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Abstract 

There are several examples where the mixing time of a Markov 
chain can be reduced substantially, often to about its square 
root, by “lifting”, i.e., by splitting each state into several 
states. In several examples of random walks on groups, the 
lifted chain not only mixes better, but is easier to analyze. 

We characterize the best mixing time achievable through 
lifting in terms of multicommodity flows. We show that the 
reduction to square root is best possible. If the lifted chain 
is time-reversible, then the gain is smaller, at most a factor 
of log(l/na), where 110 is the smallest stationary probability 
of any state. We give an example showing that a gain of a 
factor of log(l/~o)/log log(l/rro) is possible. 

1 Introduction 

The estimation of the mixing time of finite Markov chains 
(the time needed for the chain to become approximately 
stationary) has emerged as a major issue in the design and 
analysis of various algorithms for sampling, enumeration, 
optimization, integration etc. 

The research presented in this paper wa5 motivated by 
the work of Diaconis, Holmes and Neal [5], who observed 
that certain non-reversible chains mix substantially faster 
than closely related reversible chains. We view their exam- 
ple in a different way: we represent a given chain as the “pro- 
jection” of another chain, and analyze how this improves the 
mxmg time. 

Example 1.1 It is easy to see that for the random walk 
on an n-path, the mixing time is O(n’). We can consider 
this path as a “projection” of the directed (2n - 2).cycle: 
if we generate a random node from the stationary distribu- 
tion on the cycle (which is uniform), the projection will be 
a node from the stationary distribution on the path. The 
mixing time of the random walk on this cycle is e(n). (To 
be precise, we consider a bidirected cycle with probability 
213 of going “clockwise” and probability l/3 of going coun- 
terclockwise.) 

A more interesting example is provided by the random 
walk on a grid. 

Example 1.2 Let G be the fi x &-grid on the torus. It 
is easy and well known that the mixing time of the random 
walk on G is O(n). 

Now give the random walk some “inertia”. More exactly, 
we define a walk as follows: if we enter a node, we are most 
likely to exit over the opposite edge; we turn left or right 
with probability 1/100&i; we never turn back. If we start 
the walk in a given direction, say “North”, we are likely to 
continue going North until we circle the torus about a 100 
times. Then we turn; the node where we turn off is essen- 
tially uniformly distributed over the cycle we started on. 
Now we circle the torus about 100 times, going either East 
or West. When we turn again, our EW coordinate will also 
be essentially uniformly distributed, in other words, the sec- 
ond turning point will be essentially uniformly distributed 
over all nodes of G. And to get to this second turning point, 
we only needed O(fi) steps! 

Of course, the walk we defined above is not a rando_m 
walk on G, rather, it is a random walk on a “lifted” graph G, 
defined as follows. For every node u E V(G), we introduce 
four copies, corresponding to the direction we were traveling 
when we entered the node. Let u be any “old” node, and let 
UN,VE,VS,VW be its neighbors to the North, East, South 
and West. From the new node (v, South) (say), we go to 
(vs,South) with probability 1 - l/&z, and to (u~,East) 
and (VW, West) with probability l/(2& (the factor of 100 
waz only needed in the very informal analysis above). 

By symmetry it is clear that the stationary distribution 
on e is also uniform. Of course, our analysis above show- 
ing that the random walk on G mixes fast was not precise: 
an argument will be given after the exact definition of the 
mixing time, at the end of section 2. 

Further, more involved examples of improving mixing 
properties of random walks on groups through “lifting” will 
be given in section 4. 

In this paper we study the possibilities and limitations 
of lifting. 

The details of the results deoend on the exact notion 
of mixing time we use. A stanhard way of defining this 
would be to consider the number of steps after which the 
total variation distance of the current distribution from the 
stationary becomes less than (say )1/4; however, we prefer to 
work with two quantities whose definition is free of arbitrary 
parameters, and which allow us to state clean inequalities 
like proposition 3.3 below. 
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Still informally, the most basic version is the time ‘H 
needed to set the stationarv distribution from the worst 
starting s&e, using the best stopping rule. Let ~0 be the 
smallest stationary probability of any state. We show that 
the mixing time of any lifting is at least n(v%/log &), and 
if both the original and the lifted chains are time-reversible, 
then the mixing time of the lifting is at least R(‘U/log &). 
We also give an example showing that even in this time- 
reversible case, the mixing time can improve by a factor of 
(log $I/ log 1% ,$. 

We also consider the average set-hitting time, or set-time 
A, which is the expected number of steps needed to hit the 
“most remote” set from a random starting node (drawn from 
the stationary distribution), weighted with the stationary 
probability of the set. While seemingly it is not a mixing 
measure, set-time behaves very well and is closely related to 
‘H and other mixing parameters. We show that the set-time 
of any lifting is at least J7i. Results of Aldous and Fill 
[3] imply that for the time-reversible case, lifting gives no 
improvement at all in the set-time. This implies easily the 
results about mixing time. 

The numbers 31 and A relate to the standard measures 
intimately. For example, if we add loops with transition 
probability I/2 at each node to get rid of periodicities (lazy 
walk), then after O(X) steps the total variation distance 
from the stationary distribution drops to less than l/4. Fur- 
thermore, if we stat from a distribution such that the prob- 
ability of each node i is at most (1 + C)ni, then after O(d) 
steps, this bound drops to (I+ C/2)x; (see [9] for a survey). 

The conductance Q of the chain, which has been used 
since the work of Jerrum and Sinclair [I?] to estimate its 
mixing time, plays an important role in these results. We 
also need a related value, the jfow parameter C; this sat- 
isfies C > l/O and the celebrated Leighton-F& theorem 
implies that C = O(log(l/?io)/O) for time-reversible chains. 
Our main result is that the smallest mixing time achievable 
through lifting is O(C). 

These results will be stated formally in section 3, follow- 
ing preliminaries about mixing times and multicommodity 
flows. 

2 Preliminaries 

2.1 Mixing times 

We consider a finite irreducible Markov chain M, with set of 
states V, transition probabilities p;j and stationary distribu- 
tion K. Often it is convenient to describe the Markov chain 
in terms of the ergodie pow Qij = a;p;j. These values satisfy 
xi Qij = cc Q+ and c,,j Q;j = 1, and every non-negative 
matrix Q with these properties defines a Markov chain. The 
stationary distribution can be recovered by ?rj = c; Q.,. 

We can also think of a Markov chain as a random walk 
on a strongly connected digraph G = (V, A), with the pij 
considered as weights of the edges. 

Recall that the Markov chain is time-reversible if Q;j = 
Qji for every i,j E V. We can define the reverse chain of 
any Markov chain by aij = Qji. A chain is time reversible 
iff it is equal to its own reverse chain. 

The hitting time ‘H(i,j) is the expected number of steps 
before node j is reached, starting from node i. We define 
the DCC~SS time H(a, S) of a set S of nodes as the expected 
number of steps before the set S is reached, starting from a 
random node drawn from the stationary distribution. The 

set-time of the chain is defined by 

A = msaxn(S)X(?r, 5’). 

A stopping rule r is a map from V’ (the set of finite 
strings of states) to [0, I], such that for w E V’, w = UJ~IJJ’...W’ 
the value of r(w) is the probability of continuing given that 
w is the walk so far traversed. 

It is often useful to regard a stopping rule r as a stop- 
ping time, i.e., a random variable whose value is the actual 
number of steps made before stopping (so we stop at wr). 
We assume that with probability 1 the rule stops the chain, 
i.e., the stopping time is finite. 

Assume that the starting node w” is drawn from some 
distribution c. The distribution of WI‘ is denoted by or. If 
or = r, then we say that P is a stopping rule from c to r. 
We say a stopping rule r from D to T is optimal if the mean 
length of r is infimum of all the stopping rules from c to 
T. We define the access time ?l(o, r) from c to 7 to be the 
mean length of an optimal rule. 

The miring time from a state i is X(i, ?r), the mean 
length of an optimal rule from the distribution concentrated 
at i to the stationary distribution, The mizing time of the 
random walk on the graph G is ‘?i := rnaxi~v 31(i, ?r). 

The set time is related to mixing in an intimate way (cf. 
PI): 

A.5 X < 128dlog ;. (1) 

We conclude with showing that the mixing time of the 
random walk on c in our second introductory example is 
O(&. Start from any state in 2. Consider the following 
stopping rule I? with probability l/2, we stop after the 
second change of direction, and with probability l/2, we 
stop after the third change of direction. A simple calculation 
shows that when we stop, the probability of being at any 
given node of e is more than l/an (the reason for going 
either 2 or 3 turns is to get the direction of entrance also 
right: after an even number of turns, we are always going 
North or South). 

Thus we have described a (randomized) stopping rule 
that, for any starting node, stops in an expected number of 
0(,/X) steps, and the probability of stopping at each node is 
at least l/2 its stationary probability. By standard results 
(see e.g. [9]), this implies that the mixing time is O(6). 

2.2 Exit frequencies 

We’ll need the following notion from [9]. Let r be a stopping 
rule from 0 to 7. We denote by z;(r) the expected number 
of times we leave node i before stopping. It is easy to see 
that for every node i, the conservation equation 

holds. It will be convenient to introduce the scaled ezit fre- 
quencies yi(r) = zi(r)/Ti. 

It was shown in [S] that r is an optimal rule from 0 to r 
if and only if it ha a halting state, i.e., a node i with si(r) = 
0. In this case, the conservation equation implies that the 
exit frequencies depend only on o and 7, and they will be 
denoted by z;(o, T) (and yi(o, i)). Another consequence of 
the conservation equation we need is the fact that if r is a 
stopping rule from v to V, then xi(r) = ?riE(T). 

In the case of time-reversible chains, and stopping rules 
achieving the stationary distribution r, more can be said 
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about halting states. Let us say that z is a halting state 
for node a if I is a halting state of an optimal stopping rule 
from a to x (this does not depend on which optimal rule we 
consider). Then the halting states for n are characterized as 
the nodes maximizing the hitting time to a. Furthermore, 
if a is a node with %(a, r) maximum, then so is z, and a is 
the halting state for z. 

2.3 Conductance and flows 

An s - t 50~ (s, t E V) in a digraph G = (V, E) is a non- 
negative valued function f defined on the edges such that 

-pi) = CfW 
j 

for every node i # s, t. The value of the 5ow is defined by 

Nf) = c f(G) - c f(js) = c f W) - c f(C)> 
j j j j 

and cost is defined by 

cost(f) = c f(ij) 
‘,I 

A Aow with value 0 is called a circulation. The ergodic 
Bow Qij is a circulation of cost 1. 

A multicommodity flow is a collection f = (f”“) of flows, 
one s - t Row f”’ for each pair of nodes s and t. In this 
paper, we need to consider only multicommodity Aows with 
val(f”‘) = r.?it for all s and t, so this will be automatically 
assumed. We also assume that the 50~s are minimal, i.e., 
no directed cycle has positive flow value on each edge. 

We define the congestion of a multicommodity 50~ as 
the least K such that 

Cf”‘(ij) 5 KQij 
s.t 

for every edge ij. We define the local cost of a multicom- 
modity flow as the least K such that 

cost(f”‘) 5 Ka,, ~cost(f”‘) 5 Klit 
8 

for every s and t. Finally, let C denote the the smallest 
K such that there exists a multicommodity Bow with con- 
gestion and local cost at most K. Since C can be written 
a~ the optimum of a linear program, it is polynomial time 
computable. 

Sometimes it is more convenient to think of a multi- 
commodity Aow as a weighted collection of directed paths 
{(Pr, We) : 1 < T < N}, where the total weight of paths 
from node i to node j is ii;=,. 

The conductance of a Markov chain is defined by 

&CS, V \ s) 
* = 3: ?r(S)n(V\S)’ (2) 

O<.TS,<l 

where Q(A,B) is shorthand for CiEA j~s Q;j. 
It is easy to see that C > l/e. For time-reversible chains, 

it is easy to derive from a well-known theorem of Leighton 
and Rao [7] the following reverse bound: 

2.4 Conductance and mixing 

Standard results, first obtained by Jerrum and Sinclair 161, 
use conductance to bound mixing parameters. For reversible 
chains, the following bounds are well known. Let 1 - XZ 
be the eigenvalue gap, and define the relazotion time to be 
C = &. Then 

;~C~~> (3) 

and 

+l~log$~. (4) 

For general chains, there does not seem to be a standard 
way to define the eigenvalue gap, but similar bounds can be 
proved for the set-time A. 

(5) 

(‘3) 

The proofs of these lemmas are omitted. The connection 
between multicommodity flows and mixing, in one direction, 
is established by the following lemma: 

Lemma 2.2 For every Ma&u chain, 

n> ;c. 

Proof. Consider the multicommodity 50~ f = (f”‘), where 

where Gj denote the scaled exit frequencies in the reverse 
chain. It is easy to check, using the conservation equation, 
that f”’ is indeed a flow of value r8xt from s to t. The cost 
of this flow is 

F f”“(U) = WT” 
L 

ClriYi(S,Ir) + CTj Gj (tan) 
j 1 

= n,nt(n(s,ii)+ Tl (t,lT)) 5 za,?rtn. 

(Here G (t, n) denotes mixing times for the reverse chain; 
+ 

we use that xfl= XH.) Moreover, 

Cf”“(ij) = Qi, CT~YC(S,T)+CT~ Gj (t,r) 
r.t ( a t 1 

Now here Ca r.y;(s, vr) can be considered as the scaled exit 
frequency of the following (non-optimal) stopping rule from 
1~ to ?r: “choose a random starting point s from r and then 
follow an optimal stopping rule to xi’. It follows that these 
exit frequencies nre the same for each i, and hence 

c fat(ij) = QijK 

s,t 

for some constant K. To obtain K, we can sum over all 
edges ij, which gives that K = c,,, cost(f”‘) 5 2X. 0 
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3 Lifting and Collapsing 

Let M and k be two finite Markov chains with underlying 
sets V and c, respectively. We denote by ;i, p^ etc. t_e 
stationary distributions, transition ptpbabilities etc. in M. 

We say that M is a collapsing of M, if there is a mapping 
p --t V such that 

R” =F?(f-l(u)) = c ;ii 

iSI-’ 

for every u E V(G), and 

for every pair u, 21 E V(G). We also say that $ is a Iifiing of 
M. For the random walk on an undirected graph, collapsing 
simply means identifying vertices with the same image. 

Note that for the ergodic flows we have 

Q(A,B) = G(f-‘W,f-*W). 

It is easy to check that every chain obtained by collapsing 
a reversible chain remains reversible. (More generally, the 
reverse of the collapsed chain can he obtained by collapsing 
the reverse chain by the same mapping.) On the other hand, 
a lifting of a reversible chain may be nonreversible, and we 
will see that in order to gain significantly in the mixing time, 
we will have to look for nonreversible liftings. 

In their book [3], Aldous and Fill [3] call the collapsed 
chain the induced chain, and prove monotonicity properties 
of several parameters under collapsing. 

It is a trivial observation that the conductance @ cannot 
be increased by lifting: if there is a “bad” partition in M, 
then it lifts to a “bad” partition in M. Similarly, the flow 
parameter C cannot be decreased by lifting: given a multi- 
commodity flow in the lifted chain, it can be projected to 
the original chain to get a multicommodity flow with equal 
or less congestion and local cost. 

Lemma 2.1 and the monotonicity of * under lifting im- 
plies the following. 

Theorem 3.1 Let M be n finite irreducible Markov chain 
and let G be o lifting of it. Then 

a^> J;;dTt 
-40 ’ (7) 

and 

Recall that in the case of the random walk on an n-path, 
$ = e(n), 31 = e(n’), A = O(n*), and we lifted it to 
a dicycle whose mixing time is O(n). This shows that the 
bound in (7) is best possible. 

We also know that a factor of loglog(l/?ro) is needed 
in (8). Consider a random walk on a S,, generated by all 5 
cycles. The mixing time is Q(log n). Indeed, consider a set B 
of permutations with no fixed point. It is known that 151 - 
$ (see e.g. [4]). After each step the number of lixed points 
decreases by a factor of about 2. Thus the hitting time 
to B is 8(logn), which gives a lower hound on the mixing 
time (see 1111). The upper bound is also O(logn) (see [13]). 

On the other hand, diameter of the Cayley graph is O(1) 
(see [15]). This is easy to see because in one step one can 
cyclically permute any 5 elements. Now by a later result, 

Theorem 4.3, there exists a lifting with ?? = O(A) = O(1). 
The stationary distribution is uniform here, ii0 = l/n!. So 
in (8), a factor of loglog(l/xo) = loglogn! = logn is needed. 
We don’t know whether there is an example where the factor 
log(l/ro) is needed. 

3.1 Optimal lifting 

There are chains that cannot be lifted to get -H^ zz 4 (an 
example is a “path with a drift”, where we step with prob- 
ability Z/3 to the right and l/3 to the left). We do not 
know whether there is always a lifting that makes A^- &. 
But we have the following general theorem about the best 
mixing time. 

Theorem 3.2 For every chain M, 

$Z 5 inf ii < 144C, 

where the infimum is taken over all Iiflings of M. 

Proof. The first inequality is an immediate consequence 
of lemma 2.2 and the monotonicity of C under lifting. To 
prove the second, let f = ((P?, We)} be a multicommodity 
flow from m to a with congestion and local cost at most C, 
given in the form of a weighted collection of directed paths. 
It is not hard to see that, using this set of paths, we can 
construct another set of paths {p?] with weights {6&) such 
that they define a multicommodity f@v from ?i to_r with 
congestion and path length at most C, where C < C 5 12C. 
To simplify the notations, we will still use {Pr) and {w,} 

to denote {p?] and {&}. Let & be the length of Pr. The 
following equations are obvious but will be important: 

and 

c wr = lli, c wr =iT; (10) 
7: P” 6fe.rtE *t i r: P” ends at i 

Furthermore, 

c wr 5 ?Q;j (11) 
I: <JEE(P”) 

Informally, we lift the chain as follows: if we start at a 
node i, we select one of the paths Pr out of that node at 
random, with probability proportional to the _weight UJ,. 

Formally, we construct the lifted graph G from G by 
adding a directed path P: of length e, connecting i to j if 
P, goes from i to j (these added paths have no internal node 
in common with G or with each other). 

The ergodic Bow on an edge ij of the lifted chain is de- 
fined by 

Qij = ;,P? c 

1 - 

if ij E E(P:), 

wT/2c7 if ij E E(G). 
T: ijEE(P,) 
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It is clear Jhat this is a circulation and it is easy to check 
that Cij Q(ij) = 1, thus it defines a Markov chain on G. 
The stationary distribution of the lifted chain is given by 

;;, = 

i 

w,/2c7 if i E V(PJ) \ V(G), 

xi -I: pzru iw,/2Z if i E V(G). 

Now there is a natural way of mapping the paths P: onto 
t&e paths P,, which defines a homomorphism of the graph 
G onto G. It is easy to check that this collapses the random 
walk on I? onto the random walk on G. 

Notice for an old node i, 

‘VT < i? < lr< , 
2 ‘- ‘- (12) 

and the probability of getting on a directed path PL starting 
at i is 

p..=Qij = ~7 
‘I i;, 2&i 

Hence the probability of getting on any directed path stat- 
ing at i is 

and by (12), it is bounded between $ and $ 

We claim that the mixing time of the lifted chain is at 
mOSt 144c. 

Consider the following stopping rule. First walk until 
you see an old node, then keep walking until you reach an 
old node by going through a directed path. Let the node 
be X, then the distribution of X is r. With probability 
l/2, stop; otherwise, continue walking until get onto any 
directed path Pi. Once on P:, choose an interior node Y of 
P: randomly and uniformly, and stop at Y. 

We claim that we stop at each node of z with at least 
(l/Z) of its stationary probability. If u is an old node, then 
X = v with probability >, and so we stop there with prob- 
ability at least ?i,/Z 2 ?r,,/2. If we continue walking after 
X, let w* be the kth point in the walk starting from X. 
Because at any old node i, the prob:bility of getting on any 
directed path is between $ and 7 a coupling argument 

shows that for any old node i, 

Prob(w* = ilw’,...,w* areoldpoints) 
I .\* 

If ZI is a new point on the directed path Pi which connects 
the old nodes i to j. Then 

Prob(stop at u) 
m 

2 ;cP b( IO w* = +I’, , wk are old points) 
!e=o 

x Prob(at i, get on the path Pi) x i 

Obviously, this stopping rule takes at most 6c^ steps. 
Now a folklore “fill-up” argument (cf. [l]) implies that 
315 lZc^< 144c. 0 

3.2 Reversible lifting 

Aldous and Fill show that if the lifted chain is time-reversible, 
then the average set-hitting time A cannot be decreased by 
lifting: 

Proposition 3.3-Let M and 6 be twofinite reversible chains, 
and assume that M is a IiJting of M. Then 

This implies, by (1): 

Corollary 3.4 31 5 12810g(1/no)% 

Thus if the lifting r? is reversible, then the gain in mixing 
time, if any, is marginal. In the case of graphs without mul- 
tiple edges, log $ = O(logn), so the gain is only O(logn). 

Aldous and Fill raise question whether collapsing always 
decreases the mixing time (at least up to a constant fac- 
tor). Example 3.5 below shows that this is not the case: 

it can happen that % is smaller than 31 by a factor of 
log(l/ro)/ loglog(l/?ro), which is almost best possible by 
corollary 3.4. 

Example 3.5 In the following example, we need the follow- 
ing well-known facts: (a) if the underlying graph of a Markov 
chain is a tree, then it is time-reversible. (b) Furthermore, 
if ij is an edge, and VI is the set of nodes separated from j 
by ij, than H(ij) = r(K)/Q+. 

The graph G^ has 2k + 2 nodes, labeled ~0,. , UX+I and 
~1,. , ‘uk. From node uo, we step to UI with probability 
l/2, and stay at vg otherwise. From node ZI;, we step to 
v; with probability 1/(2i), and stay at ui otherwise. Ram 
node ui (1 _< i _< k - I), we step to w-1 with probability 
1/(2i + 6), to u;, with probability 1/(2i f 6), and to v,+l, 
with probability (i + 2)/(i + 3). From ut, with step to each 
of a--l, VI+, and a with probability l/3. From a+,, we 
step to t& with probability 1/2k, otherwise stay at a+1 

The graph G is obtained by identifying u; with vi--l, for 
i = 1, . . . . k. 

By the introductory remark, both of these chains are 
time-reversible. To explain the structure of 6, we note that 
the transition probabilities were chosen recursively so that 
%(u;+I, v;) = 2 and %(ui, vi) = 2i for i = 1,. , k. The 
node w+, 3 just a twin of ELI. It is not difficult to com- 
pute that 71(tik,vx+,) = 4k + 8. One can check then that 

ii(ui, w+,) = 6k+8 for every leaf ui, and also %(vo, VY+,) = 
6k + 8. Most of the stationary probability is concentrated 
on vh+l and ZL~, and hence if we start at uo, it takes asymp- 
totically 6k steps to mix. This turns out to be also true for 
e_very other leaf, while we need less from internal nodes. So 
‘H.-6k. 

On the other hand, on the graph G we have 31(x,, vi) = 
i + 1 for i = l,.. ,k, and 31(uk,v*+l) = 4k + 8, hence 
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‘H(vo,v~) = k(k+3)/2, and X(vo,vr+l) = (k*+llk+l6)/2. 
As before, this implies that the mixing time from 110 (which 
is trivially a pessimal node) is asymptotically k2/2. 

To conclude, note that the sum of degrees in G (and G^) 
is 2*-‘(rC+1)!(3k+4), and the minimum degree is 2, whence 
log(l/lr,,) Y Ic log fi, and so the factor k/12 we gain by lifting 
is indeed Q(log(l~rro)~loglog(l/~o)). 

4 More examples: random walks on groups 

Let G be a finite group, S be its set of generators, Q be a 
probability distribution on S. Define an irreducible Markov 
chain M = M(G, S, Q), with set of states G, transition prob- 
abilities pg,h = Q(g-‘h) given g-‘h E S, and pB,h = 0 other- 
wise. Observe that M has a uniform stationary distribution 
r = U. One can think of M as a random walk on a weighted 
Cayley yaph r = l?(G, S). Note also that M is reversible if 
S = S- , and Q(s) = Q(s-‘) for all s E S. 

The problem of estimating the mixing time ‘H for this 
special class of Markov chains is classical (see [3, 4, 111) and 
is often very delicate. The problem is that M is often rapidly 
mixing, say ‘H = O(log’ IG/) for some constant c > 0. Thus 
we cannot even ignore a factor of log(l/ao) = log IGI. We 
will show that sometimes nonreversible liftings of reversible 
random walks mix better and are easier to analyze. 

Example 4.1 Let G = S, be a symmetric group. Consider 
a generating set of Coxeter (adjacent) transpositions R = 
{(l, 2), (2,3), , (n - 1, n), (n, l)], and let Q be uniform on 
S. It is easy to see that the corresponding random walk 
M(S,, R, Q) mixes very slowly. Indeed, we move element 1 
with probability l/n in each direction on a circle, and leave 
it with probability 1 -Z/n. Thus we need about O(n3) steps 
just to have element 1 “mixed”. A coupling argument in [2] 
shows that ‘H = O(n3 log n). 

Now notice that the diameter A = 0(n2), and a constant 
portion of the group lies at distance > A/2 from identity. 

Thus C = 0(n2) and a lifted Markov chain must have % = 
n(n*). Let us construct a lifting with % = @(n’). 

Let G^ be the set of pairs (e,i), e E S,,, 1 5 i 5 n. 
Using analogy with example 1.2, let the walk move from 
(o,i) to (u.(i,i+l),i+l) with probability 1-l/lOOn and to 
(u.(j,j+l),j+l),j = K’(u(i)+l) with probability l/loon. 
The idea is to give the random walk some “inertia”: if we 
just moved element k clockwise, we are likely to keep moving 
it in the this direction. We do it for about 1OOn steps, so 
then the element k gets into nearly uniform position. Then 
we start moving element k+l, etc. After about O(n*) steps, 
when we have finished moving all the eleme_nts, we get a 
nearly uniform permutation, which gives us 7l = O(n’). 

Example 4.2 Let G = L’(n + 1, FP) be the group of upper 
triangular matrices over the finite field with ones on the di- 
agonal. Let the generating set S be the set of all matrices 
with one nonzero entry right above diagonal. Thus applying 
a generator is the same as adding to the (uniformly chosen) 
i-th row the (i + I)-th row multiplied by a uniform element 
o E F,. As before, let Q be uniform and assume p is large 
enough (say, p > 2 n3). This random walk has been exten- 
sively studied before as an example of a random walk on a 
nilpotent group (see [l2, 141). The best known upper bound 
in [12] gives 71 = O(r?‘) while only ‘H = fl(n’) is known 
for the lower bound. 

We_will present a construction of a lifting with a mixing 
time ‘H = @(n*). Simply let the row i be chosen not uni- 
formly, but with high probability right above the previous 

row. Formally, let E be the set of pairs (g,i), 1 < i _< n, 
g E G. At (g, i), with probability 1 - l/lOOnZ we move to 
(g’, i - 1 mod n), where g’ is obtained by adding row i times 
uniform D E F, to row i - 1 mod n, and with probability 
l/loon3 we move to (g,j), 1 5 j 5 n. Note that we will 
switch from a cycle after about O(n*) steps. After the first 
O(n) steps we get a nearly uniform lirst row, after the next 
O(n) steps we get a nearly uniform second row, etc. When 
we switch we get to a uniform j and uniform g E G. Stop 
then. Th$ defines a stopping time and an easy computation 
gives us X = O(n’) (cf. 1121). 

Let us now state a general result for this case. Let 
d(g, h) be the distance between g, h E G in the Cayley graph 
r(G, S). Let 

B=lxd(e,g)<A 
IGI 9EG 

be the average distance from the identity element. Denote 
qo = min,a Q(s). 

Theorem 4.3 For every finite gmup G, D set of generators 
S, and o probability distribution Q on S, 

where the infimum is token L)V~T all possible Iiftings, and 
C,,C2 are universal constants. 

The proof follows easily from Theorem 3.2. If we allow 
flexibility in the choice of Q one can sharpen the theorem by 
deleting a factor of l/q0 on the right hand side. Surprisingly, 
together with (8) this gives a solution of the Conjecture 7.3 
in [3]. 

Theorem 4.4 For every Jinite group G, n set of generators 
S, there mists a probability distribution Q on S, such that 
for a corresponding random walk we have: 

71 < C(L))‘logIGI, 

where where C is a universal constant independent of G. 

A different proof of this result was independently discov- 
ered by Jim Fill (personal communication). 

5 Concluding remarks 

The key open question is: how to use the lifting of Markov 
chains in sampling algorithms? Many of the current ap- 
plications (for example, to volume computation) use the 
“conductance-squared” bound (Lemma 2.1 or its variations) 
to estimate the mixing time (and often this is best possible). 
Theorem 3.2 shows that if we use an appropriate lifting, then 
we can reduce the mixing time to about the square root in 
such cases! 

The catch is to construct the appropriate lifting. Our 
results in section 3 show that this is closely related to ex- 
plicitly constructing multicommodity flows with minimum 
congestion. Section 4 shows that this is possible in some 
cases, namely for groups; hopefully, it is also possible in 
other cakes like random walks in convex bodies. 
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