SPECIAL CASE OF NHLF

ALEJANDRO MORALES, IGOR PAK, GRETA PANOVA

This is a quick followup on our paper [1]. Let $\lambda = (k^{\ell}), \mu = ((k-1)^{\ell-1})$. Then, clearly,

$$f^{\lambda/\mu} = \left| \operatorname{SYT}(k, 1^{\ell-1}) \right| = \binom{k+\ell-2}{k-1}.$$

The excited diagrams $D \in \mathcal{E}(\lambda/\mu)$ are the complements to paths $\gamma \in \Upsilon(k, \ell)$ from (1, k) to $(\ell, 1)$ in $[\lambda]$. Thus, we have:

$$\left|\mathcal{E}(\lambda/\mu)\right| = \left|\Upsilon(k,\ell)\right| = \binom{k+\ell-2}{k-1}.$$

Using the symmetry of λ , the NHLF gives the following summation:

$$(\diamond) \qquad (k+\ell-1)! \sum_{\gamma \in \Upsilon(k,\ell)} \prod_{(i,j) \in \gamma} \frac{1}{i+j-1} = \binom{k+\ell-2}{k-1}.$$

Denote the product above by X_{γ} :

$$X_{\gamma} := \prod_{(i,j)\in\gamma} \frac{1}{i+j-1}.$$

The equation (\diamond) then implies following curious result.

Corollary: Let $\gamma \in \Upsilon(k, \ell)$ be a grid path chosen uniformly at random. Then:

$$\mathbb{E}[X_{\gamma}] = \frac{1}{(k+\ell-1)!}.$$

The formula has a strange probabilistic feel. Here is another way to understand it. Take a path γ from (1,1) to (ℓ, k) . Then $X_{\gamma} = 1/(k + \ell - 1)!$, for all such γ . In other words, the r.v. X_{γ} averages out to the same value no matter whether they are $(1,1) \rightarrow (\ell, k)$ or $(1,k) \rightarrow (\ell, 1)$.

The corollary can be proved directly by induction, see here: http://math.stackexchange.com/a/1591493/17176

The induction argument generalizes the statement above: $\mathbb{E}[X_{\gamma}]$ is equal to the same value for random paths $\gamma : (a, b) \to (c, d)$, as for random paths $\gamma : (a, d) \to (c, b)$, for all $a, b, c, d \ge$ 1. It would be very interesting to find a probabilistic explanation of this equality.

[1] A. Morales, I. Pak and G. Panova, Hook formulas for skew shapes, preprint (2015), 40 pp.

January 23, 2016.