
TILE INVARIANTS: NEW HORIZONSIgor PakDepartment of MathematisMITCambridge, MA 02139 USAE-mail: pak�math.mit.eduDeember 20, 2000Abstrat. Let T be a �nite set of tiles. The group of invariants G(T), introduedby the author [P℄, is a group of linear relations between the number of opies of tilesin tilings of the same region. We survey known results about G , the height funtionapproah, the loal move property, various appliations and speial ases.IntrodutionThe problem of tileability of a region is very old, and in many instanes om-putationally hard, even for small sets of tiles (see e.g. [MR,Ro℄). The subjet ofthis paper is di�erent, although not unrelated. We study a group of invariantsG = G (T), assoiated with a set of tiles T. This notion was introdued in [P℄, andfurther studied in [MuP,MoP℄. The elements of G orrespond to linear relations forthe number of opies of tiles used in di�erent tiling of every �xed region �. Turnsout, this group has various nie properties, and in ertain speial ases an be fullyomputed.In this paper we survey muh of what is known about G , the basi algebraiproperties, some omplexity results, as well as some appliations and speial ases.We desribe some examples when oloring arguments do not suÆe, while a di�erenttehnique an be applied. A number of results never appeared before; their proofswill be skethed. We also inlude onjetures and open problems for further study.Rather than de�ne the group of invariants here, let us disuss a small but veryinteresting example of domino tilings, whih was one of our motivations. Denoteby �1, �2 the vertial and horisontal domino tiles, and let T = f�1; �2g. Let � be aonneted region on a square grid. The problem of tileability of � by T orrespondsto �nding a perfet mathing in a dual graph, so it an be solved in polynomialtime [LP℄.Now, let A be a tiling of � by dominoes. Denote by �1(A), �2(A) the numberof times tiles �1, �2 appear in A. Clearly, �1(A) + �2(A) = j�j=2, whih followsKey words and phrases. Polyomino tilings, tile invariants, Conway group, undeidability,height funtion. Typeset by AMS-TEX1



2 IGOR PAKfrom the area onsideration. Also, one an show that �1(A) = onst(�) mod 2,where the onst depends only on the region �, and not on the tiling. This followsfrom a simple oloring argument [P℄. We all the linear relations as above the tileinvariants. In general, tile invariants are the linear relations of the type(�) 1 �1(A) + 2 �2(A) + : : : � onst(�) mod m;where the onst(�) depends only on the region �, and not on the tiling A of �;i 2 Z, and m =1 is allowed. The group G (T) an be de�ned as the group of suhinvariants, with addition as a group operation (the preise de�nition will be givenin setion 1). In the ase of dominoes, the group of invariants is G (T) = Z� Z2,generated by the two invariants desribed above.Our goal is to determine the group of invariants, and ompute it in some speialases. For example, as in the ase of dominoes, tile invariants an often be derivedfrom ertain olorings of the squares. In setion 1 we follow [P℄ and introdue thegroup of valuations E � G , losely related to the extended oloring arguments. Aswe mentioned above, in general not all tile invariants an be obtained by the ex-tended oloring arguments. This di�erene an be undersored by the omplexityresults. We show that in general ase omputing G is NP-hard, and even undeid-able when onsidered on the whole plane. At the same time, E an be determinedin polynomial time (see setion 3.)Now, if the group G (T) is omputed, one an use it to obtain riteria for tileabil-ity of regions � tileable by T with a proper subset T0 of tiles. Indeed, in this asethe number of times �i the tiles �i 2 T0 an our in the tiling of � must satisfy anumber of linear relations. Existene of integral solution of these relations gives atileability riteria. This approah was pioneered in [CL℄ and later suessfully usedin [P℄ to obtain tileability results whih annot be proved by oloring arguments(see setion 9.)The diÆulty with the group of invariants is proving that a suspeted relationis indeed a tile invariant. At the moment we see only two ways of proving suh aresult. The �rst has to do with the loal move property. Reall that one an obtainany domino tiling A1 of a simply onneted region � to any other domino tilingA2 of � by a sequene of 2� 2 moves (see e.g. [LP,T℄.) Now, in general, it suÆesto hek that a given relation is preserved by suh moves. In fat, one an easilyompute the whole group of invariants in this ase (see setion 4.)
Figure 0.1. Loal 2� 2 move.Unfortunately, very few sets of tiles have a �nite number of loal moves. Forexample, even for dominoes in three dimensions there exist in�nitely many prini-pally di�erent simply onneted regions whih have exatly two domino tilings. Inthe other diretion, even when we believe that there exist a �nite number of loal



TILE INVARIANTS: NEW HORIZONS 3moves, even when we onjeture we know them all, the problem of proving thislaim may be very hard.The seond and the most suessful at the moment approah is based on the no-tion of height funtion, and was inspired by the Conway group [CL℄ and Thurston'sartile [T℄. Roughly, Thurston de�ned a funtion from edges in the grid into aline, whih maps tileable regions into loops. This approah is useful for provingloal move property and �nding new tile invariants [T,CL℄. In the ase of dominotilings, Thurston's height funtions proves the onnetivity of tilings by the 2� 2moves. It also gives a remarkable linear time algorithm for testing tileability ofsimply onneted regions [Ch,F℄. In setions 4, 5 we present general onditions forthe tehnique to sueed.While our exposition is somewhat brief due to the spae limitations, we inlude alarge number of examples and referenes when the tehniques in the survey were su-essfully applied to various tiling problems. Among others, we present a �nal resultof omputation of the ribbon tile invariants [MoP℄, started earlier in [CL,MuP,P1℄(see setion 6). We also go at length to desribe the Generalized Sperner's Lemmawhih an also be de�ned as a tile invariant for a speial set of tiles (setion 8.1).We onlude with the heuristi method for study of general set of tiles.Many results are only stated in the main body of the paper. We sketh theproofs of new results in setion 10.Aknowledgements.We would like to thank David Ingerman, Ezra Miller, Cris Moore, Roman Muh-nik, Jim Propp and Rihard Stanley for stimulating onversations and enourage-ment. Without them this work would never be written. We are also grateful to MikeSipser, Dan Spielman and Santosh Vempala for help with omplexity questions.1. Basi definitionsThe most general tiling problem an be formulated as follows. Let � be a �niteor in�nite set, and let B be a olletion of �nite subsets, whih we all regions. Let`�' be an equivalene relation on B. We will assume that `�' preserves size (thenumber of elements in the region). Finally, let T be a �nite subset of B (the set oftiles). Denote by eT the set of regions � 2 B suh that � � � 0 2 T. We assume that� � � 0, for all �; � 0 2 T.A typial example is a square grid � = Z2 with a set of simply onneted regionsB and translation equivalene `�'. Note that we view tiles here as subsets of squares,for example dominoes orrespond to pairs of adjaent squares in the grid.The problem of tileability by the set of tiles T is a deision whether a given set� 2 B an be presented as a disjoint union of regions in eT: � = t �i, where �i 2 eTfor all i. We denote suh tilings by A and write A ` �. This problem is hard evenin some very simple speial ases, and will not be studied in this paper. Instead,we will study an abelian group G (T;B) whih an be de�ned as follows.Let T = f�1; : : : ; �kg be the set of tiles, where k = jTj. For every tiling A of aregion � 2 B denote by �i(A) the number of tiles � 2 A suh that � � �i. Now letG (T;B) = Zk=Z
��1(A)� �1(A0); : : : ; �k(A) � �k(A0)�; 8� 2 B; 8A;A0 ` ��;



4 IGOR PAKwhere on the right hand side we have a subgroup of k-vetors with A, A0 any twotilings by T of the same region � 2 B. This is a group of invariants, the mainsubjet of this paper. The elements of G (T;B) are alled tile invariants.In general, G (T;B) may depend heavily on the set of regions (all regions vs.simply onneted regions) as well as a set of tiles (adding one tile may destroymost of the tile invariants). Note also that if B1 � B2, then G (T;B1) � G (T;B2).Similarly, if T1 � T2, thenG (T2 ;B) � G (T1 ;B)�ZjT2j�jT1j:De�ne a oloring groupO(T) = Z�=Zhx1+ � � �+ xr = 0; 8� = fx1; : : : ; xrg 2 eTi:One an think of elements of O as of funtions f : � ! Z, suh that f(�) =Px2� f(x), and f(�) = 0 for all � 2 eT. The funtion f is alled a oloring map.Before reently, oloring maps were the main tool to prove untileability [G℄. Indeed,if f(�) 6= 0, this immediately implies that � is not tileable by T. In this ase wesay that a oloring argument f rejets tileability of �. Let us add that any mapf : � ! G, where G is abelian, an obtain from the above funtions. In otherwords, if any oloring arguments f : �! G rejets tileability of �, for some abeliangroup G, it also rejets tileability for some f : �! Zm.Now, de�ne an extended oloring groupO (T) = Z�=Zhx1+ � � �+ xr = y1 + � � �+ yri;where � = fx1; : : : ; xrg, � 0 = fy1; : : : ; rrg, and � � � 0 2 eT. Clearly, O(T) � O (T).One an think of the elements of O (T) as of funtions f : � ! Z, whih areonstant on equivalent tiles in eT. We all suh funtions an extended oloringmaps.There is a natural map � : O (T)! ZT whih maps the funtions to their valueson tiles in T. We have O(T) = ��1(0). By de�nition, the value f(�) of a funtionin O (T) is independent on the tiling by T, so � extends to the quotient group G (T).Denote by E(T) the image of � in G (T). We all E(T) the group of valuations ofthe set of tiles T. From above,E(T) ' O (T)=O(T):By de�nition, the subgroup E(T) � G (T) onsists of all tile invariants whih followfrom the extended oloring maps.Computing the oloring group and the group of valuations is of interest, so asto see whih tileability riteria and whih group invariants are \easy to obtain".Unless stated otherwise, for the rest of the paper we will assume that � � Z2,where Z2 denotes the square grid with elements - 1� 1 squares. Denote by B, Bs,BN the set of all regions, of all simply onneted regions, and the set of regionsin N �N square. The equivalene relation onsists of parallel translations of the



TILE INVARIANTS: NEW HORIZONS 5regions (no rotation or reetion is allowed). Let the set of tiles T onsist of somek tiles, eah of size � R. By abuse of notation, we use � 2 T to denote � 2 eT.The main questions of this paper an be stated as follows:Group of Invariants Problem (GI) :Given T � Z2, ompute G (T;B) (or G (T;Bs ), G (T;BN )).Tileability Problem (T) :Given T � Z2, � 2 B (or Bs, BN), deide whether � is tileable by T.Group of Valuations Problem (GV) :Given T � Z2, ompute E(T).Coloring Group Problem (CG) :Given T � Z2, ompute O(T).The last two problems are very muh related, but we deided to separate themfor onveniene.We say that a tile invariant is �nite (in�nite) if the order of the element in G is�nite (in�nite). Using de�nition (�) in the introdution, the invariant is in�nite ifm =1. We will ome bak to tile invariants in the next setion.Remark 1.1 Muh of this survey an be understood with onventional de�ni-tions of the tilings on a square grid. The point of this somewhat overgeneralizedsetion was to introdue the general onepts and notation we use throughout thepaper, as well as to prepare the reader to possible extensions and generalizations.While muh of the results in the paper an be generalized by verbatim, we deidedto keep the presentation simple for the sake of larity. At the same time we hopethat after reading this setion the reader is fully equipped to generalize the resultsto any appropriate level.Remark 1.2 One should keep in mind that the tile invariants were impliitlyintrodued in [CL℄ in order to obtain new tileability riteria. Although we downplaythe onnetion in this paper, the results that are obtained in this diretion an bejudges as the most unexpeted. See setion 9 for for details.2. Algebrai aspetsFix a set of tiles T = f�1; : : : ; �kg � Z2. Consider G = G (T;B). Sine G isabelian, it an be presented asG ' Zr� (Z2)m2 � (Z3)m3 � � � � � (Zp)mp � : : : ;where r � k is alled the free rank of G , denotes rk(G), and Zrk � G is alled thefree subgroup of G . Similarly, denote by M =Pq=p mq the torsion rank of G , andT = (Z2)m2�(Z3)m3� : : : � G is alled the torsion subgroup of G . By onstrution,the torsion subgroup is always �nite.Proposition 2.1 For N suÆiently large, we have G (T;BN ) = G (T;B).



6 IGOR PAKSketh of proof. Consider a sequene of subgroups G N = G (T;BN ). Reall thatG N � G N+1 . By Hilbert Basis Theorem, this sequene stabilizes. �Now let us turn to signed tilings and the oloring group. Denote by �(�) 2 R�the harateristi funtion of a region �. One an think of a tiling of � by T as ofdeomposition �(�) = �(�) + �(� 0) + : : : , where �; � 0; � � � 2 T. The signed tilingis similar deomposition, where eah tile is used with a positive or negative sign.Note that the notion of the oloring argument extends to signed tilings as well.Theorem 2.2 [P℄ A region � has a signed tiling by T if and only if there is nooloring argument whih would rejet tileability.Sketh of proof. Note that signed tilings by T form a group S(T), with additionas an operation. By de�nition, we have O(T) = ZT=S(T), whih is a reformulationof the result. �Similarly to the oloring arguments, onsider the extended oloring argumentsfor signed tilings. De�ne EÆ (T) = E(T [ �T ), where �T ontains the negativetiles �� , with ��� = ��� . We laim thatEÆ (T) ' E(T):Indeed, let f : �! Z be any extended oloring map. Sine ��� +�� = 0, we havef(��) = �f(�) and thus EÆ (T) � E(T). On the other hand, E(T) � EÆ (T) sineevery extended oloring map by de�nition orresponds to an extended oloring mapfor signed tiles T [ �T, and therefore de�nes a proper valuation on T [ �T.An interesting lass of tile invariants are the abelian invariants, whih are de�nedas tile invariants whih remain invariants for signed tilings. De�ne group of abelianinvariants A (T) = G (T [ �T). From above, we onlude that E(T) � A (T). Infat, this is an identity:Theorem 2.3 A (T) = E(T). �The real meaning of Theorem 2.3 an be seen in the following observation. Iffor some reason we have an abelian invariant, we an onlude that there existsa oloring map whih de�nes it. In pratie, �nding suh oloring map an beompliated. We leave the proof to the reader.3. Complexity aspetsIt is well known that the tileability problem is NP-omplete when � is �nite [GJ℄.It is also undeidable when � is the whole plane [Be,Ri℄. We shall prove that thesimilar situation holds for GI Problem. But �rst we need to state it as a deisionproblem.GI-rank Problem: Given T, r, deide whether rk G (T;B) � r.Bounded GI-rank Problem: Given T, r, N , deide whether rk G (T;BN ) � r.Theorem 3.1 The GI-rank Problem is undeidable. Similarly, the BoundedGI-rank Problem is NP-hard.



TILE INVARIANTS: NEW HORIZONS 7The proof is given below in setion 10. Roughly, Theorem 3.1 implies thatomputationally GI is intratible. A simple hek shows that Theorem 3.1 extendsto simply onneted regions as well (i.e. omputing the rank of G (T;Bs) is alsoundeidable). It seems likely that the proof an be modi�ed to show that omputingany of the exponents mp in the torsion group is also undeidable.Now, let us �x the set of tiles T. Reall that rk(G ) � jTj. Proposition 2.1implies that the negative answer to the Bounded GI-rank Problem an be obtainedby an exhaustive searh for some �nite N = N(T). In other words, a sequene ofBounded GI-rank Problems is in o-NP (as N grows). The erti�ate for rk(G ) < ris a olletion of l > n � r bounded regions �i, 1 � i � l, and two olletions oftilings Ai; A0i ` �i, suh thatrkZ
��1(Ai)� �1(A0i); : : : ; �k(Ai)� �k(A0i)�; i = 1 : : : l� > n� r:In a way this makes it unlikely that there is a good generi way to establish thetile invariants for general sets of tiles. For example, if height funtions exist fora given set of tiles, this puts the Bounded GI-rank Problem into NP. However, itis believed that an NP-hard problem annot be in NP \ o-NP [GJ℄. We will notattempt to formalize and extend this observation.For the signed tilings, one an de�ne the Signed Tileability Problem (ST) byanalogy. Observe that Theorem 2.2 an be used now to establish the erti�atesfor rk(O) � r, mp(O) � m. Using the logi as above one would onlude that STand CG must have eÆient solutions. This is true indeed.Bounded CG-rank Problem: Given T, r, N , deide whether rkO(T;BN ) � r.Bounded GV-rank Problem: Given T, r, N , deide whether rk E(T;BN ) � r.Theorem 3.2 Bounded CG-rank Problem and Bounded GV-rank Problem arein P.The proof is based on a simple redution to a linear algebra problem, and isgiven in setion 10. We believe that urrently known algorithms for solving linearequations over the integers (see [BK,LLL,S℄) an be used to determine the fullgroups O(T;BN ), E(T;BN ). Further, we onjeture that there exist an eÆientalgorithm for omputing O(T;B), E(T;B). We hope to return to this problem inthe future. 4. Height funtionsThere seem to be no general agreement as to what exatly is the method ofheight funtions, espeially when dimension inreases. Here we present our personalapproah with no attempt to justify it.Suppose T is a �ne set of tiles of the plane Z2, or any other plane graph Lwith straight edges for that matter (for example L an be triangular of hexagonallattie). Let V be a di�erent plane, whih will also be �xed. Suppose the edges ofL are oriented, and there is a funtion ' : L ! V whih maps oriented edges intovetors in V . Also, let '(x; y) = �'(y; x) for all edges (x; y) 2 L oriented from y



8 IGOR PAKto x. Now, every path x1 ! x2 ! x3 ! : : : an be mapped to a path in V (up totranslation): v1 ! v2 ! v3 ! : : : , where vi+1 � vi = '(xi; xi+1). We think aboutthe image of the path on a graph as a polygon in V with straight edges.The funtion ' is alled a height funtion if the following ondition is satis�ed:(?) For every simply onneted region � tileable by a set of tiles T, the image'(��) is a losed loop.Here the boundary �� is a losed path with any �xed starting point and orientedounterlokwise. We will always assume that there is a �nite number of equivalenelasses of values '(x; y) for all (x; y) 2 L. The ondition (?) may seem diÆult tohek, so the following result helps to simplify it.Theorem 4.1 It suÆes to hek (?) only for the tiles � 2 T.The theorem follows easily by indution from the following lemma of independentinterest.Lemma 4.2 Let � � R2 be a simply onneted region and is tiled by simplyonneted regions �1; : : : ; �k. Then there exist i suh that � � �i is also simplyonneted.Lemma 4.2 seems to be well known in geometri group theory, although we wereunable to obtain any referene to that. In this ontext it was skethed in the pioneerpaper [CL℄. A simple proof an be found in [MP℄ (see also [Pr℄).Let us remark that in 3 and more dimensions Lemma 4.2 as stated is inorret1.On the other hand, proof of Theorem 4.1 requires a result somewhat weaker thatthat in the lemma. For example, one an hange the statement to \there existi1; : : : ; il suh that regions �i1 [ : : : [ �il and � � ��i1 [ : : : [ �il� are simplyonneted2". We do not believe that even this weaker ondition holds. It would beinteresting to �nd an expliit ounterexample to that.Now, one the height funtion is given, it an be used to prove ertain tileinvariants for the set of tiles T, not unlike the extended oloring arguments. Indeed,onsider any extended oloring argument f : V ! G (G is abelian), where now werequire the value f('(�)) to be invariant of the loation of the � on the plane. Byonstrution, f('(�)) is always the sum of the f('(�i)) and is independent of thetiling. Therefore the values i = f('(�i)), � 2 T de�ne a tile invariant for T.Formally, denote by E' (T) the group of valuations of extended oloring argu-ments on V for the set of tiles '(�i). Then(��) E' (T) � G (T;Bs):This means that in ertain ases when there exists a height funtion, one anobtain proofs of ertain tile invariants by �nding an appropriate extended oloring1A ounterexample is a family of six bloks whih form a three dimensional ross shape �gure,and is hard to disassemble. In this ase no blok an be removed without the remaining union of�ve bloks having a hole inside. Versions of this puzzle an be often found in toy stores.2Atually, we need a slightly stronger ondition on the intersetion of the two simply onnetedparts.



TILE INVARIANTS: NEW HORIZONS 9argument in V . In other words, one an sometimes ompute the whole group ofinvariants G (T;Bs).We should note here that ondition (?) does not neessarily imply that '(A),A ` � is a tiling of � with tiles '(�i)3. Rather, we obtain a signed tiling of '(�).Still, the onlusion (��) remains valid in view of results in setion 3.Let us emphasize one again, that the relationshipheight funtions  ! tile invariantsseem to go smoothly only on a plane. In priniple, of ourse, neither � nor V haveto be planar. There are several interesting example of the height funtions whenV is a line and dimension of � varies. We will ome bak to suh examples in thenext setion. Let us note also that we don't seem to have any nontrivial exampleof two-dimensional height funtions when � is not planar, and nothing at all whenV is three and more - dimensional.5. Loal moves5.1 One-dimensional height funtions.Let T be a �nite set of tiles, B be any set of �nite regions. We say that Tsatis�es loal move property with respet to B if there exists a �nite set of regions�1; : : : ;�` 2 B, and two olletions of tilings Ai; A0i ` �i, for all 1 � i � ` (f.setion 3), suh that(�) For every � 2 B and two tilings A;A0 ` �, there exists a sequene of tilingsA = B0 ! B1 ! : : : ! Bt = A0; where the arrow X ! Y is between two tilingswhih di�er in a region �0 � �i, with the tilings X;Y restrited to �0 � �, beingthe tilings Ai and A0i.Theorem 5.1 If T satis�es loal move property with respet to B, then theGI-rank Problem is in P.The main problem with the loal move property is sarity of the sets of tileswhih have it and diÆulty of proving it in this ase. Most known approahes aremore or less ad ho, with a small exeption of the height funtion approah. Again,there seem to be no onsensus of how this should work in general. We desribe herea version of it, following [T,Ch,ST℄.Let � � Rd be a d-dimensional struture (set of lattie ubes, simplies, et.)For every � � � denote by b� the set of points x 2 Rd inside �. Suppose ' : �! Ris a one dimensional height funtion, suh that ' : � ! R an be de�ned at allpoints x 2 b� (by using pieewise linearity, or otherwise). This de�nes a funtion'A : b�! R for every tiling A ` �. We say that '(A) � '(A0), where A;A0 ` �, iffor all points x 2 � we have 'A(x) � 'A0(x). Finally, denote by `�' a partial linearorder on tilings A;A0 ` �:A � A0 if and only if '(A) � '(A0):3The tiles '(�i) � V may also not be uniquely de�ned. The extended oloring argument fde�ned above must be onstant on all suh tiles though.



10 IGOR PAKNote that a priori there ould be inomparable tilings.Now, suppose the \suspeted" set of loal moves() f(Ai ! A0i); Ai; A0i ` �i; 1 � i � `gsatis�ed the following properties:(�) Either Ai � A0i or Ai � A0i for all 1 � i � `.(��) If x 2 b�� ��, is a loal maximum of 'A, A ` �, then there exists a loalmove A! A0 suh that A0 � A.(� � �) For all x 2 �� there exists a unique tile �x, b� 3 x, suh that if x is aloal maximum of 'A, A ` �, then A 3 � .Theorem 5.2 Let B = Bs and d = 2. If () and a one-dimensional heightfuntion ' satis�es (�) � (� � �) for all � 2 B, then T satis�es the loal moveproperty with respet to B, with () as a set of loal moves. Further, the maximumnumber M of loal moves to be made satis�es M �  j�j2, where  = (T) does notdepend on �. Finally, the Tileability Problem is in P in this ase.To avoid problems related to generalizations of Lemma 4.2, the above resultovers only the ase d = 2. For d � 3 we need an additional geometri ondition toompensate for absene of the Lemma. Formally, onsider the following property:(|) For every loal maxima x 2 ��, � 2 B we always have ���x = �0t�00t : : : ,where �0;�00; : : : 2 B.It is easy to see that Bs satis�es (|) for d = 2, so the following result is ageneralization of Theorem 5.2.Theorem 5.20 If in ondition of Theorem 5.2 the property (|) is also satis�ed,then onlusion of Theorem 5.2 holds for all d � 2.Note that the onlusion of Theorem 5.2 implies, by Theorem 5.1, that the GIProblem is also in P in this ase. As we shall see, the examples inlude dominotilings, zonotopal tilings, et. It would be interesting to �nd analogs of (�) fortwo-dimensional height funtion. This ould positively resolve the onnetivityonjeture for ribbon tilings.Conjeture 5.3 If T satis�es the loal move property with respet to Bs, thenTileability Problem for regions � 2 Bs is in P.While we have only few known examples of the loal moves property, the onje-ture seem to hold. Theorem 5.2 seem to support the onjeture. Note that if � 2 Bis untileable, then (�) holds by default. Heuristily, the onjeture suggests that forany set of loal moves one should be able to de�ne a \generalized one-dimensionalheight funtion", and apply the analog of the last part of Theorem 5.2.5.2 Tiling Polytope.Let us onlude this setion with a polytopal interpretation of the loal moves.De�ne rational tilings (f. [SU℄) to be deompositions �(�) = ��(�)+�0 �(� 0)+: : : ,where �; � 0; � � � 2 T, �; �0; � � � 2 Q+ .



TILE INVARIANTS: NEW HORIZONS 11Theorem 5.4 Rational Tileability Problem is in P.Proof. Let `�' be a lexiographi order on �. For any � 2 T, denote by �x theunique tile � � , suh that x � y for all y 2 �x. In other words, let �x be the tileobtained by translation of � suh that x is the smallest element in �x.Let k = jTj. For any region � 2 B, onsider a polytope P� � Rkj�j =R
ax;� ; x 2 �; � 2 T�, de�ned by the following linear equations and inequalities:8<: ax;� � 0; 8x 2 �; � 2 T;Xx;� : �x3y ax;� = 1; 8 y 2 �:Now, every rational point (a) in the polytope P� orresponds to a rational tilingwith ��x = ax;� . Sine the system is rational, the rational tileability is equivalentto P being empty or not. The latter an be determined in polynomial time (seee.g. [S℄). �Proposition 5.5 Let P� be the polytope de�ned in the proof of Theorem 5.4.Then the integer points in P� orrespond to the (usual) tilings of � with the set oftiles T. �One an think of the points in P� as of nonnegative real tilings of �. All theverties are the rational tilings. Unfortunately, not all of them are integer (theusual) tilings. Denote by bP� � P� a onvex hull of the integer points. We all bP�the tiling polytope. By de�nition, bP� is a 0� 1 polytope.Let A;A0 ` �. We say that a loal move A! A0 is primitive if for no B ` � wean have two noninterseting loal moves A! B and B ! A0.Theorem 5.6 The primitive moves A! A0, where A;A0 ` �, are in one-to-oneorrespondene with edges in the tiling polytope bP�.We should mention here that for large � the set of edges of the tiling polytope ismuh larger than the set of loal moves desribed in the beginning. Indeed, whilethe loal moves an be (and usually are) primitive moves, the minimal set of loalmoves is a very small subset of primitive moves whih an be ompositions of anumber of (interseting) loal moves.It is tempting to study the simplex method or other optimization problems ontiling polytopes. The diÆulty is that the minimum number of linear relations andinequalities whih de�ne bP� is probably exponential in j�j (it's superpolynomialunless P=NP).5.3 Zonotopal tilings.It was noted on many oasions that one an think of tilings by \lozenges" (ana-logues of dominoes in the triangular lattie) as of projetion of the ubi surfae, atleast for ertain nie simply onneted regions. In fat, Thurston's height funtionoinides with the height of the surfae in these ases (see [T,ST℄). Let us brieymention here that one an onsider zonotopal tilings whih extend this observation.



12 IGOR PAKLet M be a �nite set of vetors in V = Rd and suppose hMi = V . Consider apolytope PM de�ned as a Minkowski sum of elements inM (onsidered as intervals).Suh polytopes are alled zonotopes. Call basis bloks zonotopes PB suh thatB � M , hBi = B = d. Polyhedral subdivision of Pm into basis bloks are alledzonotopal tilings. They have a number of interesting properties, in partiular thebasis bloks in every zonotopal tiling are in one to one orrespondene with basesof a matroid M [BLSWZ,St,Z℄. In fat, muh of the information about PM andzonotopal tilings an be obtained from from the (oriented) matroid struture of M(see referenes above).
Figure 5.1. Two zonotopal tiling of a entrally symmetri 10-gon.Among the most interesting properties of zonotopal tilings is (non)existeneof a one-dimensional height funtions. The latter orrespond to the so-alled 1-extensions of M (into Rd+1). One an show that all zonotopal tilings that arisefrom every suh extension are onneted by \loal moves" (in zonotopes generatedby d+1 vetors). While 1-extensions ofM may generate all tilings, all 1-extensionsan make a graph of zonotopal tilings onneted (there is a related notion of a o-herent subdivision [GKZ,Z℄). Still, there exist zonotopal tilings disonneted fromthe others. We refer to the above mentioned [BLSWZ,GKZ,St,Z℄ and the referenestherein. 6. Ribbon tiles6.1 Basi de�nitions.Let � = Z2 be the square grid. Let x = (i; j) 2 � be the square in Z2 with iinreasing downward and j inreasing to the right. As before, let `�' be de�ned bytranslations.Fix an integer n � 2. A region � 2 Bs is alled a ribbon tile if every diagonali � j = onst ontains at most one square of � . Denote by Tn the set of ribbontiles with n squares. It is easy to see that jTnj = 2n�1, with tiles � enoded by� = (�1; : : : ; �n�1), �i 2 f0; 1g as follows. Start in the lower left orner of � andmove northeast; eah upward move enode with 1, eah right move with 0. Denoteby �� the tile as above, and by ��(A) the number of times tile �� ours in a tiling A.De�ne 2-moves to be the loal moves whih involve exatly two ribbon tiles. Fordesription of all suh moves see [P℄. As observed by Adin [Ad℄, the total numberof suh moves is �jTnj2 �. This formula is somewhat misleading sine not all pairs ofribbon tiles an form a 2-move, while some pairs an form it in several ways.
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Figure 6.1. Ribbon trominoes.
Figure 6.2. Example of 2-move for ribbon tiles.The main objet of this setion is the suessful omputation of G (Tn ), and theloal move property with respet to 2-moves. Note that there is an obvious areainvariant whih states that the total number of tiles � is j�j=n.6.2 Dominoes.This is a lassial example studied for deades (see e.g. [G,Ka,LP,TF℄). Thurston[T℄. de�ned an important one-dimensional height funtion ' whih beame a modelfor our generalization in setion 5. Color the squares with two olors (blak andwhite) in a hekerboard fashion. Orient all edges upward and to the right. The map' is de�ned on edges in Z2, and is +1 (�1) if the edge is moving ounterlokwise(lokwise) around a blak square.One an show that the above height funtion with the set of 2-moves satis�es(�)� (���). From here we obtain the loal move property for 2-moves with respetto Bs as an immediate onlusion of Theorem 5.2. An elementary example showsthat this does not hold for non simply onneted regions. We should mention herethat the result an be generalized to any planar regular graph with a bipartite dualgraph [Ch℄. Also, a areful look at the tileability algorithm reveals that it has ostO(j�j), faster than other (general) mathing algorithms [LP,S℄. This result an beextended to non simply onneted regions as well [F℄.As mentioned in the introdution, the group of invariants G (T2 ) ' E(T2 ) 'Z�Z2 in this ase.6.3 Ribbon Trominoes.The set of ribbon trominoes is the elebrated example, studied Conway and



14 IGOR PAKLagarias [CL℄4. They de�ned a two-dimensional height funtion ' whih maps edgesof the square lattie into a Cayley graph of a speially hosen group embedded inR2 . The latter onsists of hexagons and triangles. The sum of the winding numbersaround enters of hexagons gives a nonabelian tile invariant:�01 � �10 = onst(�):One an onlude from here that the group of invariants G (T3 ) ' Z2. On the otherhand, diret omputation shows that E(T3 ) ' Z� Z3 [CL,P℄, so the in�nite tileinvariant above annot be proved by means of oloring arguments.The loal move property for 2-moves with respet to Bs remains open (seebelow). A speial ase was onsidered in [We℄ for the starease shaped regionsintrodued in [CL℄ (see also [P℄).Before we onlude, let us mention here that the approah was later modi�ed byMuhnik and the author [MuP℄ to prove that G (T4 ) ' Z2�Z2. At the same time,E(T4 ) ' Z�Z4 [P℄.6.4 The general ase.It was reently shown in [MoP℄ that for all n � 2 :G (Tn ;Bs) ' (Zm; if n = 2m+ 1;Zm�1�Z2; if n = 2m:This proved the onjeture of the author [P℄, previously known only for n � 4. Themain result of [P℄ is a similar result for a smaller set of regions G (Tn ;Br), whereBr) is the set of row onvex regions. The author in [P℄ also found an expliit basisfor the group: X�: �i=0; �n�i=1 �� � X�: �i=1; �n�i=0 �� = onst(�); 1 � i < n=2;and X�: �n=2=0 �� = onst(�) mod 2; n = 2m:On the other hand, it was shown in [P℄ that E(Tn ) ' Z�Zn, and all tile invariantsin the basis do not follow from the extended oloring arguments.The tehnique used in [MoP℄ is notable sine it used a new onstrution of thetwo-dimensional height funtion ', whih mapped the edges of the square lattieinto f!k; 0 � k � n � 1g � C , where ! = exp(2�i=n). Then the authors take asigned area in C as a the generalized oloring argument. Remarkably, this singlereal-valued invariant ontains all tile invariants presented above.Denote by By and Bsy the set of regions with Young diagram and skew Youngdiagram shape (see e.g. [M,JK℄). It was shown in [P℄ that Tn has loal moveproperty (for 2-moves) with respet to By. The result, already more general than4They atually onsidered one additional disonneted tile whih we ignore. This set of tilesappeared after translation of the trominoes in hexagonal lattie into the square lattie [CL℄.
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Figure 6.4. Ribbon tile � = �0011, vetors !k, height funtion '(�).[We℄, was later extended by the author to inlude Bsy (unpublished). Following [P℄,we onjeture the loal move property with respet to all simply onneted regions.The omputation of G (Tn ;Bs) and the height funtion arguments [MoP℄ seem tosupport the onjeture. 7. Small sets of tiles7.1 T -tetrominoes.It was shown in [Wa℄ that four rotations of T -tetromino an tile am�n retangleif and only if 4 divides both m and n. It is easy to see that the result annot beproved by the oloring arguments. Nevertheless, no height funtion argument isknown.
Figure 7.1. Four T -tetrominoes.

Figure 7.2. Loal moves: 2-move and 4-move.The set of tiles is of interest sine it also seem to have a loal move property.Observe that besides the 2-moves there is also a 4-move involving a reetion ina 4 � 4 square. We onjeture that these loal move suÆe. It seems that theombinatorial tehnique in [Wa℄ an be extended to prove the loal move propertywith respet to retangular regions.



16 IGOR PAK7.2 Bars and Retangular shapes.Let T be a set of two \bars", i.e. of m� 1 and 1�n retangles. Claire and RikKenyon found a remarkable appliation of the height funtions in this ase [KK℄.They introdued a tree-valued height funtion, and proved properties (�)�(���) inthis ase. From here they dedued the loal move onnetivity (the only loal moverequired is A1 ! A2, where A1; A2 ` m�n retangle), obtain the general bound onthe distane (it's O(j�j3=2) in that ase) and present a linear algorithm for testingtileability. The authors show that their analysis an be modi�ed to retangularregions m� n and n�m. In partiular, the authors present a quadrati algorithmfor tileability and prove the loal move property for 2� 3 and 3� 2 retangles.While the authors do not ompute the group of invariants, it an be easilydetermined from either loal move property or oloring arguments. Let us note thatthe polynomial algorithms for tileability exist only for simply onneted regions, asin general ase the problem is NP-omplete [Ro℄ (see also [BJLS℄).7.3 L-trominoes.Let T be the set of four rotations of L-trominoes. We showed in [P℄ thatG (T;B) = E(T) = Z�Z23. The proof involves some expliit oloring arguments.
Figure 7.3. Four L-trominoes.The set T has no loal move property, as shown in [P℄. There, we onstrutedlarge regions with exatly two tilings. Also, for general regions the tileability isNP-omplete [MR℄. It would be interesting to see if the same is true for simplyonneted regions. Let us mention here an old result that a n� n square with onesquare deleted an be tiled with T unless n is divisible by three [CJ℄.7.4 Skew and square tetromino.This example wa introdued by Propp, who found a very nie appliation ofthe height funtion approah [Pr℄. The group of invariants G an be omputedompletely in this ase, by using the oloring arguments and a nonabelian tileinvariant presented in [Pr℄, whih implies that rk(G ) = 2. There are two interestingfeatures in this ase. First, the authors makes a distintion between \odd" and\even" 2 � 2 squares. In priniple, this an be done in other speial ases, bytaking a smaller group of translations. Still, this is by far the most interesting suhexample, as the in�nite tile invariant beomes a �nite tile invariant when odd andeven squares are identi�ed.For the seond feature, Propp in [Pr℄ de�nes a tile invariant as a signed area,refraining from the \winding number" approah in [CL℄. This was the approah
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Figure 7.4. Skew and square tetromino.ontinued in [MoP℄. We hope the reader will enjoy this well written artile andompletes the omputation of the full group of invariants as an exerise.7.5 Dominoes again.Let � be a simply onneted region, and let k be a �xed integer. Consider alldomino tilings of � with exatly k vertial domino. Reall that k an vary fordi�erent domino tilings, although its parity remains �xed. It was noted by Gupta[Gu℄ that sometimes one an make a onneted graph G(�; k) on these dominotilings by introduing 2 � 3 moves (see Figure 7.5). He showed that G(�; k) isonneted when � is a retangle, the Azte diamond, et., but not in general ase.We refer to [Gu℄ for the details.

Figure 7.5. 2� 3 moves.In general, suppose T is a �nite set of tiles and � is a tileable region. One anask whether loal onnetivity exists for tilings A ` � with given set of numbers�i(A), de�ned as in the introdution. The work of Gupta suggests that ertain niesets of tiles and ertain regions might satisfy this remarkable property.7.6 More examples.Consider the following two sets of tiles T1, T2. The �rst ontains two rotationsof T -tetromino and skew tetromino whih �t into 2-row strip (see Figure 7.6). Theseond ontains two rotations of T -pentamino, S-pentamino and skew tetromino,whih �t into 3-row strip (see Figure 7.7). As before, we allow only translations ofthe tiles.We are interested whether either or both sets have nonabelian tile invariants,loal move property, height funtions, et. It is an exerise to establish these prop-erties for regions whih �t in 2-row and 3-row strip tiled by T1 and T2 respetively.Also, replaing skew tetrominoes with a square tetromino gives an interesting mod-i�ation of T2. We hallenge the reader to resolve these problems.7.7 Other latties.
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Figure 7.6. 2-row skew and T -tetrominoes.

Figure 7.7. S and T - pentaminoes and skew tetrominoes.It was realized rather early that tiling problems are of interest on other lattiesas well [G℄. The original question in [CL℄ omes from a hexagonal lattie, and therunning example in [T℄ is the set of \lozenges", analogues of dominoes on a trian-gular lattie. A number of results for small sets of tiles on a triangular lattie wasdisovered reently by R�emila [R�e℄. The author's approah is somewhat di�erentfrom this artile's main theme, and we strongly suggest it as a omplimentary read-ing. Finally, a nie loal onnetivity result for squares-and-otagons was obtainedby Gupta in [Gu℄. 8. Tilings in many dimensionsThere is little known about tilings in many dimensions, although there seem to beno lear reason for that. As mentioned before, we do not know of any nonabelian tileinvariant even for three-dimensional tiles. Without attempt to review the subjet,let us present few examples that seem relevant.8.1 Generalized Sperner's Lemma.The Sperner's Lemma is the following lassial result. Let � be a triangularlattie, � be a n-triangle with deleted three orner triangles. Color the verties ofthe triangle with olors f0; 1; 2g, so that the sides are olored with 0, 1, 2 (lokwise).Then there exists a (0; 1; 2) olored triangle. In fat, the number of (0; 1; 2) trianglesminus the number of (0; 2; 1) triangles (reading olors lokwise) is always 1.While the Sperner's Lemma is often assoiated with Brouwer's �xed point the-orem (see e.g. [Sh℄), its generalizations are easier to obtained in the ontext of theStokes Theorem. We present here the Generalized Sperner's Lemma, whih impliesan abelian tile invariant for a ertain set of tiles. While the generalization below isprobably well known (and follows easily from Stokes Theorem) the interpretationof it in the language of tile invariants seems new and will be presented here alongwith a short proof of the lemma.Let us state the Generalized Sperner's Lemma �rst in two, and then in all di-mensions. Let � be any region on a triangular lattie olored with f0; 1; 2g. Denote
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Figure 8.1. Sperner's Lemma.by �+(�) and ��(�) the number of triangles with all three olors (0; 1; 2), goinglokwise and ounterlokwise respetively. Then �+ � �� = onst(��), where = onst(��) depends only on the oloring of the boundary. Note that we do notrequire � to be simply onneted. The boundary �� may be disonneted, but theoloring must be �xed on verties of eah onneted omponent.In general ase, let � be any region in V = Rd with a �xed simpliial subdivision.Fix an orientation in Rd by taking a basis (e1; : : : ; ed) in V . Consider any oloringof verties of � with d+1 olors f0; 1; : : : ; dg. We say that � is (d+1)-olored in thisase. We say that a simplex is positive (negative) if it is (d+ 1)-olored with basis(�!01;�!02; : : : ;�!0d) having a positive (negative) volume, de�ned as a determinant ofthe orresponding linear transformation. Denote by �+(�) and ��(�) the numberof positive and negative simplies in �, respetively. Then �+ � �� = onst(��),where the onstant depends only on the oloring of ��, and not on the interior of �.Let us state this result as follows.Theorem 8.1 (Generalized Sperner's Lemma) Let � be a triangulatedregion in Rd with a �xed (d + 1)-oloring of the boundary ��. Let A be a (d + 1)-oloring of the interior verties. Then�+(A)� ��(A) = onst(��);where onst depends only on the oloring of the boundary, and not on oloring A.Now, the lemma an be redued to an in�nite tile invariant for a speial set oftiles. First, take the tiles to orrespond to (d+1)-olorings by somewhat hangingthe boundaries around the verties in a onsistent way whih depends on the olor(f. proof of Theorem 3.1). For example, a small simplex an be added to, or sub-trated from the sides of a large simplex so that only simplies with the same \olor"an �t together (see Figure 8.2). Denote by T this new set of tiles, orrespondingto all possible (d+1)-olorings of verties of d-dimensional simplies. In Figure 8.2we exhibit one suh two-dimensional tile orresponding to (1; 2; 3)-oloring.Now notie that the \oloring" of the boundary uniquely de�nes the shape ofthe boundary. Thus the \olorings" of the interior verties of � are in one-to-one orrespondene with tilings of � with T. Consider the tiles whih orrespondto (d + 1)-olorings with distint olors, with positive and negative orientation.Theorem 8.1 implies that the di�erene between the number of ertain \positive"
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2

0 1Figure 8.2. Modi�ation of a 3-olored triangle.and \negative" tiles is an �xed integer whih depends on the boundary ��. Wesuggest the reader think through this simple, almost lassial onstrution.Let us note that from the proof (see setion 10) it follows through verbatimthat the in�nite invariant de�ned in the lemma holds for signed tilings by T aswell. Thus the tile invariant is abelian, and by Theorem 2.3 an be obtained by anextended oloring argument. Interestingly, this oloring argument is not obvious,and depends heavily on the way the set T is onstruted.Remark 8.2 The Sperner's Lemma has a number of variations, generalizationsand appliations. Let us �rst mention a similar in the spirit work [SS℄ whereSperner's Lemma is used to obtain relations for the volume(s) of simplies in tilings.The �rst d-dimensional version of the lemma an be found in [BC℄. The ubialversion, perhaps more aeptable for traditional tiling onepts, an be found in[Wo℄. We refer to [Sh℄ for various appliation to �xed point results.8.2 Parity hek.We will adopt the same notion of as in the previous subsetion. Consider anytriangular lattie � � Rd , suh that the dual graph is bipartite. In other words,we assume that the simplies are olored with blak and white. An example is aregular partition of the ubi lattie with eah ube partitioned into d! simpliesorresponding to permutations of basis vetors. The sign of the permutation thendetermines the olor of the simplex.Now onsider olorings of verties with m olors, m � d. We say that a simplexis r-de�ient if it has exatly (d + 1 � r) distint olors of the verties. Let � beany region in � with a �xed oloring of the boundary, and let A be any oloringof the interior verties. Denote by �+(A) (��(A)) the number of blak (white)1-de�ient simplies. Similarly, denote by �+(A) (�+(A)) the number of blak(white) 0-de�ient simplies. Finally, let � = �+ � ��, � = �+ � ��.Theorem 8.3 We have 2�(A) + (d+ 1)�(A) = onst, where onst = onst(�)depends only on the oloring of the boundary �� and not on A.The proposition an be restated as an in�nite abelian invariant of a ertain set oftiles. We leave the details to the reader. As a bonus, the theorem implies that for



TILE INVARIANTS: NEW HORIZONS 21odd d the total number of 1-de�ient tiles has a �xed parity even when blak andwhite tiles are indistinguishable. Even this is a nontrivial �nite abelian invariant.Let us onlude this part by presenting a speial ase when two independent tileinvariants appear from suh onstrution. This result is due to Moore and Newman,and it appeared in [MN℄. We follow [Mo℄ in our presentation.Consider any triangular lattie � � R2 with a bipartite dual graph. Fix ablak/white oloring of triangles. Let � be a region in � with a �xed oloring ofthe boundary with olors f1; 2; 3; 4g = I . Denote by �+(i; j; k) and ��(i; j; k) thenumber of blak and white triangles olored with i; j; k 2 I . Let�� = ��(1; 1; 2) + ��(1; 2; 2) + ��(3; 4; 4) + ��(3; 3; 4);�� = ��(1; 1; 3) + ��(1; 3; 3) + ��(2; 4; 4) + ��(2; 2; 4);� = ��(1; 1; 4) + ��(1; 4; 4) + ��(2; 3; 3) + ��(2; 2; 3);� = �+ � �� ; � = �+ � �� ;  = + � � :Theorem 8.4 ([MN℄) We have �(A)� �(A) = onst1, �(A)� (A) = onst2,where onst1; onst2 depend only on the oloring of the boundary �� and not on A.We hallenge the reader to obtain a proper generalization of the theorem tohigher dimensions [Mo℄.8.3 3-dimensional dominoes.While dominoes on a square grid satisfy the loal move property with respetto simply onneted regions, this is no longer true for 3-dimensional dominoes.Heuristily, in three dimensions there is enough spae to make large simply on-neted \loal moves". Formally, for any n there exist a simply onneted region �with exatly two domino tilings A1; A2 ` �, so that the move A1 ! A2 involves atleast n dominoes.Indeed, onsider a yle of size 4n with a (n� 1)� (n � 1) square shaped holeinside. Think of the yle lying in a (x; y) plane. Color this square with blakand white olors in the usual hekerboard fashion. Fill this hole with dominoespointing up or down (in the diretion z), depending on whether the square is blakor white. Now notie that there are exatly two domino tilings of this region �, asthe positions of the vertial dominoes are �xed by the onstrution, and the onlyfreedom we have is given by two possible tilings of the yle. The move will involve2n dominoes then, whih proves the laim.The onstrution naturally extends to tilings in any d � 3 dimensions. Thismakes it rather unlikely that there exists a one-dimensional height funtion asdesribed in setion 5.1. On the other hand, the tileability by dominoes is in P forany d (see [LP℄).Let us note that there are other generalizations of the 2-dimensional dominoes.For example, in three dimensions, one an onsider 2� 2� 1 bloks. The similaronstrution to the one above shows that there is no loal move property with re-spet to the simply onneted regions. It would be interesting to see if the tileabilityis also in P in this ase (f. [MR℄).



22 IGOR PAK8.4 Generalized ribbon tiles.During the searh of the nonabelian tiling arguments in many dimensions, onemay ask as to whether some generalization ribbon tiles have any. Consider theobvious generalization, orresponding to onneted d-dimensional tiles with at mostone ube in every plane L : x1 + : : : + xd = . Denote by Tdn the set of suh tilesin d dimensions with n ubes. Note that jTdnj = dn�1. The problem of �ndingthe tile invariant group G (Tdn ;Bs) remains open in general ase. Preliminaryomputations (for d = 3, n = 3; 4) suggest that rk G (T3n ;Bs) = 1, i.e that thereis no in�nite nonabelian invariant in this ase (area is learly an in�nite abelianinvariant). We onjeture that rk G (Tdn ;Bs) = 1 for all d � 3. It is oneivablehowever, that the rank may inrease if the set of regions is more restritive. Itwould be interesting to �nd a nontrivial example of that.9. Final RemarksLet us begin by saying that in our opinion, papers [T℄, [CL℄ had a profounde�et on the study of tilings, by introduing new tehniques and methods into the�eld. The notion of tile invariants and the group of invariants [P℄ were inspiredby [CL℄ and f -vetors in simple polytopes [Z℄. Tile invariants have yet to beomewidely aepted. It is our goal here is to onvine the reader that omputing G (T)for various sets of tiles T is an important problem, whih might lead to a betterunderstanding of tilings.To summarize this paper, me propose a new approah to the study of any �xedset of tiles T. Fist, one an ompute the oloring group O(T), an extended oloringgroup O (T) and the group of valuations E(T) (f. Theorem 3.2). Then one shouldattempt to determine G (T;Bs ) by omputing GN = G (T;Bs \ BN) for N largeenough. If at some point G N = E(T), this implies that there are no nonabelianinvariants (f. Proposition 2.3), so the set T is not so interesting.Suppose, on the other hand, that the alulations suggest existene of somenonabelian invariants in G (T). Then, one should hek whether T satis�es loalmove property. If yes, attempt to �nd a one-dimensional height funtion whihproves that (f. Theorem 5.2). Then ompute G (T) from loal moves. If T doesnot satisfy the loal move property, one should attempt to �nd nontrivial heightfuntions ', and ompute groups E' (T) 6= E(T). Sine E' � G (T;Bs ), one mightbe able to ompute the whole group of invariants that way (f. setion 6.3,4).While Theorem 3.1 seem to suggest that the above presription works only forspeial sets of tiles, we onsider a suess a proof of any nonabelian tile invariantor any loal move property. The theory is still in the early stages of development,so even partial results are of interest.Few words about the tileability appliations. After all, tileability of the stareaseshaped regions by the ribbon L-trominoes was the original motivation in [CL℄. Ingeneral, suppose we are given two sets of tiles T � T0, and a fully omputed tilinggroup G (T0 ;B). Now let � 2 B be a region tileable by T0. This determines all theonstants onst(�) for all tile invariants (�). Now restrition of the tile invariantsfor T0 to T gives a number of integer linear equations whih may or may not haveinteger solutions. In the latter ase the region is untileable by T (see [CL,P℄).



TILE INVARIANTS: NEW HORIZONS 23From the point of view of tileability riteria, this seem like a weak approah.Indeed, in general, we need at least as many invariants as the number of tiles jTj,and these tile invariants are hard to �nd and to prove. On the other hand, theintegrality of solutions helps. In [P℄ we found several (un)tileability results in thisdiretion. As a bonus, an easily omputable oloring group O(T) an determinewhether a ertain tileability argument follows from the oloring argument. Or, as itwas done in [CL℄, one an prove untileability of a � and then �nd a signed tilings of� by T [ �T. By Theorem 2.2 one annot prove untileability of � by the oloringarguments then.There is a number of open problems that remain unresolved. Beside those men-tioned earlier (Conjeture 5.3, questions about various small sets of tiles, et.), letus stress again that we have yet to �nd an eÆient algorithm for omputing E(T)on the whole plane. It would be interesting to �nd other approahes to omputingthe group of invariants, besides the height funtions, or �nd a reasoning why thereannot be any. It would be also very exiting to prove a loal move property forsome natural large set of tiles.Let us onlude by saying that the loal move property and one-dimensionalheight funtions have important onsequenes in Statistial Physis and in study ofMarkov hains. Roughly, random appliation of loal moves gives an easy way tosample random tilings; existene of the height funtion representation assists onein proving the rapid mixing. We refer to [BH,MN,PW,LRS,RY℄ for referenes anddetails. 10. Proof of ResultsProof of Theorem 3.2 (sketh).We need to show that givenN , T = f�1; : : : ; �kg, j�ij � R, one an solve BoundedCG-rank and Bounded GV-rank Problems in time polynomial in N , k, and R.Without loss of generality we will assume that N � R.Denote by S the N � N square. Consider �rst a oloring group O(T;BN ). Itis de�ned as ZS quotient by the relations orresponding to translations of the tiles�i 2 T whih lie in S. The rank of O is equal to the dimension of the orrespondingreal vetor spae (with the same integer linear equations).There are at most N2 translations of eah tile, there are k tiles. In total, we needto alulate the rank of the system of at most N2k equations with N2 variables.This an learly be done in polynomial time.For the extended oloring group O (T;BN ), we obtain a somewhat di�erent setof equations. Fix one translation � 0i � S of eah tile �i 2 T. Now, eah translation� 00i gives an equation orresponding having to sum of the funtion on squares in � 00iequal to the sum of the funtion on squares in � 0i . Again, we need to alulate therank of the system of at most N2k equations with N2 variables.Now, for the rank of the group of of valuations we haverk E(T;BN ) = rkO (T;BN )� rkO(T;BN ):This ompletes the proof. �



24 IGOR PAKProof of Theorem 4.1 (sketh).Use indution on the number of tiles in � to prove (?). The base is tautologial.For the step of indution, onsider � from Lemma 4.2 suh that �0 = ��� is simplyonneted. Fix a ounterlokwise orientation on �� , ��, and ��0. Let x 2 �� bethe starting point of the path P along the boundary. The paths P 0, R along theboundaries of �0, � are mapped into loops by indutive assumption. Observe thatthe intersetion P 0[R will appear twie, one in eah diretion. On the other hand,P = (P 0�P 0\R)t (R�P 0\R). Adding the values of the height funtion ' alongP as above, we obtain that P is also mapped into a loop. This ompletes the stepof indution. �
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Figure 10.5. Simply onneted regions �, � and �0 � � .Proof of Theorem 5.1 (sketh).We need to determine the group of invariants G (T;B) in time polynomial ink = jTj, `, and M = maxi j�ij.Indeed, tile invariants are preisely the maps f : T ! Z whih are invariantalong the moves. In other words, we haveG (T) = ZT=Z
��1(Ai)� �1(A0i); : : : ; �k(Ai)� �k(A0i)�; 1 � i � `�:Now, alulating all �j(Ai) is polynomial in k, M . Proeed as in the proof ofTheorem 3.2. Indeed, it remains now to determine rank of the system of ` linearequations (over R). This an be done in polynomial time [S℄. �Proof of Theorem 5.20 (sketh).Denote by A = A(�) the poset of all tilings A ` �, with `�' as an order relation.We laim that A has a minimum element A0. Indeed, start with any tiling A ` �and alulate 'A. We laim that there exists a sequene of loal moves from Ato A0. First, �nd any loal maximum x 2 b�. If x =2 ��, then apply a loal moveA! A0, and proeed by indution. If x 2 ��, then both A, A0 ontain �x. Delete� from �. Observe that we obtain either one region with smaller area or severalsmaller regions. Again proeed by indution. This proves the loal onnetivityproperty with respet to B.The seond part follows from the following observation. Denote by AI the largestelement in A. Then M � 2�, where � is the number of loal moves from A0 toAI . Fix a value 0 of any point z 2 ��. Let '0 = 'A0 , 'I = 'AI . Let h be the



TILE INVARIANTS: NEW HORIZONS 25maximum value of ' on edges of �. Then for the maximum value HI of 'I we haveHI � hj��j � hj�j, where 0 �  � d2d. Similarly, for the smallest value H0 of '0we have H � �hj�j.Now, for every A ` � de�ne (A) = Z 'A(x) d�;where the integration is taken over b� and d� is the usual eulidean measure on Rd .We have  (AI)�  (A0) � �(b�)(HI �H0) � 0j�j2;where 0 is a onstant whih depends only on T. Denote by Æ the smallest hangeof  under the loal move:Æ = m̀ini=1 �� (Ai)�  (A0i)�� > 0:We onlude that � � (0=Æ) j�j2 � 00 j�j2, whih proves the laim.For the last part, onsider the following algorithm. Compute ' on ��. Fromabove, the loal maxima of '0 = 'A0 are on the boundary. Find a maximum valueof x 2 ��. This is learly a loal maximum of '0. Now delete �x from � andproeed aordingly. Eventually we either determine A0 ompletely, or at somepoint we have to delete �x from � in an impossible situation. Sine A0 is unique,this implies untileability of � in that ase. Note that the ost of the algorithm isO(j�j2`k). This ompletes the proof of the theorem. �Proof of Theorem 5.6.First, observe that tilings A ` � orrespond to verties of P�. Indeed, supposeotherwise. By abuse of notation we an write this as A = �1B1 + �2B2 + : : : ,where �1; �2; � � � 2 R+ . But that means that zeroes of (ax;� ) on the left hand sideorrespond to zeroes on the right hand side, i.e. B1; B2; � � � = A. This proves thelaim.Similarly, onsider two tilings A1; A2 ` �. LetA� = �A1 + (1� �)A2 = �1B1 + �2B2 + : : : ;where 0 < � < 1. The point A� lies on the interval [A1; A2℄. By the observationabove, only tiles that are in A1, A2 an appear in Bi. Therefore all tiles that liein A1 \ A2 must also appear in eah of the Bi. On the other hand, a tile �x 2 A1must appear in Bi with the total weight �. Having or not having �x splits the setof tilings Bi into two subsets. Sine every element y 2 � must belong to some tile,the total set of tiles splits between tiles that ontain and don't ontain �x. Denotethese sets of indies by I and J . The above implies that either every Bi = A1,i 2 I , every Bj = A2, j 2 J , or there exist Bi, Bj , i 2 I , j 2 J , suh that A1 ! Cand C ! A2 are non-interseting loal moves (and the same is true for A1 ! Dand D ! A2). This ompletes the proof. �



26 IGOR PAKProof of Generalized Sperner's Lemma 8.1 (sketh).De�ne an orientation of the (d � 1)-dimensional simplies on the boundary toagree with orientation of V = Rd . Formally, we say that a simplex on the boundaryis positive (negative) if it is olored with d olors 2 f0; 1; : : : ; dg and oloring theremaining vertex of a unique d-dimensional simplex in � with the remaining olorwould make this simplex positive (negative). Denote by �+(��) and ��(��) thenumber of positive and negative simplies on the boundary. A simplex (of anydimension) with repeated olors we all neutral.Let us prove by indution that in onditions of the theorem we have:onst(��) = (d+ 1)��+(��)� ��(��)�:First, let us prove the base of indution. Indeed, for a single positive (negative)d-dimensional simplex all (d+1) simplies on the boundary are positive (negative).If the d-dimensional simplex is neutral, then the symmetry argument implies thatonst = 0 in this ase.For the step of indution, we an delete any d-dimensional simplex from �. Nowobserve that onst(��) is additive with respet to suh division sine the intersetionof the boundaries is taken with opposite signs, and thus anel eah other (f. proofof Theorem 4.1). We omit the easy details. �Proof of Theorem 8.2.Consider all 0-de�ient (d�1)-dimensional simplies in �, i.e. (d�1)-dimensionalfaes with d distint olors. Eah suh fae is either on the boundary or is aboundary of one blak and one white d-dimensional simplex. Denote by � thenumber of suh faes. Denote by Æ+ (Æ�) the number of of suh faes on theboundary, so that the adjaent simplex is blak (white). By ounting � separately,as a boundary of blak or white squares, we obtain� = 2�+ + (d+ 1)�+ + Æ� = 2�� + (d+ 1)�� + Æ+:Subtrating the sides in the last equality, we onlude2�+ (d+ 1)� = Æ+ � Æ�:This proves the result. � Referenes[Ad℄ R. Adin, personal ommuniation (1999).[BLSWZ℄ A. Bj�orner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler, Oriented Matroids,Cambridge U. Press, Cambridge, UK, 1999.[Be℄ R. Berger, The undeidability of the domino problem, Mem. Amer. Math. So. 66(1966).[BJLS℄ F. Berman, D. Johnson, T. Leighton, P. Shor, Generalized planar mathing, J. Algo-rithms 11 (1990), 153{184.[BC℄ A. B. Brown, S. S. Cairns, Strengthening of Sperner's lemma applied to homologytheory, Pro. Nat. Aad. Si. U.S.A. 47 (1961), 113{114.
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