SPECIAL CASE OF NHLF

ALEJANDRO MORALES, IGOR PAK, GRETA PANOVA

This is a quick followup on our paper [1]. Let $\lambda=\left(k^{\ell}\right), \mu=\left((k-1)^{\ell-1}\right)$. Then, clearly,

$$
f^{\lambda / \mu}=\left|\operatorname{SYT}\left(k, 1^{\ell-1}\right)\right|=\binom{k+\ell-2}{k-1} .
$$

The excited diagrams $D \in \mathcal{E}(\lambda / \mu)$ are the complements to paths $\gamma \in \Upsilon(k, \ell)$ from $(1, k)$ to $(\ell, 1)$ in $[\lambda]$. Thus, we have:

$$
|\mathcal{E}(\lambda / \mu)|=|\Upsilon(k, \ell)|=\binom{k+\ell-2}{k-1}
$$

Using the symmetry of λ, the NHLF gives the following summation:

$$
(\diamond) \quad(k+\ell-1)!\sum_{\gamma \in \Upsilon(k, \ell)} \prod_{(i, j) \in \gamma} \frac{1}{i+j-1}=\binom{k+\ell-2}{k-1}
$$

Denote the product above by X_{γ} :

$$
X_{\gamma}:=\prod_{(i, j) \in \gamma} \frac{1}{i+j-1} .
$$

The equation (\diamond) then implies following curious result.
Corollary: Let $\gamma \in \Upsilon(k, \ell)$ be a grid path chosen uniformly at random. Then:

$$
\mathbb{E}\left[X_{\gamma}\right]=\frac{1}{(k+\ell-1)!}
$$

The formula has a strange probabilistic feel. Here is another way to understand it. Take a path γ from $(1,1)$ to (ℓ, k). Then $X_{\gamma}=1 /(k+\ell-1)$!, for all such γ. In other words, the r.v. X_{γ} averages out to the same value no matter whether they are $(1,1) \rightarrow(\ell, k)$ or $(1, k) \rightarrow(\ell, 1)$.

The corollary can be proved directly by induction, see here:
http://math.stackexchange.com/a/1591493/17176
The induction argument generalizes the statement above: $\mathbb{E}\left[X_{\gamma}\right]$ is equal to the same value for random paths $\gamma:(a, b) \rightarrow(c, d)$, as for random paths $\gamma:(a, d) \rightarrow(c, b)$, for all $a, b, c, d \geq$ 1. It would be very interesting to find a probabilistic explanation of this equality.
[1] A. Morales, I. Pak and G. Panova, Hook formulas for skew shapes, preprint (2015), 40 pp.

