let z = %.

e Sample random matrices U € U(n; F,), B € B(n; F,).
e Sample a permutation ¢ € S, from the probability distribution L, .

e Output M =UT . (0 -1Id) - B. End.

First, let us explain how we sample in the Algorithm. Sampling U € U(n;F,)
and B € B(n;F,) from the uniform distribution is trivial (simply choose random
entries of the matrices). Sampling a permutation o from the probability distribution

L. is trickier. We start with sampling numbers ay,as,...,a, € Z4, 0 < a; < 4,
P(a; = j) = ﬁ Sometimes sequences (a) = (ai,...,a,) are called
inversion vectors. We present a bijection v between sequences (a) = (a1, ...,an)

and permutations o € S,, such that {(y(a)) = a; + -+ + a,. This gives us a direct
procedure of sampling from S,,.

The bijection = is constructed as follows. Put element 1 on a line. It has a; =0
elements to the right of it. Put element 2 on a line to the left or to the right from
1 such that it has as elements to the right of it, etc. Keep doing so till we get the
desired permutation o = y(a).

Now we are ready to formulate the following result.

Theorem 6.1.4 The Algorithm 6.1.3 outputs a random nonsingular matrix
M e GL(n;Fy).

This result was proved in [Ran] and [P]. For a general subgroup approach to
generating of group elements see [DSh3]. Note that in the Bruhat Decomposition
Algorithm we still need to multiply matrices which gives us an order of n? steps.
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6.2 k-subspaces of Fy.

Fix k,n e N, k <n—k. Let G =GL(n;F,), H=GL(k;F,) x GL(n — k;F,),
H C G. We think of H as of a group of linear transformations that preserves some k-
dimensional subspace and its orthogonal compliment. Clearly Gr(n,k;F,) = G/H
is a set of all k-dimensional subspaces of the vector space Fy. Also |Gr(n, k;Fy)| =

(Z) q’
By analogy with §5.8, define Markov chain M on Gr(n, k;F,) with the following
transition probabilities:

1
-, W=V
27 1 2

P Va) ———  dim(VinW)=k-1
) 1 2
2q(k)q(n—k)q

0, otherwise

This is a lazy random walk on Gr(n, k;F,) which was introduced in [DSh2] and
studied later in [Gr], [Ar]. We can think of this walk as follows:
o Start at V € Gr(n, k;F,).

e Choose a random V' € Gr(n, k;F,), dim(V NV') =k — 1. Flip a fair coin.
e If tails, V < V’. Return to the beginning.

The following algorithm defines a strong uniform time 7 for the Markov chain

M.

Algorithm 6.2.1 Start at V € Gr(n, k;F;). Let W=V, m=k.

e Choose a random V' € Gr(n, k;F,), dim(VNV') =k — 1.

o W —WnV';d« dim(W'). Flip a fair coin.

If tails Do: V «— V: W «— W'; m « d.

e If heads and d = m — 1, with probability P(m,k,n) = % Do:
o W —W' m+«d.

o If m =0, stop. Else, return to the beginning.

Theorem 6.2.2 The above algorithm defines a perfect time 7.

Proof In this proof we follow [P]. We claim that at each moment we get a random
k-dimensional subspace V' containing W. Formally, let

Gr(n,k;W;F,) ={V € Gr(n,k;F,),W C V}
be the set of k-subspaces containing W. Then

1
P(V =V |W =Wy, t =tg) = { |Gr(n,k;Wo; Fy)|’
0, otherwise

Vo € Gr(n, k; Wy; Fy)

We stop when m = dim(W) = 0. The claim therefore implies that the stopping
time 7 is strong uniform. The claim is proved by induction on the number of steps.
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At the beginning V = W, m = dim(W) = k and the claim is obvious. Suppose
now that the claim is true after ¢ steps. At the next step there are two principally
different possibilities. First, if d = dim(W') = m ie. if W = W the claim
still holds by symmetry. Indeed, it means we either stayed or moved to another
randomly chosen subspace inside the Gr(n, k; W;F,) which proves the claim in this
case.

Now, suppose d = dim(W’') = m — 1. Then by symmetry V' is a randomly
chosen subspace in Gr(n,k; W';F,) \ Gr(n, k; W;F,;). By construction we always
have W «— W’ if tails and have W «— W' if heads with probability P(m,k,n).
Analogously, by symmetry, if heads we have W' is a random (m — 1)-dimensional
subspace of W, and V is a randomly chosen subspace in Gr(n, k; W;F,). Therefore
if the probability P(m, k,n) is given by

Gr(n, k; W;F,)

Plm.kn) = T W F,)

we have proved the claim. Indeed, if we have W « W', we need to equate the

probabilities of getting a vector space V' in Gr(n, k; W';F,)\ Gr(n, k; W;F,) and in

Gr(n, k;W;F,). Since we flip a fair coin, we immediately get P(m,k,n) as above.
Let us compute P(m,k,n). Define FL(m,k,n,F,) as the set of sequences () =

VOcvmcVk c V™ =Fy, where dim(V') = i. It is easy to see that

\FL(m, k,n,F,)| = <Z>q<2)q

since the number of ways to choose the sequence V™ C V¥ € V™ can be thought
as the number of ways to choose V¥ C V™ times the number of ways to choose
vmc vk

We have a group GL(n,F,) acting transitively on F' L(m, k,n,F,), which implies
that the number c¢(m, k, n; q) = |Gr(n, k; W;F,)| of ways to choose a k-dimensional
subspace which contain a given m-space W is

c(m, k,n;q) = m _ (n—m>q

From here we have

P(m, ki n) = c(m, k,n;q) _ (k:—m)q 7(k7m+1)Q.

c(m —1,k,n;q) ("—(m—l))  (n—m),
a

k—(m—1)

This proves the formula for P(m, k,n) given in the algorithm.

Thus we have proved the claim, which consequently implies that 7 is strong
uniform. Now prove that 7 is perfect. Pick any k-dimensional subspace V; such
that dim(Vo N'V1) = 0, where Vj is the k-dimensional subspace where the chain
starts. Such a space V; exists since k < n — k. We claim that once the walk gets to
V1, it stops there. Indeed, since W is a subspace of both V) and V = V;, we have
W c VonVy = {0}. Thus m = dim (W) = 0 and the walk must stop once it gets to
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V1. Therefore 7 respects V7, and by Theorem 3.3.3 7 is perfect. This finishes the
proof. [J

Theorem 6.2.3 Let s be the total separation of the Markov chain M. Then

(];])Cq hn(q) <s<2 (I;Zq hn(q)
where
k m
bn(Q) = Z (fn)q

Proof By Theorem 6.2.2 the stopping time 7 defined by the Algorithm 6.2.1 is
perfect. Therefore s = E(7). By construction,

E(t) = E(11) + E(2) + - + E(7%)

where 7;, 1 < i < k is the expected time to have m = dim(W) decrease from
k—i+1tok—i.

Let m = dim(W), 1 < m < k. The probability p,, of decreasing m at the next
step is equal to

1
Pm = 92 (1 + P(m> kvn)) : P(dzm(W’) =m— 1)
Indeed, p,, is equal to the probability of tails and dim(W’') = m — 1 plus the
P(m,k,n) times the probability of heads and dim(W’) = m — 1. This gives the
formula above. Therefore

%P(dim(W’) =m—1) <py < P(dim(W') =m —1)

We next compute the probability P(dim(W’) = m). We have the number of
ways to choose V' € Gr(n,k;F,) such that dim(VNV’') = k-1, V' D> W is
equal to the number of ways to choose a (k — 1)-dimensional subspace U, such that
W C U C V times the number of ways to choose a k-dimensional subspace V' such
that V' D U, V' # V. In the notation of the proof of Theorem 6.2.2, the first
number is equal to ¢(m,k — 1,k;F,;) = (k —m)y, and the second number is equal
to c(k —1,k,n;Fy) —1 =¢q(n —k),. Therefore we have

(k — m)q q(n— k)q k—m (m)q

PldimW) =m=1) =1 == o —m, ¢ W),

and
: 1 (k)q - q" (k‘)q
mzzl P(dzm(W’) =m — 1) - qk ; (m)q = qk bn(q)
We have . . X
S = E(T) = — 4+ —
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and from
1 i 2
P(dim(W")=m—1) = py ~— Pldim(W')=m—1)

we get the result. [

Corollary 6.2.4 For any n > 2k the total separation satisfies k < s < 4 k.

Proof The lower bound comes from the diameter of being k£ and therefore trivial.
For the upper bound, from Theorem 6.2.3 we have

(k)

3S27qhnq
7 (q)

g —1
q—1

For any m > 0 we have (m), = . From here we get

which proves the upper bound. [

Remark 6.2.5 Using a different technique the similar bounds in this case
were obtained by D’Aristotile in [Ar]. His arguments involve a Fourier transform
approach by use of the properties of the Gelfand pairs which were earlier applied
by Greenhalgh in this case (see [Gr]).

Random walk on k-subspaces is an example of the walk on distance regular
graphs. For general results in this case see [Bel], [Chung].

Observe that when ¢ = 1 we get the same bounds as in §5.7. In some sense,
the Markov chain on k-subspaces of an n-space is indeed a g-analog of the Markov
chain on k-subsets of an n-set. Analogously the perfect time constructed in here is
a g-analoq of the perfect time constructed in §5.7. See [P] for more regarding this
connection.

6.3 The case of the upper triangular matrices over I, and its generaliza-
tions.

Let G = U(n;F,) be the group of the upper triangular matrices over a finite
field. Recall that R(,j;a), 1 <i < j < n, a € F,; denotes an upper triangular
matrix with ones on the diagonal, a in place (4,j) and zeros elsewhere. Let

S={R(,j;a),1<i<j<n,aeF,}

p(e) = L, p(R(,j1a) = ———, a#0
q(z)
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Consider a random walk W = (G, S, P) (see Example 2.5.8). We can think of
this walk as follows

e Choose a random pair (i,5), 1 <i<j<mn
e Choose a random element a € .

e Apply the generator R(i,j;a) and return to the beginning.

Here is an idea of the strong uniform time for this walk. Denote by I = {(4,j),1 <
1 < j < n}. Whenever we use a generator R(i,j;a), mark a pair (i,7). Stop when
all the pairs are marked.

One can formalize this idea in the following Algorithm. By J we denote the set
of marked pairs, m = |J|, M - our upper triangular matrix.

Algorithm 6.3.1 Set M =¢, J =0, m=0.

e Choose a random pair (¢,5) € I. Choose a random a € Fy.

If (i,5) ¢ J Do: J — JU{(i,4)}; m —m+ 1.

M «— R(i,j;a) - M

Ifm= (g), stop. Else, return to the beginning of the Algorithm.

Theorem 6.3.2 The above Algorithm defines a strong uniform time 7.

Proof Suppose at step [ we choose a pair (i;,7;) and a finite field element a;. We
need to prove that

for any M € U(n;F,) We claim that a stronger property holds. Namely,

P(M = Mliy =i1,j1 = J1, .-,k = ik, Jk = Jk) = A)
q2

for any fixed sequence of pairs (i1, j1), ... , (ix,jr) such that
k
U{(ilvjl)} =1

=1

In other words, we claim that any sequence of sets {R(i, j;, a), a € F,} such that
UF_{(i1, 1)} = I, defines a uniform decomposition (see §1.1). Denote

M = M(ay,...,ar) = R(i1,j1,a1) - ... - R(ik, ji, ax)
Define a linear order ”<” on I as follows:
(i,5) < (', j)ifj =i >j—iorj —i'=j5—4,i<i
Geometrically this means that the smallest element is in the upper left corner of

the matrix. The elements increase along the first diagonal, then along the second
diagonal, etc.
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Observe that the matrix elements of M = (m; ;) can be written in the form
m; ; = a; ;+ fi j, where a; ; is the sum of the a; for all 1 <1 < k such that (i, j;) =
(1,7), and where f; ; is a function of the elements a; such that (i, j;) < (¢,7) which
are independent of a; ;. We have

P(M =M liy =iy,....Jk = jx) = P(m1o =M |iv = i1,...,jk = Jrfr2 = f1.2)
“P(mag =1mog|i1 =1i1,...,0k = jk.M12 = M1, fo3 = fa3,)" ...

“P(min =Miy i1 =i1,..., 0k = jk,M1,2 =M1, Ma3 =Ma3,., fi.n = [in)

where the product on the right hand side is taken in the order < on I. Now,
since the sequence (i,7j;), 1 < { < k contains each of the elements in I, all the
probabilities on the right hand side are equal to %. This proves the claim which
implies the Theorem. [

Theorem 6.3.3 Let s be the total separation of the random walk W = (G, S, P).
Then for any ¢
<(")p
5= (2) (3)

Proof From Theorem 6.3.2, we have s < E(7). For the E(7), we again get a
coupon collector’s problem (see Example 4.3.7). This gives us the result. O

It is not true that 7 is a perfect time. One of the reasons is that the construction
disregards the structure of the finite field. Consequently ¢ does not appear in the
formula E(7). An advantage of this is that we can easily generalize the construction
for a general type of Markov chains.

Definition 6.3.4 Let H be any finite group with the group operation described
as addition. Fix n € N. Let G = H". Let f;;, 1 <14 < j < n be any function
of ay,...,a;_1 which could also depend on time and additional random events.
Consider a Markov chain M(G; (f; ;)) on H" defined as follows:

o Start at eq = (em,...,em).
e Choose a random i € [n]. Choose a random a € H.
o Leta; —ai+a; a;j—aj+fijla,...,a-1,t,a),i<j<n

e Return to the beginning.

Theorem 6.3.5 Let s be the total separation of the Markov chain M(G; (f; ;)).
Then
s <nby,

Proof Indeed, consider the following stopping time 7:
e Mark i € [n] whenever we choose it and it’s unmarked.

e Stop when all elements of [n] are marked.

We claim that the stopping state is a random element of G even conditioned on
knowing the sequence (i1,...,4x) of indices used before stopping. Indeed, for any



100 IGOR PAK

i, 1 <17 < n thereis a time [, 1 <[ < k when we add a random element a to a;.
Therefore even conditioned on knowing the elements a1, as,...,a;—1 at all times
before the stopping, we still get a random element a; at the end since we could add
to a; only elements that could depend on aq,as,...,a;_1 but not on a. Thus the
stopping element (a1, as,...,a,) has a random element a; conditioned on 7 = k,
has a random element as conditioned on a; and 7 =k, ... , has a random element
a, conditioned on ay,...,a,_1 and 7 = k. This proves the claim. Therefore 7 is
indeed strong uniform.
We again use the coupon collector’s argument to get

s < E(t) =nby
which finishes the proof. [

It turns out that in some cases the strong uniform time defined in the proof of
the Theorem 6.3.5 is also perfect.

Example 6.3.6 Let A = {c;2 + c22? + -+ + ¢ @™} be a set of polyno-
mials of x with coefficients ¢; € Z,, with no free term and degree at most m,

2™+t! = 0. Observe that A is a finite ring under addition and multiplication
of polynomials. Consider a Markov chain M = (A", (f;;)) where the functions
fij = fij(a1,...,a,-1,t, a) are of the form

fi,j =a- gm-(al, c. ,ai_l,t)

i.e. depend linearly on a.

We claim that in this case the total separation s = nbh,,. Indeed, suppose the
chain starts at e = (0,...,0). Let us show that the element ¢ = (x,...,z) is
extremal. Indeed, for any (¢,7) and (ai,...,a,) the element f;; is a product of
two polynomials and therefore has a degree either 0 or greater or equal to 1. Thus
we must choose all the indices ¢ € [n] before the chains gets to g. By construction
the strong uniform time 7 always stops then, which proves that ¢ is an extremal
element and that in this case 7 is perfect.

We finish the section by considering another random walk on G = U(n;F,),
p-prime. Let
S ={e,R(i,j;£1),1 <i<j<n
L
4(3)
Consider a random walk W = (G, S,P). We can think of this walk as follows:
e Choose a random pair (i,7), 1 <i<j<mn

pe) = 2. p(R(ij:%1)) =

27

e Flip a fair coin. Choose a random element a € {1, —1}.
e If heads, apply the generator R(3, j;a).
e Return to the beginning.

Theorem 6.3.7 Let s be the total separation of the random walk W = (G, S, P).
Then

1
< 2 (2 2 \2
5 < o (0 +2) (0% — )
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Proof Recall the notation in the proof of Theorem 6.3.2. Let I be the set of
pairs (i,7), 1 <i < j <n,”<” be the linear order on them.

Let 75, 1 <4 < j < n be a perfect time for the standard random walk on
the copy of Z, corresponding to the matrix element (¢,j). Whenever we apply
R(i,7;£1), we make a £1 step in the walk on the corresponding copy of Z, (cf.
§4.3). Define

T=Ti2+Te3+ " +Tin

where the order on I is the linear order ”<”. We claim that 7 is a strong uniform
time.

First, observe that 7 is a sum of time-invariant stopping times and therefore also
time-invariant. We need to prove that 7 is uniform. Indeed, when 7y > is stopped,
the matrix element m; s is uniform in F,,. Therefore it will stay uniform in F,,. After
T1,2 + 72,3 we get two random elements: m; o and mg 3, etc. Thus 7 is uniform and
therefore strong uniform.

Concluding the proof, we have:

2 2 2
p°+2 [(n"—n
< E <
< Blr) < 6 ( 2 )

which proves the result. [

Remark 6.3.8 Note that by analogy with §4.3 in the proof of the Theorem
6.3.7 we can take 7 = max (712,723, ..T1,n). When n is large compared to p this
will improve bounds significantly. For examle, when p = 2 the last radom walk is
equivalent to the random walk described in beginning of this section. The bound
we get then is s = O(n? log(n)) while Theorem 6.3.7 gives us s = O(n*).

As noted before (see Example 2.8.11), other types of walks on U(n;F,) were
studied by Diaconis and Saloff-Coste and by Stong (see [D-S-C], [Stongl]). Their
techniques based on the bonds on eigenvalues is very different from ours.

6.4 The case of the upper triangular matrices over [, as ¢ grows.

Let G = U(n;F,) be the group of the upper triangular matrices over the finite

field. We have |G| = q(2) Recall that R(i,j;a), 1 <i < j <mn, a € F; denotes
an upper triangular matrix with ones on a diagonal, a on place (i,j) and zeros
elsewhere. Let

S={R(@,i+1;a),1 <i<n,acF,}

p(e) =~ PRI+ La) =

— a#0,1<i<n
q q(n—1)

Theorem 6.4.1 Let s be the total separation of the random walk W = (G, S, P).

Then
A . 1 \G)
< . -
°=7% <+q—1)

Corollary 6.4.2 Under the conditions of Theorem 6.4.1, if ¢ > n? then

4
s<=n
4
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Proof Clear. O
The proof of Theorem 6.4.1 is based on the properties of a certain stopping time

7 we define below.

Denote by 7;, 1 < i < n the following stopping times
o Walk till R(i,i+ 1;a), a € F, is used. Stop.

Define
Pjg =Tj +Tj—1+ - +T

where 1 <[ < j < n. Finally, define

T=(p1,1) + (2 +p22) + 4 (n—11 + ftn—12+ -+ tin—1,n-1)

The stopping time 7 is not strong uniform. It is not even time-invariant (see
§3.5). We show that in a certain sense 7 tends to strong uniform as ¢ tends to
infinity.

Lemma 6.4.3 Let 7 be a stopping time defined above, g - its stopping state.
Then
Plo=glr =02 g (1 1)(2)
o=glr=k) = = (1-~
G| q
for any g € G, k > 0.

First, we deduce Theorem 6.4.1 from Lemma 6.4.3 and then prove the lemma.

Proof of Theorem 6.4.1 From Theorem 3.4.7 and Lemma 6.4.3 we have

E(r) 1 \G)
s < (1_1)(2) =E(7)- (1—1—(]_1)

By definition 7 = E(r;) = (n—1) for all 1 <i <n. Also E(uj;) = (j—1+1)-r=
(j—14+1)(n—1). Finally

E(t) = E(u11) + (BE(u2,1) + E(p22)) + - 4+ (E(pn—-1,1) + E(pn-1,2) + - ..

+E(:un—1,n—2)+E(Nn—1,n—1))
=r-(1+Q2+1)+B+24+1)+ -+ (n—14---+1))

:(n_l)'<(§>+<g)+m+<g)>:("_1)'(n_1)2(n+1)<Tg4

Substituting this expression into the inequality for the total separation s we get the
result. O

Proof of Lemma 6.4.3 Lemma 6.4.3 is proved by a method similar to the one in
the proof of Theorem 6.3.2.

Denote I = {(i,75),1 <i < j < n}. By M denote an uppertriangular matrix
M = (my;), (4,5) € I. We say that ¢ is an index and a is a content of the matrix
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R(i,i+ l;a), a € Fy, 1 < 4 < n. If we apply the generators R(iq,i1 + 1;a),
R(ig,i2 + 1;a), ..., the sequence (i) = (i1, 42,...) is called the index sequence.

Let us define an additional structure on 7. In other words, we will ”look where
we go” and observe not only index of a generator but also whether certain matrix
elements are zero or not. To put it more precisely, let us introduce the notion of a
signal of a walk path.

For a stopping time p;; = 75 + 751 +--- + 7, 1 <1 < j < n we say the signal
is green, if the last generator of 7; was applied to a matrix with a nonzero entry in
(4,7 +1), if the last generator of 7;_; was applied to a matrix with a nonzero entry
in(j—1,7+1), ..., and finally if the last generator of 7; was applied to a matrix
with a nonzero entry in (1,5 + 1). We say the signal is red otherwise.

For a stopping time 7 = p1,1 + -+ + ftn—1,n—1 We say the signal is green if it is
green for each of the stopping times p;;, 1 <1 < j < n. We say it is red otherwise.
We can associate with the signal a random variable x on a space of walk paths X
which takes values 1 if the signal is green, a 0 if the signal is red.

We claim that conditional on the signal being green and the time of the observa-
tion, the stopping state of 7 is uniformly distributed. In other words, the following
identity holds:

1

() P(M:M|T:k,n:1):@

This identity immediately implies the lemma. Indeed,

m:lT:m:l.((l_;).l).((1_;)2(1_;).1).,..
(=0 ) (-0))

2 3

_ (1 B 61])(2)+(2)+"'+("21) _ (1 B ;)(s)

Therefore

(%)
P(Q:9|T:k)>P(Q:g|T:k,/<c:1)~P(n:1|T:k):|é|.(1_1>

which is exactly what we needed to prove.
Now let us prove the identity (x). Define a linear order ”<” on I as follows:

(i,0) = (@4 if j <jlorj<j',i<i
In other words, (1,2) < (1,3) < (2,3) < (1,4) <--- < (n—2,n) < (n—1,n).

Now suppose all the matrix elements m, ,, , (x, y) < (J,1) are independent and
uniform in F,. We claim that

o after u;,;, conditioned on the signal being green, all the matrix elements m ,,
(z,y) < (4,1) or (z,y) = (j,1) are independent and uniform in F,.
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The claim follows from the following simple observation. After 7; we add a
nonzero element to the entry in (4, j+1) which is independent of the matrix elements
My y, (,y) < (4,1). After 7;,_1 we add a nonzero element to the entry in (j—1, j+1)
which is independent of the matrix elements my ,, (z,y) < (4,1), etc. After 741
we add a nonzero element to the entry in (I + 1,5 + 1) which is independent of
the matrix elements mg ,, (x,y) < (4,1). Finally, since the content a of the last
generator R(l,! + 1;a) is uniform in Fy, after 7, we add a random element to the
entry in (/,j + 1) which is independent of the matrix elements m; ,, (z,y) < (4,1).

Now observe that the matrix elements my ,, (x,y) < (j,1) remain independent
and uniform in F,. This proves the claim.

From the claim above we have

PM=M|()=(i),r=kkr=1)=Plmias=mi2| ()= (),7=kr=1)
“P(mig=mig|mis =m0, (i)=0),7r=kr=1)...- P(My_1n = Mp_1,]

|mi2 ="mM12,M13="M13,...,Mp_25 =Mp_2n, (1) = (i), 7 =k,k=1)

This proves the identity (*) which finishes proof of the lemma. [

Example 6.4.4 Let n = 3. By definition, 7 = 7 + 75 + 71 + 72. Suppose the
index sequence is (i) = (1,2,1,2). Then 7 = 4. The condition £ = 1, means that
the content of the second generator is nonzero. Assume it is 1 for convenience.
Observe that a matrix

M = R(2,3;¢)- R(1,2;b) - R(2,3;1) - R(1,2;a)
is uniformly distributed in G = U(3;Fy). Indeed,
b b

Jr
1 1+¢
0 1

1 a
M=10
0

which supports the identity () in the proof of Lemma 6.4.3.

Now compare these computations with our computations in Example 2.6.5. One
can see that Lemma 6.4.3 is an analog of Lemma 2.6.6 for the stopping time 7
rather than the stopping time ”stop after four steps”.

Remark 6.4.5 Note that there are several ways one can refine the construction
above. Suppose A is a stopping call for the stopping time 7 (see S3.1). The idea of
Theorem 3.4.7 is to construct a strong uniform time out of 7 which in the notation
of the proof of Lemma 6.4.3 will be the following:

e Walk till A = 1. If the signal is green, stop. Else, start all over.
Now, rather than starting all over one can start from the begining of the smaller

stopping time p;;. This will reduce the power of (1 + q_%) from O(n?) to O(n).
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Another way to improve the bounds is to consider a stopping time 7' which is a
maximum of the stopping times f;; rather than sum:

!
T = maX(M1,1,M2,1,M2,2, e 7Mn—1,n—1)

As ¢ tends to infinity this stopping time tends to the strong uniform in a similar
sense and we get an asymptotic bound s = O(n?log(n)log(log(n)) which up to a
log(log(n)) factor is tight. These result is due to the author and will be presented
elsewhere.

6.5 An affine walk on ]Fg.

Fix a matrix A € Mat(n;F,) and a vector v € ' such that vectors v, Av, ...,
A" 1y generate the whole vector space . Let 6 be some real number, 0 <6 < 1.
Consider the following Markov chain M :

e Flip a coin with probability of heads 6.

e Choose a random element a € F,.

o If tails, x441 = ¢ + a (A v).

o If heads, xy11 = 4.

Consider the following stopping time 7. Start with the zero vector zy = (0)
and with the zero vector space Wy C Fy. At each step we define the vector space
Wip1 = Wy if heads and Wiy = (W, Al v) if tails. We stop when dim(W) = n,
i.e. when W; IF‘:; The idea is that at each time our walk is at a random vector
in W even conditioned that we know W and the time t.

Algorithm 6.5.1 Set 29 = (0), Wo C Fy.

e Flip a coin with probability of heads 6.

e Choose a random element a € [F,.

o If tails, x441 = ¢ +a - (At v); Wiy = (Wi, Al v);

e If heads, x111 = .

o If dim(W) = n, stop. Else, return to the beginning.

Theorem 6.5.2 The stopping time 7 defined by the Algorithm 6.5.1 is strong
uniform.

Proof We claim that at step t we have
1
Pz, = 0|W, = W) = { g¥mW)’
0, otherwise

veEW

The claim is obvious by induction. Indeed, if w is a uniformly distributed vector
in Wy, then w + a - At v is uniformly ditsributed in (W;, A® v) since a is uniformly
distributed in FF,.

Since we stop when W =Ty, the claim implies

1

Plo=vlr =k) = Plo=0[W- =F) =
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This finishes the proof. [

Theorem 6.5.3 Let A™ = id. Then the stopping time 7 is perfect and the
separation distance satisfies

Sknti = 1— (1 o ek)nfi (1 . 9k+1)i
forany i,k € Z;,0<i<n-—1

Proof Consider the vector v = v+ Av+ A2 v+---+ A" 1y, We claim that 7 is
an extremal element, i.e. whenever the chain gets to ¥ it stops there. Indeed, since
AFntigy = Aty for any 0 < i < n — 1, in order to get to ¥ one has to get tails at
least once for every number ¢ modulo n. This means that then W = Fp and the
chain must stop in 0. This proves the first part of the Theorem.

By Theorem 6.5.2 we have s, = P(7 > t) = 1— P(7 <t). After t = kn+1 steps,
0 < i < n — 1, the probability of W; containing A7v, 0 < j < n — 1, is equal to
(1 —0%)if j > and (1 —6*F1) if j < i. Since these events are independent, we
conclude

Skngi = 1— (1 o ek)nfz (1 o 0k+1)i

which finishes the proof of the second part. [

Example 6.5.4 Let ¢ = 2, v = (0,...,0,1), 6 = 0, and A is the following
matrix

0 1 o ... 0

0 0 1 ... 0
A= ... .. ... ..

0 0 o ... 1

0 0 0o ... 0

Observe that (v, Av,..., A" tv) = FF. We can think of the vectors we get as of
the coin flipping outcomes. Of course, here s = n. This problem is similar to the
problem considered in [A1].

Example 6.5.5 Let ¢ = 2, v = (21,...,2,-1,1), and let B be the following
nonsingular matrix

1 1 0o ... 0

0 1 1 ... 0
B=1|... ... ... ..

0 0 0o ... 1

0 0 0o ... 1

In a paper [DG] Diaconis and Graham consider the following a Markov chain M’:

e Flip a coin with probability of heads 6.

o If tails, ysy1 = By + v.

e If heads, yi11 = By;.

Let 0 > 4,60 =26 —1, A= B~'. Let M be the Markov chain defined in the
beginning of the section. We first show that the sepration distances for the Markov
chain M’ is equal to the sepration distances for M . Indeed, define z; = A*~!y,.
We have

Yer1 =By +e-v
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where € = 0 with probability # and ¢ = 1 with probability 1 — ¢’. Rewrite the last
equality in terms of x:

BtlL't+1 :B~Bt71xt+e~v
Multiplying by A on the left we get:
i1 =a +e- Alw

Since ¢/ = 1;—9 =0+ %, this means that the Markov chain x; is isomorphic to

M.

Denote by Q*, RF the probability distributions of the chains M, M’. From
above for every vector z € Fy

Q" (z) = RE(AI12)

By definition, for any k > 0 the separation distance s}, of the chain M’ is equal to
the total separation sj of the chain M. Here is how we can compute the latter.
Observe that when n = 2m we have A™ = id. Therefore in this case, by Theorem
6.5.3, we also have
Sknai = 1— (1 o ek)n—i (1 o 9k+1)i

for any i,k € Zy, 0 < i < n — 1. In particular, when ¢’ =
S1=8 =--=8,-1=1,8,=0.

, 0 =0, and

1
2
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